Does Ensemble Learning Always Lead to Better Forecasts?

Hitoshi Hamori, Shigeyuki Hamori

Abstract


Ensemble learning is a common machine learning technique applied to business and economic analysis in which several classifiers are combined using majority voting for better forecasts as compared to those of individual classifier. This study presents a counterexample, which demonstrates that ensemble learning leads to worse classifications than those from individual classifiers, using two events and three classifiers. If there is an outstanding classifier, we should follow its forecast instead of using ensemble learning.


Full Text:

PDF


DOI: https://doi.org/10.11114/aef.v7i2.4716

Refbacks

  • There are currently no refbacks.


Paper Submission E-mail: aef@redfame.com

Applied Economics and Finance    ISSN 2332-7294 (Print)   ISSN 2332-7308 (Online)

Copyright © Redfame Publishing Inc.

To make sure that you can receive messages from us, please add the 'redfame.com' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders. If you have any questions, please contact: aef@redfame.com

-------------------------------------------------------------------------------------------------------------------------------------------------------------