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Abstract 

A polyethylene plant at Borealis AB is modelled in the Modelica language and considered for parameter estimations at 

grade transitions. Parameters have been estimated for both the steady-state and the dynamic case using the 

JModelica.org platform, which offers tools for steady-state parameter estimation and supports simulation with 

parameter sensitivies. The model contains 31 candidate parameters, giving a huge amount of possible parameter 

combinations. The best parameter sets have been chosen using a parameter-selection algorithm that identified parameter 

sets with poor numerical properties. The parameter-selection algorithm reduces the number of parameter sets that is 

necessary to explore. The steady-state differs from the dynamic case with respect to parameter selection. Validations of 

the parameter estimations in the dynamic case show a significant reduction in an objective value used to evaluate the 

quality of the solution from that of the nominal reference, where the nominal parameter values are used. 

Keywords: parameter estimation, parameter selection, Modelica, grade change, polymerisation 

1. Introduction 

Polyethylene manufacturers face a market that is constantly changing, which creates the need to switch between the 

manufacture of different grades in a cost efficient manner by manipulating the feed of raw materials to the reactors. An 

existing Borstar® polyethylene plant at Borealis AB that produces bimodal polyethylene is considered. Bimodal 

polyethylene products are polymerised in three cascaded reactors: pre-polymerisation, loop and gas-phase reactors 

(GPR), see Figure 1. The first and smallest reactor is the pre-polymerisation reactor, whose main purpose is to gently 

polymerise the surface of the catalyst particles. This is necessary since a rapid reaction may damage the particles. The 

first peak of the bimodal molecular weight distribution is formed in the subsequent loop reactor. The final reactor in the 

chain, the GPR, is a fluidised bed reactor in which the second peak is formed. 

Accurate modelling of advanced chemical reactors is a difficult task, but it is an invaluable tool in cutting the expense 

of raw materials. Models of chemical processes must be accurately calibrated, in order to make the differences between 

the model and the real process dynamics as small as possible. We have calibrated a model in order to obtain valid 

parameters that can be used in a model suitable for optimisation of grade changes, which has previously shown 

promising results in Larsson (2011). We present here parameter estimation using a differential algebraic equation model 

(DAE) based on real experimental data responses from the plant, for two different grade changes at two different time 

periods. We present also cross validation of the results from the parameter estimation. 

Polyethylene is formed by a polymerization reaction of ethylene and hydrogen, and its properties depend strongly on its 

molecular weight. The hydrogen is the termination gas and the ratio between the concentrations of hydrogen and 

ethylene affects directly the length of the molecular chains formed. Comonomers, such as hexene and buthylene, can be 

added to control such properties as the density and melting properties. The reaction is catalysed by a Ziegler-Natta 

catalyst, which makes it possible to operate at low temperatures and pressures. Bimodal polyethylene is the term used to 

describe polyethylene that has a molecular weight distribution with two peaks. Such a polymer has good resistance and 

mechanical properties. 
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Figure 1. Schematic diagram of the plant PE3 at Borealis AB with the three cascaded Borealis Borstar® reactors and a 

recycling area with three distillation columns. 

Large-scale parameter estimation using non-linear programs (NLP) has previously been successful in many cases. 

Zavala and Biegler (2006) describe the parameter estimation of a low-density polyethylene tubular reactor at steady 

state, developing large-scale NLPs that were solved by interior point methods. Sirohi and Choi (1996) presented a 

parameter estimation of the catalyst parameters of a continuous olefin polymerisation reactor. Faber et al. (2003) 

calibrated multiple datasets simultaneously by dividing the problem into sub-NLPs. Arora and Biegler (2004) applied a 

non-linear trust-region successive quadratic programming (SQP) method to estimate the model parameters on-line of a 

polymerisation reactor model. Another study modelled the high-density polyethylene slurry process where kinetic 

parameters were estimated (Zhang et al., 2014). They proposed a methodology to transform ill-conditioned parameter 

estimation problems into well-conditioned subproblems. 

The model before parameter estimation is known as the nominal model, and is calibrated in an ad hoc manner using 

process know-how, results from experiments and/or trial and error. This is satisfactory for a model that is to be used as a 

predictive controller to correct any discrepancies between the actual and the desired output measurements by updating 

states or parameters. However, no corrector is available when optimising grade changes offline, and errors in the model 

will be immediately penalised as the process takes unrealistic paths. It is necessary in this case to calculate the optimal 

parameters. 

Andersson et al. (2011) describe the estimation of parameters at steady state. These parameters were estimated using 

objective functions in which not only one grade was considered, but also two grades simultaneously. The same model is 

used in Larsson et al. (2012a) where a model-based optimisation using orthogonal collocation are solved. The process 

uses a cost function to maximise the profit during grade changes, and uses intervals in grade variables to define 

on-grade polymer production. 

Estimating many parameters simultaneously leads to ill-conditioned problems due to correlations between parameters, 

and this also reduces the accuracy of the confidence regions. Selecting the best parameters to estimate is therefore 

important and have been viewed in several studies (Weijers and Vanrolleghem, 1997, Brun et al., 2002 McLean and 

McAuley, 2012). A good overview of regularization techniques to avoid ill-posed problems are found in Kravaris et al. 

(2013) where they are divided in heuristic methods and optimization-based methods. The latter category creates 

combinatorial problems which can be very computationally heavy. An example is a parameter-selection algorithm 

proposed by Cintrón et al. (2009) that ranked the parameters by two properties, α and κ. The parameter α quantifies the 

size of the scaled confidence regions for the parameter set and quantifies how well-conditioned the parameter Jacobian 

for a parameter set is. 

The present paper initially introduces a parameter-reduction scheme, and shows how parameter reduction is performed 

and validated using a computer cluster. It subsequently investigates an authentic case of a complex model with 



Studies in Engineering and Technology                                                            Vol. 3, No. 1; 2016 

3 

relatively many parameters, showing how a parameter selection algorithm can be successfully used. Finally, it describes 

how a Modelica library of the components in the polyethylene plant was constructed and used in parameter estimations. 

It shows also how a Gauss-Newton algorithm can be used together with the Modelica extension Optimica to simulate 

sensitivities within the platform JModelica.org. 

The paper is organised as follows: Section 2 presents an overview of DAE systems, the Newton method and 

parameter-selection algorithms. Section 3 then presents the tools, methods and models used in the present project. 

Section 4 describes the parameter-reduction methodology together with the problems used in the parameter-estimation 

process. Section 5, presents the results, while Section 6 summarises the paper and draws some conclusions. 

2. Theory 

2.1 Differential Algebraic Equation Systems 

The general non-linear index-1 differential algebraic equation (DAE) form is defined by 

    𝟎 = 𝑭(�̇�, 𝒙,𝒘, 𝒖, 𝒑)  

 𝒚𝒛 = 𝒈𝒛(𝒙,𝒘, 𝒖, 𝒑)                       (1) 

    𝒚𝒖 = 𝒈𝒖(𝒙,𝒘, 𝒖, 𝒑)   

    𝒙(𝑡0) = 𝒙𝟎  

where 𝒙 and 𝒘 are vectors denoting state and algebraic variables, 𝒖 describe the inputs of the model and 𝒑 are the 

parameters of the model treated as constants. The output variables includes both inputs and differential algebraic 

variables and these are denoted 𝒚𝒛 and 𝒚𝒖. Here, 𝒛 refers to both the algebraic and state variables, that is 𝒛 =
[𝒙,𝒘]𝑇. The initial state is defined by 𝒙𝟎. The state derivatives are set to 0 when solving the steady-state problem. 

2.2 Non-linear Regression Methods for Differential Algebraic Models 

Regression methods are roughly classified into two broad categories: gradient methods and direct-search methods 

(Edgar and Himmelblau, 1988). The former depends on accurate parameter gradients, while the latter does not. Gradient 

methods include the Gauss-Newton Method, the steepest descent method and the Levenberg-Marquardt method, while 

direct-search include the simplex method (Englezos and Kalogerakis, 2000). Bard 1970 claims that the Gauss-Newton 

method gives the best results when gradients are available. 

The Gauss-Newton method (Englezos and Kalogerakis, 2000) can be used to solve the problems of estimating dynamic 

parameters, where the Newton step is defined by 

Δ𝒑 = (𝑱𝑇𝑾𝑱)−1𝑱𝑇𝑾(�̂� − 𝒚)              (2) 

where 𝑾 is a weighting matrix and �̂� is the measurements corresponding to 𝒚 = [𝒚𝒛, 𝒚𝒖]
𝑇. The parameter Jacobian 

𝐽 =
𝜕𝒚

𝜕𝒑
                  (3) 

The sensitivity matrix can be obtained during simulations by adding 

𝜕𝑱𝑭

𝜕𝑡
= (

𝜕𝑭𝑇

𝜕𝒛
)
𝑇

𝑱𝑭 + (
𝜕𝑭𝑇

𝜕𝒑
)
𝑇

              (4) 

derived by differentiating the DAE system in Eq. (1) and where J is a subset of JF. The sensitivity matrix at steady 

state is given by 

𝑱 =
𝜕𝒈

𝜕𝒑
−
𝜕𝒈

𝜕𝒛
(
𝜕𝑭

𝜕𝒛
)
−1 𝜕𝑭

𝜕𝒑
.              (5) 

where 𝒈 = [𝒈𝒛, 𝒈𝒖]
𝑇.  

A single shooting approach can be used to solve problems of estimating dynamic parameters (Vassiliadis, 1993). It starts 

with a guess of the parameters. The dynamic model is then simulated, and the parameters are updated iteratively by a 

regression method, such as Gauss-Newton method. 

2.3 Subset Selection Algorithm 

Studying the sensitivity matrix, J, gives information about the numerical properties of a parameter estimation. Cintrón 

et al. (2009) suggest an algorithm that investigates parameter sets from a nominal operating point, and ranks the 

parameter sets according to two quantities: the condition number, κ, and the parameter selection score, α. Here, κ is 

defined as the ratio between the largest and smallest singular value of J, and α is defined by 𝛼(𝒑) = |𝑣|, where 

𝑣𝑖 = 𝑠𝑝,𝑖/𝑝𝑖.                 (6) 
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Here, 𝑠𝑝,𝑖 are the standard errors of the parameters defined as 

𝑠𝑝 = √diag(Χ) ,                  (7) 

are calculated from the covariance matrix 

Χ =
1

𝑛𝑦−𝑛𝑝
|�̂� − 𝑦|2(𝑱𝑇𝑾𝑱)−1.             (8) 

The quantities κ and α are used to estimate the parameter dependencies and the uncertainties in the parameters. A low 

value of α shows that the estimated parameters have been accurately determined, while a low value of κ shows that the 

parameter estimation problem are well determined. 

2.4 Statistics 

Confidence regions are calculated to assess the quality of the parameter estimates. A 1 − 𝛽 confidence interval for 

estimated parameters 𝑝∗ can be calculated from  

     𝑝𝑖
∗ ± 𝑠𝑝,𝑖𝑇𝑖𝑛𝑣(𝛽/2, n𝑦 − 𝑛𝑝)             (9) 

and means that there is a probability of 1−β that the true parameter lies within the estimated interval. Here, 𝑇𝑖𝑛𝑣 is the 

Student’s t-distribution and 𝑛𝑦 and 𝑛𝑝 are the number of measurements and estimated parameters.   

3. Methods and Tools 

3.1Modelling Languages and Tools 

The mathematical model has been developed in Modelica (The Modelica Association, 2011), which is a high-level 

language for encoding complex physical systems, supporting object-oriented concepts such as classes, components and 

inheritance. It can also encode textbook-style declarative equations. This modelling paradigm has significant advantages 

over the block-based paradigm that is often used in the context of physical modelling. In particular, acausal modelling 

systems do not require the user to solve for the derivatives of a mathematical model. Instead, differential and algebraic 

equations may be mixed, which then typically results in a differential algebraic equation (DAE). 

An extension to Modelica, Optimica, strengthens its optimisation capabilities, by adding a small number of constructs, 

and enabling the user to specify in a convenient manner optimisation problems based on Modelica models. The 

parameter estimations in this paper have been performed using JModelica.org, which is a Modelica-based open-source 

platform targeted at dynamic optimisation (Åkesson et al., 2010). JModelica.org uses an interior point algorithm, IPOPT, 

to estimate parameters at the steady state (Wächter and Biegler, 2006). Further, JModelica.org uses the Assimulo 

package (Andersson et al., 2012), which interfaces the IDA solver from the Sundials suite (Hindmarsh et al., 2005). This 

simulation environment enables parameter sensitivities to be simulated internally, using Eq. (4). 

3.2 Parallel Computing Methodology 

A computer cluster was constructed to provide an environment for distributing parallel batch simulations. The platforms 

supported by the cluster are python, MATLAB and COMSOL. It consists of a server, clients and slaves, communicating 

with files written at a shared RAM memory. The server is implemented as a script that handle the queue of batch jobs 

by distributing them to the next available computer. The client is a script used by the cluster user to distribute the 

working files. The cluster has 48 cores, composed of five 64-bit computer nodes (Intel Core2 Quad core running at 2.33 

GHz and having 2 GB RAM), five 64-bit computer nodes (Intel Core i5 750 4 cores running at 2.67 GHz and having 

4.00 GB RAM), one 64-bit computer node (Intel Xeon, 8 cores running at 2.50 GHz and having 8 GB RAM). 

3.3 Mathematical Plant Model 

Modelling a series of reactors is a task that involves theoretical and experimental challenges. Borealis AB uses such a 

model for the Borstar® process, implemented in OnSpot, a non-linear model predictive control (MPC) software package 

(Saarinen and Andersen, 2003). This is the basis of the model used in this paper. 

The plant consists of three reactors and three distillation columns, Figure 1. The reactors are connected in series starting 

with the pre-polymerisation reactor, followed by the loop reactor and the gas-phase reactor. All reactors are modelled in 

a similar manner, based on material balances, and therefore only the loop reactor will be described in detail. McAuley et 

al. (1995) have described similar models of gas-phase polyethylene reactors, while Larsson et al. (2012b) give a more 

detailed description of the model used here. 

Each reactor is modelled by material balances, where the inflows come from fresh and recycle streams and the outflows 

pass to a subsequent reactor, a bleed, recycling, or a product outlet. It is assumed that the polymer and the fluids are 

well-mixed and that the temperatures in the reactors are uniform. The material balances in the loop for the fluids, solids 

and the total mass of fluids and solids are described by 
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�̇�𝑒2 = 𝑢𝑒2 +𝑤𝑒2
𝑟𝑒𝑐 +𝑤𝑒1 + 𝑤𝑒2 − 𝑟𝑒2            (10) 

�̇�ℎ2 = 𝑢ℎ2 +𝑤ℎ2
𝑟𝑒𝑐 + 𝑤ℎ1 −𝑤ℎ1 − 𝑤ℎ2 − 𝑟ℎ2          (11) 

�̇�𝑝2 = 𝑢𝑝2 + 𝑤𝑝2
𝑟𝑒𝑐 + 𝑤𝑝1 −𝑤𝑝2            (12) 

�̇�𝑝𝑒21 = 𝑤𝑝𝑒11 −𝑤𝑝𝑒21              (13) 

�̇�𝑝𝑒2 = 𝑟𝑝𝑒2 −𝑤𝑝𝑒22              (14) 

�̇�2 = 𝑤𝑐1 − 𝑤𝑐2               (15) 

               𝑚𝑓2 = 𝑚𝑒2 +𝑚ℎ2 +𝑚𝑝2              (16) 

𝑚𝑠2 = 𝑚𝑝𝑒21 +𝑚𝑝𝑒2 +𝑚𝑐2             (17) 

Here, mi2 are masses in the loop, where Table 1 presents the subscripts i. Further, ui2 are the fresh inflows, wi1 the flows 

from the pre-polymerisation reactor, wi2 the flows out from the loop reactor, and ri2 the rates of reaction. 

Table 1. The subscripts used, i (left column) and j (right column) . 

Flow Subscript Subsystem Subscript 

Ethylene e Pre-poly. reactor 1 
Hydrogen h Loop reactor 2 
Butene b Gas-phase reactor 3 
Propane p Propane column 4 
Nitrogen n Heavies column 5 
Polyethylene pe Lights column 6 
Incorp. butene pb   
Catalyst c   
Fluids f   
Solids s   

The reaction rates are modelled using extended Arrhenius expressions 

𝑟𝑒2 = 𝑅𝑒2(𝑚𝑐2, 𝑎2, 𝑋𝑒2, 𝑋ℎ2, 𝑃2, 𝑝𝑟𝑒1
2 , 𝑝𝑟𝑒2

2 , 𝑝𝑟𝑒3
2 , 𝑝𝑟𝑒1

𝐴 ) exp (
𝑝𝑟𝑒2
𝐴

𝑇2
)       (18) 

𝑟ℎ2 = 𝑅ℎ2(𝑚𝑐2, 𝑎2, 𝑋ℎ2, 𝑃2, 𝑝𝑟ℎ
2 ) exp (

𝑝𝑟ℎ
𝐴

𝑇2
)           (19) 

𝑟𝑝𝑒2 = 𝑟𝑒2 + 𝑟ℎ2               (20) 

𝑟2 = 𝑟𝑒2 + 𝑟ℎ2                (21) 

where the pre-factors Re2 and Rh2 depend on the pressure (P2), on the reactant concentrations (Xe2 and Xh2), on the 

catalyst amount (mc2) and on the catalyst activity (a2). The total rate of reaction in the loop, r2, is the same as the rate of 

production of polyethylene in the loop rpe2. 

The catalyst activity varies throughout the reactor series and is defined by differential equations involving functions faj 

and fdj in each reactor 

𝑎2̇ = 𝑓𝑎2(𝑤𝑐1, 𝑚𝑐2, 𝑎2, 𝑑2, 𝑎1, 𝑑1, 𝑟𝑝𝑒2, 𝑝𝑐1
𝐴 , 𝑝𝑐2

𝐴 , 𝑝𝑐3
𝐴 )         (22) 

�̇�2 = 𝑓𝑑2(𝑤𝑐1, 𝑚𝑐2, 𝑎2, 𝑑2, 𝑎1, 𝑑1, 𝑝𝑐1
𝐴             (23) 

where aj and dj are the activation and deactivation, respectively, and pc1
A , pc2

A  and pc3
A  are parameters. The solid 

density is modelled as a constant value in the loop. This is a valid assumption because no comonomer is present and the 

density differences between different grades are small. The fluid density is modelled by an empirical relationship, fρ2 , 

where 

𝜌𝑓2 = 𝑓𝜌2(𝑃2, 𝑇2, 𝑋𝑒2, 𝑋ℎ2, 𝑋𝑝2).             (24) 

The density is used to calculate the total volume in the loop, pV
2  as the sum of the volumes of solids and fluids, 

expressed by 

𝑝𝑉
2,𝑟𝑒𝑓

=
𝑚𝑓2

𝜌𝑓2
+
𝑚𝑠2

𝜌𝑠2
                (25) 

The volume in the loop is controlled by a proportional regulator that manipulates the loop outflow such that 

𝑞2 =
𝑢𝑝2+𝑢𝑒2+𝑢ℎ2

𝜌𝑓2
+
𝑤𝑝2
𝑟𝑒𝑐+𝑤𝑒2

𝑟𝑒𝑐+𝑤ℎ2
𝑟𝑒𝑐

𝜌𝑓2
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+
𝑤𝑠1

𝜌𝑠2
+
𝑤𝑓1

𝜌𝑓2
− 𝑟𝑝𝑒2 (

1

𝜌𝑓2
−

1

𝜌𝑠2
) + 𝐾2(𝑝𝑉

2 − 𝑝𝑉
2,𝑟𝑒𝑓

),        (26) 

which is the sum of solid and fluid flows 

𝑞2 =
𝑤𝑠2

𝜌𝑠2
+
𝑤𝑓2

𝜌𝑓2
                (27) 

The loop reactor has settling legs, whose purpose is to yield a higher concentration of solids at the outlet. These legs are 

modelled with a settling legs factor, s2 > 1. The ratio between the concentrations of outlet fluid and solid at the outlet is 

given by 

𝑔2 =
𝑤𝑓2

𝑤𝑠2
=
1−𝑠2𝑧𝑠2

𝑠2𝑧𝑠2
,                (28) 

where zs2 is the ratio between the mass of solids and the mass of fluid, and where s2 is given by fsettl as 

𝑠2 = 𝑓𝑠𝑒𝑡𝑡𝑙(𝑟2, 𝑝𝑠1
2 , 𝑝𝑠2

2 , 𝑝𝑠3
2 )              (29) 

The flows of solids and fluid can now be calculated by combining Equation (27) and (28). In effect of the settling legs 

in the pre-polymerisation reactor are negligible and the factor is in this case equal to unity. Further, the gas-phase 

reactor does not have settling legs, and the concentration at the outlet is the same as it is in the reactor. 

The instantaneous split factors are defined as the fractions of a polymer that are produced in a certain reactor and are 

calculated from 

𝑆1 =
𝑚𝑝𝑒31

𝑚𝑝𝑒31+𝑚𝑝𝑒32+𝑚𝑝𝑒3+𝑚𝑝𝑏3
             (30) 

𝑆2 =
𝑚𝑝𝑒32

𝑚𝑝𝑒31+𝑚𝑝𝑒32+𝑚𝑝𝑒3+𝑚𝑝𝑏3
             (31) 

𝑆3 =
𝑚𝑝𝑒3+𝑚𝑝𝑏3

𝑚𝑝𝑒31+𝑚𝑝𝑒32+𝑚𝑝𝑒3+𝑚𝑝𝑏3
             (32) 

where mpe31, mpe32 and mpe3 are the masses of polymer in the GPR that have been formed in the pre-polymerisation 

reactor, the loop reactor and the GPR, respectively. 

The recycling part of the plant model consists of three distillation towers. The low number of sensors available and the 

poor quality of the measurements mean that the structure of the model must be simplified. The recycling part is difficult 

to calibrate also due to the presence of an overlaying control system. A first-order system is therefore used with constant 

split factors 

�̇�𝑖4𝑇𝑖4 = −𝑤𝑖4 + 𝑤𝑖3,    𝑖 ∈ {𝑒, ℎ, 𝑏, 𝑝, 𝑛}           (33) 

𝑤𝑖4
𝑡 = 𝑆𝑖4

𝑡 𝑤𝑖4                (34) 

𝑤𝑖4
𝑠 = 𝑆𝑖4

𝑠 𝑤𝑖4                (35) 

𝑤𝑖4
𝑏 = 𝑆𝑖4

𝑏𝑤𝑖4                (36) 

𝑤𝑖4 = 𝑤𝑖4
𝑡 +𝑤𝑖4

𝑠 + 𝑤𝑖4
𝑏               (37) 

where Ti4 is the time constant, 𝑤𝑖4
𝑡 , 𝑤𝑖4

𝑠 , 𝑤𝑖4
𝑏  are the flows to the top, side and bottom, respectively, and 𝑆𝑖4

𝑡 , 𝑆𝑖4
𝑠 , 𝑆𝑖4

𝑏  

are the split factor for the top, side and bottom, respectively. The flows wi4 and wi3 are the total outgoing flow from the 

propane column and from the gas-phase reactor, respectively. The other distillation columns are modelled in the same 

way. 

The model can be expressed as a DAE system with nx = 46, nw = 330, nu = 12 and np = 30. There are 31 parameters, 

presented in Table 2, that can be used when calibrating the model, using the indexing system described in Table 1. here 

are three volume parameters, 𝑝𝑉
1, 𝑝𝑉

2 and 𝑝𝑉
3, eleven reaction rate parameters for ethylene, 𝑝𝑟𝑒

1 , 𝑝𝑟𝑒1
2 , 𝑝𝑟𝑒2

2 , 𝑝𝑟𝑒3
2 , 

𝑝𝑟𝑒1
3 , 𝑝𝑟𝑒2

3 , 𝑝𝑟𝑒3
3 , 𝑝𝑟𝑒4

3 , 𝑝𝑟𝑒5
3 , 𝑝𝑟𝑒1

𝐴  and 𝑝𝑟𝑒2
3 , three reaction parameters for butylene, 𝑝𝑟𝑏1

3 , 𝑝𝑟𝑏2
3  and 𝑝𝑟𝑏3

3 , four 

kinetic reaction parameters for hydrogen, 𝑝𝑟ℎ
1 , 𝑝𝑟ℎ

2 , 𝑝𝑟ℎ
3  and 𝑝𝑟ℎ

𝐴 , three catalyst activity parameters 𝑝𝑐1
𝐴 , 𝑝𝑐2

𝐴  and 𝑝𝑐3
𝐴 , 

three settling legs parameters 𝑝𝑠1
2 , 𝑝𝑠2

2  and 𝑝𝑠3
2 , one parameter (which is the reference value) for the bed level in the 

gas-phase reactor, 𝑝𝑏𝑒𝑑
3 , and two offset parameters for nitrogen and propylene, 𝑝𝑜𝑛

3  and 𝑝𝑜𝑝
3 . Most parameters are 

kinetic parameters, describing the rates of reactions and of catalyst deactivations, although some parameters that affect 

flows, pressures and levels must also be calibrated. Calibrating all parameters in the parameter-estimation problem 

simultaneously leads to poorly estimated parameters with high uncertainties. An algorithm known as the subset 

selection algorithm (SSA) has been used to identify the most appropriate parameters (Cintrón et al., 2009). 
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Table 2. The parameters selected for use in the subset selection algorithm. 

Prepoly Loop GPR All 

𝑝𝑉
1  𝑝𝑉

2 𝑝𝑉
3 𝑝𝑟𝑒1

𝐴  
𝑝𝑟𝑒
1  𝑝𝑠1

2  𝑝𝑏𝑒𝑑
3  𝑝𝑟𝑒2

𝐴  
𝑝𝑟ℎ
1  𝑝𝑠2

2  𝑝𝑟ℎ
3  𝑝𝑟ℎ

𝐴  
 𝑝𝑠3

2  𝑝𝑟𝑒2
3  𝑝𝑐1

𝐴  
 𝑝𝑟𝑒1

2  𝑝𝑟𝑒3
3  𝑝𝑐2

𝐴  
 𝑝𝑟𝑒2

2  𝑝𝑟𝑒4
3  𝑝𝑐3

𝐴  
 𝑝𝑟𝑒3

2  𝑝𝑟𝑒5
3   

 𝑝𝑟ℎ
2  𝑝𝑟𝑒1

3   
 𝑝𝑟𝑒

2  𝑝𝑟𝑏1
3   

  𝑝𝑜𝑛
3   

  𝑝𝑜𝑝
3   

  𝑝𝑟𝑏2
3   

  𝑝𝑟𝑏3
3   

The model contains 12 inputs, u, comprising ue1, uh1 , up1 and uc1 for the pre-polymerisation reactor, ue2 , uh2 and up2 for 

the loop reactor, and ue3 , uh3 , ub3 , up3 and un3 for the GPR. The outputs yu are the same signals as the inputs u. The 

outputs yz include 14 signals, where ms2 is the mass of solids in the loop reactor, me3 , mp3 , ms3 are the masses of 

ethylene, propylene and solids in the GPR, xh2 , xe2 are the mass concentrations of hydrogen and ethylene in the loop 

reactor, xh3 , xn3 , xb3 , xe3 are the mass concentrations of hydrogen, nitrogen, butylene and ethylene in the GPR, r2 and r3 

are the total reaction rates in the loop reactor and GPR, S3 , is the instantaneous split factor for the GPR and, finally, P3 , 

is the pressure in the GPR. 

3.4 Data processing 

Signals are collected from measurements in the plant and are downsampled and filtered using a low-pass Butterworth 

filter with a frequency chosen by considering the Nyquist-Shannon sampling theorem. 

4. Parameter Estimation Methodology for Large-scale Systems 

The number of parameter combinations increases rapidly with the number of parameters and a parameter-selection 

method must be used to reduce the number of parameter sets. The selection method consists of two loops, the SSA loop 

and the parameter estimation loop, each one consisting of three base parts: combination, evaluation and filter blocks, 

Figure 2. The blocks are defined as follows: 

Combination is the process of taking an input population 𝑃𝑖𝑛 = {𝑃𝑖𝑛
1 , … , 𝑃

𝑖𝑛

𝑛𝑝𝑖𝑛} with npin parameter sets and mixing it 

with all nP0 parameters 𝑃0 = {𝑝1, … , 𝑝𝑛𝑃0} to create a new parameter set population 𝑃𝑜𝑢𝑡 that contains parameter 

sets with one more parameter than the parameter sets of the input population. The input population is empty before 

the first iteration, and thus the output population will contain one parameter set for every parameter in 𝑃0. 𝑃𝑖𝑛 is 

not empty before the next iteration, and thus the 𝑃𝑖𝑛
1  will enter the output population as 𝑛𝑃0 parameter sets 

defined by {{𝑃𝑖𝑛
1 , 𝑝1}, … , {𝑃𝑖𝑛

1 , 𝑝𝑛𝑃0}}, and 𝑃𝑖𝑛
2 , … , 𝑃

𝑖𝑛

𝑛𝑝𝑖𝑛
 will be combined in the same way. The same parameter 

set can be created from two different parameter sets in the input population, and thus an operation is carried out to 

remove all duplicates. The maximum number of parameter sets in the output population is 𝑛𝑃0𝑛𝑝𝑖𝑛, but this may 

be reduced when duplicates are removed. There are two combination blocks, Block 1 in the SSA loop and Block 4 

in the parameter estimation loop. 

SSA Evaluation evaluates α and κ values for each parameter set of the input population as defined in Section 2.3, and 

calculates a score θ, given by θ = lg α+lg κ, that is later used in the filter block to determine the best parameter sets 

in the SSA loop. 

Parameter estimation is the step where parameter estimations are made for all parameter sets in the input population, 

and is evaluated in the cluster. All parameter sets are passed as batch jobs to the cluster and an objective value that 

measures the deviation between model and measurements is returned. The parameter estimation step is the most 

computationally expensive step. 

Filters are used to reduce the number of parameter sets, which otherwise would increase rapidly. There are two filter 

blocks, one in each loop. The filter block takes a population of parameter sets, a score that has been calculated to 

rank the parameter sets, and a cutoff that defines how many parameter sets should pass. In the first loop, θ is used 

as score and nSSA is used as cutoff. In the second loop, Q is used as score and nQ is used as cutoff. The cutoffs have 

been chosen to nSSA = 300 and nQ = 2 in the work presented here to limit the number of calculations. 

SSA evaluation is relatively cheap, but the number of parameter sets increases rapidly as n par increases. The number of 

parameter sets increases as the binomial coefficients (
𝑁𝑝
𝑘
), which for np = 31 are {31, 465, 4495, 31465, 169911, ...}. 

Setting a filter cutoff limits the population that must be examined to ncutoffnP0 instead. 
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Figure 2. The SSA selection procedure used. 

4.1 Parameter Estimation Procedure 

Parameter estimations are investigated for both the steady-state case and the dynamic case. Both the starting grade and 

the final grade are calibrated simultaneously when considering steady-state parameter estimation, to make it easier to 

compare the results to those obtained from the dynamic parameter estimation, where the system is simulated from the 

starting grade to the final grade. 

4.1.1 Steady-state Parameter Estimation 

For both the starting grade and the end grade, the output signals 𝒚𝒛 and 𝒚𝒖 are averaged to give �̂�𝒛 and �̂�𝒖. Table 3 

lists scaled measurements, �̂�, and their standard deviations, σ, for some of the inputs and outputs. The deviation 

between the measured signal and the signal obtained from the model can be expressed as an objective function of 

weighted least squares for the differential algebraic variables 

𝑄𝑧 = ∑ (�̂�𝒛,𝒊 − 𝒚𝒛,𝒊)𝑾(𝒚𝒛,𝒊)(�̂�𝒛,𝒊 − 𝒚𝒛,𝒊)𝑖={𝑔𝑟𝑎𝑑𝑒𝑠} ,          (38) 

Where 𝑾(𝒚𝒛,𝒊) is the diagonal weighting matrix 

𝑾(𝒚𝒛,𝒊) =

(

 
 
 

1

�̂�𝑧,1
2 0 ⋯ 0

0
1

�̂�𝑧,2
2 ⋱ 0

⋮ ⋱ ⋱ ⋮

0 0 ⋯
1

�̂�𝑧,𝑛
2 )

 
 
 

,             (39) 

For 𝑖 = 1,… ,𝑁𝑧. The deviation for the inputs can be expressed by 

𝑄𝑢 = ∑ (�̂�𝒖,𝒊 − 𝒚𝒖,𝒊)𝑖={𝑔𝑟𝑎𝑑𝑒𝑠} 𝑾(𝒚𝒖,𝒊)(�̂�𝒖,𝒊 − 𝒚𝒖,𝒊),         (40) 

where 𝑾(𝒚𝒖,𝒊) is the corresponding weighting matrix for the inputs. 

The steady-state parameter estimation of the system (Eq. (1)) is formulated as an optimisation problem 

min𝒑,𝒖𝑄𝑧 + 𝑄𝑢                 (41) 
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 𝑠𝑢𝑏𝑗. 𝑡𝑜  𝑭(�̇�, 𝒙,𝒘, 𝒑, 𝒖) = 0 

  �̇� = 0 

  𝒚𝒛 = 𝒈𝒛(𝒛) 

  𝒚𝒖 = 𝒈𝒖(𝒖) 

  𝒙𝒎𝒊𝒏 ≤ 𝒙 ≤ 𝒙𝒎𝒂𝒙 

  𝒘𝒎𝒊𝒏 ≤ 𝒘 ≤ 𝒘𝒎𝒂𝒙 

  𝒖𝒎𝒊𝒏 ≤ 𝒖 ≤ 𝒖𝒎𝒂𝒙 

Both the starting grade and end grade are included in the steady-state parameter estimation, and this means that it is 

necessary to calibrate 𝑁𝑢 inflows for the starting grade and 𝑁𝑢 inflows for the end grade. Further, 𝑁𝑝 parameters 

must be calibrated and the number of degrees of freedom is thus 2𝑁𝑢  +  𝑁𝑝. 

4.1.2 Dynamic Parameter Estimation 

The dynamic parameter estimation procedure is solved by a single shooting procedure. The initial states are found by 

solving the steady-state parameter estimation problem, defined in Equation (41) for the starting grade only, with the 

parameter values that have been obtained being set as constants. The system is subsequently simulated, with the inputs 

𝐮 following the measurement data, �̂�𝒖, from the starting grade that has been achieved to the end grade. The parameters 

can be updated by minimising the objective value defined as the weighted sum of squares of the residuals 

𝑆(𝐩) = ∑ (�̂�𝒛,𝒊 − 𝒚𝒛(𝑡𝑖 , 𝐩))𝑾(𝒚𝒛,𝒊)(�̂�𝒛,𝒊 − 𝒚𝒛(𝑡𝑖 , 𝐩))
𝑁𝑡
𝑖=1         (42) 

where 𝑁𝑡 is the number of time points and 𝒚𝒛(𝑡𝑖 , 𝐩) is the model outputs from the simulation at time 𝑡𝑖. The 

simulation follows the inputs �̂�𝒖, and thus only the outputs 𝒚𝒛(𝑡𝑖 , 𝐩) need to be included in the objective value. The 

parameter estimation problem is solved iteratively using the Gauss-Newton algorithm, described in Section 2.2, to 

update the parameters. 

5. Parameter Estimation Results 

A grade change is the process in which a plant producing Grade 𝐺1 starts to produce Grade 𝐺2. Two datasets for two 

different grades (𝑇1 and 𝑇2) are analysed. The four datasets are denoted 𝑇1
1, 𝑇1

2, 𝑇2
1 and 𝑇2

2. Measurements are 

available for 26 signals in the objective function, where 12 signals are raw material inflows and 14 signals are measured 

states. 

5.1 Steady-state Parameter Estimation 

Figure 3 presents the results from the SSA analysis. The lowest values of α and κ remain quite constant as more 

parameters are added. The parameter sets with best objective values are marked with a triangle and are located in the 

lower left corners for parameter sets having between two and five parameters, and at relatively large values of α and κ 

for parameter sets having six or seven parameters. The parameters for parameter sets having six or seven parameters are 

not located with the SSA loop of the algorithm, but they are located within the parameter estimation loop, marked in 

green, that has been created by parameter combinations from the best objective values in the preceding iteration. These 

parameter sets, however, have very poor numerical properties, 𝛼 = 104.09 and 𝜅 = 109.49. The 2𝑁𝑢 input parameters 

are also calibrated and included in 𝐉 in the steady-state case, which makes the problem harder to solve. 
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Figure 3. SSA evaluations for the steady-state case for two to seven number of parameters. The parameter sets are 

marked in gray, the best parameters from the SSA loop are marked in black, and the parameters from the parameter 

estimation loop are marked in green. The parameter sets with the best objective values are marked with red 

triangles. 
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Table 3. Measurements (�̂�) and standard deviations (σ) for all datasets together with the calibrated model outputs 𝑦∗ at 

steady-state and 95% confidence interval for all inputs 𝑦𝑢. All values have been scaled to the measurements of the 

starting grade of dataset 𝑇1
1. 

 𝐺1
1  𝐺1

2   𝐺1
1  𝐺1

2  

 �̂�𝑢 𝑦𝑢
∗ ± �̂�𝑢 𝑦𝑢

∗ ±  �̂�𝑧 𝑦𝑧
∗ �̂�𝑧 𝑦𝑧

∗ 

 (σ) conf. (σ) conf.  (σ)  (σ)  

𝑢𝑝1 1.00 0.99± 1.00 1.01± 𝑟2 1.00 0.95 1.03 0.94 

 (0.00) 0.00 (0.00) 0.00  (0.00)  (0.00)  

𝑢𝑒1 1.00 1.00± 0.99 0.98± 𝑚𝑠2 1.00 1.10 1.07 1.18 

 (0.00) 0.00 (0.00) 0.00  (0.01)  (0.01)  

𝑢ℎ1 1.00 1.00± 0.92 0.92± 𝑋𝑒2 1.00 1.06 1.16 1.18 

 (0.00) 4.14 (0.01) 4.14  (0.00)  (0.00)  

𝑢𝑐1 1.00 0.99± 0.82 0.86± 𝑋ℎ2 1.00 1.04 1.22 1.27 

 (0.01) 0.08 (0.01) 0.06  (0.03)  (0.01)  

𝑢𝑒2 1.00 0.94± 1.04 0.94± 𝑟3 1.00 1.07 0.95 0.91 

 (0.00) 0.00 (0.00) 0.00  (0.00)  (0.00)  

𝑢ℎ2 1.00 0.89± 1.05 0.96± 𝑆3 1.00 1.05 0.96 0.98 

 (0.05) 0.21 (0.02) 0.21  (0.00)  (0.00)  

𝑢𝑝2 1.00 0.98± 0.78 0.79± 𝑋𝑒3 1.00 1.01 0.82 0.85 

 (0.02) 0.00 (0.01) 0.00  (0.02)  (0.00)  

𝑢𝑝3 1.00 1.10± 0.00 0.00± 𝑋𝑏3 1.00 0.91 0.87 0.92 

 (0.42) 0.01 (0.01) 0.01  (0.01)  (0.02)  

𝑢ℎ3 1.00 0.84± 0.21 0.23± 𝑋ℎ3 1.00 1.11 0.19 0.18 

 (0.07) 1.22 (0.02) 0.58  (0.02)  (0.00)  

𝑢𝑏3 1.00 1.04± 1.03 0.97± 𝑋𝑛3 1.00 0.79 1.04 1.21 

 (0.01) 0.00 (0.02) 0.00  (0.03)  (0.00)  

𝑢𝑒3 1.00 1.05± 0.95 0.89± 𝑃3 1.00 0.98 1.00 0.97 

 (0.01) 0.00 (0.00) 0.00  (0.00)  (0.00)  

𝑢𝑛3 1.00 1.15± 3.30 1.64± 𝑚𝑠3 1.00 1.14 1.07 1.14 

 (0.28) 0.05 (0.15) 0.05  (0.01)  (0.01)  

     𝑚𝑝3 1.00 1.00 1.07 0.95 

      (0.01)  (0.00)  

     𝑚𝑒3 1.00 0.87 0.82 0.73 

      (0.02)  (0.01)  
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Table 4. Results from the steady-state parameter selection algorithm. 

𝑝𝑟𝑒
1  𝑝𝑉

2 𝑝𝑠1
2  𝑝𝑠2

2  𝑝𝑠3
2  𝑝𝑟𝑒1

2  𝑝𝑟𝑒2
2  𝑝𝑉

3 𝑝𝑏𝑒𝑑
3  𝑝𝑟ℎ

3  𝑝𝑟𝑒2
3  𝑝𝑟𝑏1

3  𝑝𝑟𝑏2
3  𝑝𝑟𝑏3

3  𝑝𝑜𝑛
3  𝑝𝑟𝑒2

𝐴  𝑝𝑟ℎ2
𝐴  𝑝𝑐2

𝐴  𝑝𝑐3
𝐴  log10 𝛼 log10 𝜅 obj 

         x          0.476 3.8 1.25 
                x   0.425 3.5 1.25 
              x     0.425 4.21 1.4 
    x               1.18 3.5 2.01 
 x                  0.425 3.5 2.01 

         x     x     0.48 4.21 0.669 
              x  x   0.426 4.21 0.671 
    x     x          1.37 3.82 1.2 
  x       x          0.479 3.8 1.2 
 x        x          0.677 3.81 1.2 

         x    x x     0.493 4.22 0.606 
         x  x   x     0.796 6.12 0.607 
         x   x  x     1.89 4.24 0.608 
             x x  x   0.45 4.29 0.609 
           x   x  x   0.861 6.21 0.61 

    x     x    x x     1.5 4.24 0.57 
 x        x    x x     1.51 4.23 0.57 
  x       x    x x     0.496 4.22 0.57 
   x      x    x x     0.767 4.22 0.57 
    x     x  x   x     1.51 6.22 0.571 

    x     x    x x    x 2.68 4.24 0.498 
    x    x x    x x     4.09 9.49 0.52 
 x       x x    x x     4.51 9.91 0.521 
    x   x  x    x x     8.89 13.7 0.53 
 x      x  x    x x     1.52 4.23 0.53 

    x    x x    x x    x 4.09 9.49 0.482 
    x     x   x x x    x NaN NaN 0.484 
    x     x x   x x    x NaN NaN 0.493 
    x    x x    x x   x  4.09 9.49 0.494 
    x  x   x    x x    x 7.14 9.3 0.495 

    x    x x    x x x   x 4.1 9.49 0.467 
    x    x x   x x x    x NaN NaN 0.468 
    x x   x x    x x    x 4.77 9.63 0.48 

x    x    x x    x x    x 4.1 9.49 0.481 
    x    x x  x  x x    x NaN NaN 0.482 

1 5 2 1 17 1 1 2 9 28 1 4 3 21 28 1 4 1 10    

Table 5. Estimated scaled parameters for the diff erent datasets for the best parameter set with five parameters, for the 

steady-state case. 

 𝑝𝑠3
2  𝑝𝑟ℎ

3  𝑝𝑜𝑛
3  𝑝𝑐3

𝐴  𝑝𝑟𝑏3
3  

𝑝
𝑇1
1
∗  1.78 11.21 0.314 3.11 1.37 

𝑝
𝑇1
2
∗  1.10 6.68 0.734 0.00 1.42 

𝑝
𝑇2
1
∗  0.286 19.12 0.554 0.00 1.32 

𝑝
𝑇2
2
∗  0.841 21.332 0.00 0.892 1.526 
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Figure 4. The objective values plotted against the number of parameters for steady-state parameter estimation. 

Figure 4 shows the objective value as a function of the number of parameters. The objective function value falls as the 

number of parameters is increased, eventually reaching a constant value at about five parameters. Adding more 

parameters than five does not improve the objective value. The objective values are grouped in three distinctive bands, 

where the lower band contains the two best parameters. 

Table 4 shows that the parameter set for five parameters, that has the best objective value is {𝑝𝑠3
2 , 𝑝𝑟ℎ

3 , 𝑝𝑜𝑛
3 , 𝑝𝑐3

𝐴 , 𝑝𝑟𝑏3
3 }. 

Table 3 shows the values of the signals in the objective function for this parameter estimation. The calibrated values 

agree with the measurements for most signals, but deviate in, for example, the nitrogen values. This is because both 

𝑢𝑛3 and 𝑋𝑛3 are included in the objective function and it is hard to achieve a good fit for both. The confidence 

intervals for many variables are very narrow, although they are high for the signals 𝑢ℎ1 and 𝑢ℎ3. These two signals are 

the main contribution to the high α values in the steady-state case. 

Table 5 shows the parameters for the best parameter set with five parameters. The parameters 𝑝𝑠3
2 , 𝑝𝑟ℎ

3 , 𝑝𝑜𝑛
3 , 𝑝𝑐3

𝐴  all 

vary greatly between the datasets, which is compatible with the high values of 𝛼 = 102.68and 𝜅 = 104.24. The 

parameter 𝑝𝑟𝑏3
3  does not vary very much between the datasets. 

The best parameter sets with one parameter are 𝑝𝑟ℎ
3  and 𝑝𝑟ℎ

𝐴 , which have almost equal objective values. Both 

parameters affect principally the hydrogen concentration, where the initial deficiency is largest. These parameters are 

also included in the two best parameter sets with two parameters, {𝑝𝑟ℎ
3 , 𝑝𝑜𝑛

3 } and {𝑝𝑜𝑛
3 , 𝑝𝑟ℎ

𝐴 }, and one could expect that 

the parameter set {𝑝𝑟ℎ
3 , 𝑝𝑜𝑛

3 , 𝑝𝑟ℎ
𝐴 } is the best set with three parameters. However, this parameter set was not solvable 

because the parameters 𝑝𝑟ℎ
3  and 𝑝𝑟ℎ

𝐴  both model the hydrogen concentration, and this leads to an ill-conditioned 

problem. This parameter set is efficiently excluded by the SSA algorithm. The parameter 𝑝𝑟ℎ
3  becomes much more 

important than 𝑝𝑟ℎ
𝐴  as more parameters are added, and the parameters never occur together. 

The objective values are low, while values of α are high, indicating that the validations may be very inaccurate. A 

possible explanation of the inaccuracy is that the inflow values 𝑦𝑢 are calibrated together with the parameters, and 

these may depend on each other. 

5.2 Dynamic Parameter Estimation 

Figure 5 shows the results from a parameter estimation in which four molar fractions 𝑥𝑖𝑗 and two masses 𝑚𝑖𝑗 were 

modelled. The calibrated model response coincides much better with the measured data than it coincides with the 

nominal model (which has been simulated with nominal parameters). The calibrated and simulated values are not equal, 

but the profiles follow the same trend. An SSA evaluation of the parameter sets was carried out in order to reduce the 

number of parameters (Figure 6). The values of α and κ are low, as desired, for models with few parameters. The values 

of α and κ increase as the number of parameters increases, and the dot cloud moves upwards and to the right. This 

shows that the parameter sets become harder to calibrate and the uncertainties become larger. The locations of the best 

objective values, marked in the figure, show that the best objective value is not correlated with small uncertainty in the 

parameters, and this is important to consider when choosing a good parameter set. It is interesting to see how many 

parameters are needed to reach a desired objective value. Therefore, 300 parameter set with the best values of α and κ 
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were calibrated for each number of parameters, and their objective values were plotted against the number of 

parameters (Figure 7). As expected, the best objective values decrease as more parameters are added, saturating at five 

parameters. Adding more parameters than five does not lead to a decrease in the objective value. 

 

Figure 5. The calibrated model response (solid line) together with the measurement data 

(bold dots) and the nominal model response (dashed line) for dataset 𝑇1
1. 

 

Figure 6. SSA evaluations for the dynamic case for two to seven number of parameters. The dots move to higher α and 

κ values, as more parameters are included. The parameter sets are marked in gray, the best parameters from the SSA 

loop are marked in black and the parameters from the parameter estimation loop are marked in green. The parameter 

sets with the best objective values are marked with red triangles. 
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Table 6. Results from the dynamic parameter estimation algorithm. 

𝑝𝑉
2 𝑝𝑠1

2  𝑝𝑠3
2  𝑝𝑟𝑒1

2  𝑝𝑟ℎ
2  𝑝𝑉

3 𝑝𝑏𝑒𝑑
3  𝑝𝑟ℎ

3  𝑝𝑟𝑒1
3  𝑝𝑟𝑒2

3  𝑝𝑟𝑒3
3  𝑝𝑟𝑒4

3  𝑝𝑟𝑒5
3  𝑝𝑟𝑏1

3  𝑝𝑟𝑏2
3  𝑝𝑟𝑏3

3  𝑝𝑜𝑛
3  𝑝𝑟𝑒2

𝐴  𝑝𝑟ℎ2
𝐴  𝑝𝑐1

𝐴  𝑝𝑐2
𝐴  log10 𝛼 log10 𝜅 obj 

       x              4.75 0 87.2 
                  x   -2.98 0 87.8 
           x          1.15 0 432 
         x            -0.30 0 432 
            x         0.23 0 434 

               x   x   0.163 1.45 55.3 
             x     x   -1.44 1.72 55.3 
              x    x   3.29 1.4 55.4 
                  x  x -2.61 2.16 71.5 
                  x x  1.99 1.13 72.9 

     x        x     x   -1.44 1.95 50.6 
     x          x   x   0.163 1.95 50.6 
     x         x    x   3.29 1.95 50.6 
x                  x  x -2.33 2.29 54.9 
     x             x  x -2.56 2.17 57.3 

x     x             x  x -2.31 2.29 35.1 
x                 x x  x -2.26 2.33 42.8 
          x   x   x  x   -1.12 1.82 51.1 
          x     x x  x   0.178 1.55 51.1 
          x    x  x  x   3.3 1.53 51.1 

x     x            x x  x -2.25 2.35 30.8 
x   x  x             x  x -2.16 2.3 34.9 
x   x              x x  x -2.13 2.34 42.5 
    x      x   x   x  x   1.46 2.07 48.8 
   x  x            x x  x -2.22 2.26 51.4 

x   x  x            x x  x -2.12 2.36 30.4 
x   x  x   x          x  x -1.72 2.36 30.4 
 x  x  x            x x  x -0.71 2.41 30.5 
  x x  x            x x  x -0.45 2.34 30.5 
   x x x            x x  x 1.72 2.32 38 

x   x  x x       x     x  x -1.33 2.34 27.7 
x     x x       x    x x  x -1.22 2.37 27.7 
x   x  x           x x x  x -1.23 2.4 28.5 
x   x  x   x     x     x  x -1.24 2.37 28.9 
x   x  x        x    x x  x -1.28 2.37 28.9 

13 1 1 12 2 18 2 1 2 1 4 1 1 8 3 3 5 11 31 1 19    

Table 7. Estimated objective values and cross validation for the best parameter set with five parameters for the dynamic 

case. 

 𝑇1
1 𝑇1

2 𝑇2
1 𝑇2

2 

𝑝
𝑇1
1
∗  30.8 39.0 50.4 28.6 

𝑝
𝑇1
2
∗  40.0 30.4 29.8 19.1 

𝑝
𝑇2
1
∗  60.2 39.4 19.7 15.9 

𝑝
𝑇2
2
∗  68.3 49.4 34.3 10.6 

𝑝𝑛𝑜𝑚 118.2 186.0 88.5 75.0 
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Figure 7. The objective values plotted against the number of parameters for dynamic parameter estimation 

Table 8. Estimated scaled parameters for the different datasets for the best parameter set with five parameters for the 

dynamic case. 

 𝑝𝑟𝑒1
𝐴  𝑝𝑟𝑒2

𝐴  𝑝𝑐3
𝐴  𝑝𝑉

2 𝑝𝑉
3 

𝑝
𝑇1
1
∗  0.299 8.96 1.556 0.702 1.292 

𝑝
𝑇1
2
∗  0.0010 9.299 1.382 0.768 1.264 

𝑝
𝑇2
1
∗  0.0772 10.04 1.173 0.879 1.121 

𝑝
𝑇2
2
∗  0.417 10.13 1.149 0.791 1.216 

Table 6 shows that the best objective value for parameter sets with five parameters are {𝑝𝑟𝑒1
𝐴 , 𝑝𝑟𝑒2

𝐴 , 𝑝𝑐3
𝐴 , 𝑝𝑉

2, 𝑝𝑉
3}. This 

solution was optimised for the other datasets and Table 8 presents the parameter values obtained. The volume of the 

loop reactor is estimated lower in reality and that of the gas-phase reactor volume is estimated higher than in reality, for 

all parameter estimations. Two reaction rates for ethylene are included, where 𝑝𝑟𝑒1
𝐴  varies between the datasets while 

𝑝𝑟𝑒2
𝐴  does not. The optimised values do not differ very much between the datasets, as in the steady-state case, except for 

parameter 𝑝𝑟𝑒1
𝐴 . This parameter set has a low α value and thus this result is expected. 

Table 7 shows cross validations for the parameter estimations on the other datasets, where the optimal objective values 

from parameter estimations of the four datasets are located on the diagonal. Validations with the optimisation 𝑇1
1 are 

shown on Row 1, and these agrees well with the grade transfer 𝑇1
2, but somewhat poorer validations with 𝑇2

1 and 𝑇2
2. 

However, the objective values are much better than the objective values obtained with the nominal parameter values 

𝑝𝑛𝑜𝑚, and this is true for all validations. The validations are best within the same grade transfer for both 𝑇1 and 𝑇2. 

The validations between 𝑇1
2 and 𝑇2

1 are also very good, while the validations between 𝑇1
1 and 𝑇2

2 are not so good. 

5.3 Parameter Selection 

Table 4 and Table 6 show that many parameters can be directly eliminated from further analysis. In the steady-state case, 

12 parameters (𝑝𝑉
1, 𝑝𝑟ℎ

1 , 𝑝𝑟𝑒3
2 , 𝑝𝑟ℎ

2 , 𝑝𝑟𝑒1
3 , 𝑝𝑟𝑒3

3 , 𝑝𝑟𝑒4
3 , 𝑝𝑟𝑒5

3 , 𝑝𝑜𝑝
3 , 𝑝𝑝𝑐

3 , 𝑝𝑟𝑒1
𝐴  and 𝑝𝑐1

𝐴 ) do not appear in the parameter 

sets that have the best objective values, and these can be discarded from further analysis. Similarly, in the dynamic case, 

10 parameters (𝑝𝑉
1, 𝑝𝑟𝑒

1 , 𝑝𝑟ℎ
1 , 𝑝𝑠3

2 , 𝑝𝑟𝑒2
2 , 𝑝𝑟𝑒3

2 , 𝑝𝑜𝑝
2 , 𝑝𝑝𝑐

3 , 𝑝𝑟𝑒1
𝐴  and 𝑝𝑐3

𝐴 ) do not appear in the parameter sets that have 

the best objective values, and these can be discarded. However, only six parameters (𝑝𝑉
1, 𝑝𝑟ℎ

1 , 𝑝𝑟𝑒3
2 , 𝑝𝑜𝑝

3 , 𝑝𝑝𝑐
3  and 𝑝𝑟𝑒1

𝐴 ) 

occur neither in the steady-state nor in the dynamic case. Some parameters (𝑝𝑉
2, 𝑝𝑠1

2 , 𝑝𝑠3
2 , 𝑝𝑟𝑒1

2 , 𝑝𝑉
3, 𝑝𝑏𝑒𝑑

3 , 𝑝𝑟ℎ
3 , 𝑝𝑟𝑒2

3 , 

𝑝𝑟𝑏1
3 , 𝑝𝑟𝑏2

3 , 𝑝𝑟𝑏3
3 , 𝑝𝑜𝑛

3 , 𝑝𝑟𝑒2
𝐴 , 𝑝𝑟ℎ

𝐴  and 𝑝𝑐2
𝐴 ) appear in both the steady-state case and the dynamic case. 

Two parameters in the pre-polymerisation reactor (𝑝𝑉
1 and 𝑝𝑟𝑒

1 ) do not appear in either case. This is due to the lack of 

measurements in the pre-polymerisation reactor, which leads to these parameters being less important. There were 

initially 11 kinetic parameters for ethylene: of these only 𝑝𝑟𝑒1
2 , 𝑝𝑟𝑒2

3  and 𝑝𝑟𝑒2
𝐴  appear in both cases. For the catalytic 

parameters, 𝑝𝑐2
𝐴  appears in both cases, 𝑝𝑐1

𝐴  only in the dynamic case and 𝑝𝑐3
𝐴  only in the steady-state case. 
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The volumes that influence the residence times in the reactor are expected to be more important in the dynamic case 

than in the steady-state case. The results confirm this, in that 𝑝𝑉
2 and 𝑝𝑉

3 are found 13 and 18 times, respectively, in the 

dynamic case and only five and two times in the steady-state case. The volume of the pre-polymerisation reactor 𝑝𝑉
1 

was not important in either cases, which may be explained by the lack of measurements. 

6. Summary and Conclusions 

This paper describes how to reduce the number of parameters in a model using an algorithm known as the subset 

selection algorithm. This algorithm ranks the parameters and reduces their number, and can be used to manage models 

with many potential parameter estimation parameters. We present results for a parameter reduction for a polyethylene 

producetion plant, in both steady-state and dynamic cases, and show that the two cases give different selections of 

parameters. The volume parameters were the most important parameters in the dynamic case, but not in the steady-state 

case. 

We demonstrate that the objective value is not the only important attribute: numerical properties such as α and κ are also 

important in obtaining good confidence intervals. The numerical properties become poorer as more parameters are 

added to the model. We show here that five parameters are sufficient to reach a plateau in the objective value in the 

model studied, in both the steady-state and the dynamic case. Adding further parameters does not improve the objective 

value and makes the system more numerically unstable. These effects leads to poorly calibrated parameters that are 

harder to validate to other datasets. It is also possible to select parameters by calibrating the process for each parameter 

individually and subsequently selecting the parameters that give the lowest objective values. This method, however, 

tends to give parameters that affect the system in similar manners, because several parameters are usually coupled to the 

objective function signals with the largest deviations. These parameters, such as 𝑝𝑟ℎ
3  and 𝑝𝑟ℎ

𝐴  in the steady-state case, 

are often highly coupled and this coupling leads to poor numerical properties. This work demonstrates the 

disadvantages of the method and shows the benefits of the SSA method. 

Parameters determined in the steady-state case were more difficult to validate with other datasets than parameters 

determined in the dynamic case. Parameter estimation of the system for different datasets gave significantly different 

parameter values, and high values of α and κ. The inflow parameters 𝑢ℎ1 and 𝑢ℎ3 , which also were calibrated, 

probably played a major role in this effect. These variables were the main contribution to the high α and κ values in the 

steady-state but were not included in the SSA analysis, where only parameters 𝐩 were included. It would be possible to 

treat these parameters in the same way. Alternatively, omitting the two input parameters may give more reliable results 

for the steady-state case. 

Validation of the dynamic case was successful, and all objective values lay below the objective values from the nominal 

parameter values. The parameter values were also calibrated in the same range for the parameters, which proves the 

model to be well-validated and of high quality. The method presented in this work requires only nominal parameter 

values and is thus easy to use. Further, the parameter Jacobian can be calculated at the start of the selection procedure. 
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