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Abstract

In this paper, we introduce a probabilistic model for learning interpolative decomposition (ID), which is commonly
used for feature selection, low-rank approximation, and identifying hidden patterns in data, where the matrix factors
are latent variables associated with each data dimension. Prior densities with support on the specified subspace
are used to address the constraint for the magnitude of the factored component of the observed matrix. Bayesian
inference procedure based on Gibbs sampling is employed. We evaluate the model on a variety of real-world datasets
including CCLE EC50, CCLE IC50, CTRP EC50, and MovieLens 100K datasets with different sizes, and dimensions,
and show that the proposed Bayesian ID GBT and GBTN models lead to smaller reconstructive errors compared
to existing randomized approaches.
Keywords: Interpolative decomposition, Low-rank approximation, Bayesian inference, Hierarchical model.

1. Introduction

Matrix factorization methods such as singular value decomposition (SVD), factor analysis, principal component
analysis (PCA), and independent component analysis (ICA) have been used extensively over the years to reveal
hidden structures of matrices in many fields of science and engineering such as deep learning (Liu et al., 2015),
recommendation systems (Comon et al., 2009; Lu, 2021a; 2022), computer vision (Goel et al., 2020), clustering and
classification (Li et al., 2009; Wang et al., 2013; Lu, 2021b), collaborative filtering (Marlin, 2003; Lim & Teh, 2007;
Mnih & Salakhutdinov, 2007; Raiko et al., 2007; Chen et al., 2009; Brouwer & Lio, 2017; Lu, 2022) and machine
learning in general (Lee & Seung, 1999).

Moreover, low-rank approximations are essential in modern data science. Low-rank matrix approximation with
respect to the Frobenius norm - minimizing the sum squared differences to the target matrix - can be easily solved
with singular value decomposition. For many applications, however, it is sometimes advantageous to work with a
basis that consists of a subset of the columns of the observed matrix itself (Halko et al., 2011; Martinsson et al.,
2011). The interpolative decomposition (ID) provides one such approximation. Its distinguishing feature is that
it reuses columns from the original matrix. This enables it to preserve matrix properties such as sparsity and
nonnegativity that also help save space in memory.

Interpolative decomposition is widely used as a feature selection tool that extracts the essence and allows dealing
with big data which is originally too large to fit into the RAM. In addition, it removes the non-relevant parts of the
data which consist of error and redundant information (Liberty et al., 2007; Halko et al., 2011; Martinsson et al.,
2011; Arı et al., 2012; Lu, 2021a). In the meantime, finding the indices associated with the spanning columns is
frequently valuable for the purpose of data interpretation and analysis, it can be very useful to identify a subset of
the columns that distills the information in the matrix. If the columns of the observed matrix have some specific
interpretations, e.g., they are transactions in a transaction dataset, then the columns of the factored matrix in
ID will have the same meaning as well. The factored matrix obtained from interpolative decomposition is also
numerically stable since its maximal magnitude is limited to a certain range.

1



Studies in Engineering and Technology Vol. 9, No. 1; 2022

On the other hand, matrix factorizations can also be thought of as statistical models in which we seek the factor-
ization that offers the maximum marginal likelihood (MML) for the underlying data (Arı et al., 2012; Brouwer &
Lio, 2017). Probabilistic interpretations are investigated for many popular matrix decompositions in the literature
such as real-valued matrix factorization, nonnegative matrix factorization (NMF) (Brouwer & Lio, 2017; Lu & Ye,
2022), principal component analysis (Tipping & Bishop, 1999), and generalized to tensor factorizations (Schmidt &
Mohamed, 2009). In the meantime, probabilistic models can easily accommodate constraints on the specific range
of the factored matrix.

In this light, we focus on the Bayesian ID (BID) of underlying matrices. The ID problem of observed matrix A
can be stated as A = CW + E, where A = [a1, a2, . . . , aN ] ∈ RM×N is approximately factorized into an M × K
matrix C ∈ RM×K containing K basis columns of A and a K × N matrix W ∈ RK×N with entries no larger than
1 in magnitude 1; the noise is captured by matrix E ∈ RM×N . Training such models amounts to finding the best
rank-K approximation to the observed M × N target matrix A under the given loss function. Let r ∈ {0, 1}N be
the state vector with each element indicating the type of the corresponding column, basis column or interpolated
(remaining) column: if rn = 1, then the n-th column an is a basis column; if rn = 0, then an is interpolated using
the basis columns plus some error term. Suppose further J is the set of the indices of the selected basis columns, I
is the set of the indices of the interpolated columns such that J ∪ I = {1, 2, . . . , N}, J = J(r) = {n|rn = 1}N

n=1, and
I = I(r) = {n|rn = 0}N

n=1. Then C can be described as C = A[:, J] where the colon operator implies all indices. The
approximation A ≈ CW can be equivalently stated that A ≈ CW = XY where X ∈ RM×N and Y ∈ RN×N such
that X[:, J] = C, X[:, I] = 0 ∈ RM×(N−K); W = Y [J, :]. We also notice that there exists an identity matrix I ∈ RK×K

in W and Y :
I = W [:, J] = Y [J, J]. (1)

To find the low-rank ID of A ≈ CW then can be transformed into the problem of finding the A ≈ XY with state
vector r recovering the submatrix C (see Figure 1). To evaluate the approximation, reconstruction error measured
by mean squared error (MSE or Frobenius norm) is minimized (assume K is known):

min
W ,Z

1
MN

N

∑
n=1

M

∑
m=1

(
amn − x>myn

)2
, (2)

where xm, yn are the m-th row and n-th column of X, Y respectively. In this paper, we approach the magnitude
constraint in W and Y by considering the Bayesian ID model as a latent factor model and we describe a fully
specified graphical model for the problem and employ Bayesian learning methods to infer the latent factors. In this
sense, explicit magnitude constraints are not required on the latent factors, since this is naturally taken care of by
the appropriate choice of prior distribution; here we use general-truncated-normal prior.

The main contribution of this paper is to propose a novel Bayesian ID method that is flexible and is called the GBT
model. To further favor flexibility and insensitivity on the hyperparameter choices, we also propose the hierarchical
model known as the GBTN algorithm, which has simple conditional density forms with little extra computation,
Meanwhile, the method is easy to implement. We show that our method can be successfully applied to the large,
sparse, and very imbalanced Movie-User dataset, containing 100,000 user/movie ratings.

2. Related Work

The most popular algorithm to compute the low-rank ID approximation is the randomized ID (RID) algorithm
(Liberty et al., 2007). At a high level, the algorithm randomly samples M > K columns from A, uses column-pivoted
QR (Lu, 2021a) to select K of those M columns for basis matrix C, and then computes W via least squares. M is
usually set to M = 1.2K to oversample the columns so as to capture a large portion of the range of matrix A.

We propose a new Bayesian approach for interpolative decomposition, which is designed to have a strict constraint
on the magnitude of the factored matrix W . The proposed GBT and GBTN models introduce a general-truncated-
normal density over the factored matrix W that finds interpolated columns to reconstruct the observed matrix.

2.1 Probability Distributions
We introduce all notations and probability distribution in this section.

N (x|µ, τ−1) =
√

τ
2π exp{− τ

2 (x − µ)2} is a Gaussian distribution with mean µ and precision τ (variance σ2 = τ−1).

1A weaker construction is to assume no entry of Y has an absolute value greater than 2. See proof of the existence of the
decomposition in Lu (2021a).
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Figure 1. Demonstration of the interpolative decomposition of a matrix where the yellow vector denotes the basis
columns of matrix A, white entries denote zero, purple entries denote one, blue and black entries denote elements
that are not necessarily zero. The Bayesian ID models find the approximation A ≈ XY and the post processing
procedure finds the approximation A ≈ CW .

G(x|α, β) =
βα

Γ(α) xα−1 exp{−βx}u(x) is a Gamma distribution where Γ(·) is the gamma function and u(x) is the
unit step function that has a value of 1 when x ≥ 0 and 0 otherwise.

G−1(x|α, β) =
βα

Γ(α) x−α−1 exp{− β
x }u(x) is an inverse-Gamma distribution.

T N (x|µ, τ−1) =
√

τ
2π exp{− τ

2 (x−µ)2}
1−Φ(−µ

√
τ)

u(x) is a truncated-normal (TN) with zero density below x = 0 and renormalized
to integrate to one. µ and τ are known as the “parent mean” and “parent precision”. Φ(·) is the cumulative
distribution function of standard normal density N (0, 1).

GT N (x|µ, 1
τ , a, b) =

√
τ

2π exp{− τ
2 (x−µ)2}

Φ((b−µ)·
√

τ)−Φ((a−µ)·
√

τ)
u(x|a, b) is a general-truncated-normal (GTN) with zero density below

x = a or above x = b and renormalized to integrate to one where u(x|a, b) is a step function that has a value of 1
when a ≤ x ≤ b and 0 otherwise. Similarly, µ and τ are known as the “parent mean” and “parent precision” of the
normal distribution. When a = 0 and b = ∞, the GTN distribution reduces to a TN density.

3. Bayesian Interpolative Decomposition

3.1 Bayesian GBT and GBTN Models for ID

m = 1..M
n = 1..N

k = 1..N
l = 1..N

X/r amn ykl

ατ/ασ βτ/βστ/σ2

p(r)
µkl, τkl
a, b

(a) GBT.

m = 1..M
n = 1..N

k = 1..N
l = 1..N

X/r amn ykl

ατ/ασ βτ/βστ/σ2

p(r)
µkl, τkl
a, b

µµ, τµ
αt, βt

(b) GBTN.

Figure 2. Graphical representation of GBT and GBTN models. Orange circles represent observed and latent vari-
ables, green circles denote prior variables, and plates represent repeated variables. “/” in the variable represents
“or”, and comma “,” in the variable represents “and”. Parameters a, b are fixed with a = −1, b = 1 in our case;
while a weaker construction can set them to a = −2, b = 2.

We view the data A as being produced according to the probabilistic generative process shown in Figure 2. The
observed (m, n)-th entry amn of matrix A is modeled using a Gaussian likelihood function with variance σ2 and
mean given by the latent decomposition x>myn (Eq. (2)),

p(amn|x>myn, σ2) = N (amn|x>myn, σ2). (3)
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We choose a conjugate prior over the data variance, an inverse-Gamma distribution with shape ασ and scale βσ,

p(σ2|ασ, βσ) = G−1(σ2|ασ, βσ). (4)

While it can also be equivalently given a conjugate Gamma prior over the precision and we shall not repeat the
details.

We treat the latent variables ykl ’s as random variables. And we need prior densities over these latent variables to
express beliefs for their values, e.g., constraint with magnitude smaller than 1 in this context though there are
many other constraints (nonnegativity in Lu & Ye (2022), semi-nonnegativity in Ding et al. (2008), discreteness in
Gopalan et al. (2014; 2015)). Here we assume further that the latent variable ykl ’s are independently drawn from a
general-truncated-normal prior

p(ykl |·) = GT N (ykl |µkl , (τkl)
−1, a = −1, b = 1). (5)

This prior serves to enforce the constraint on the components Y with no entry of Y having an absolute value greater
than 1, and is conjugate to the Gaussian likelihood. The posterior density is also a general-truncated-normal
distribution. While in a weaker construction of interpolative decomposition, the constraint on the magnitude can
be loosened to 2; the prior is flexible in that the parameters can be then set to a = −2, b = 2 accordingly.

Hierarchical prior. To further favor flexibility, we choose a convenient joint hyperprior density over the parameters
{µkl , τkl} of GTN prior in Eq. (5), namely, the GTN-scaled-normal-Gamma (GTNSNG) prior,

p(µkl , τkl |·) = GT NSNG(µkl , τkl |µµ,
1
τµ

, αt, βt)

=
{

Φ((b − µµ) ·
√

τµ)− Φ((a − µµ) ·
√

τµ)
}
· N (µkl |µµ, (τµ)

−1) · G(τkl |at, bt).
(6)

This prior can decouple parameters µkl , τkl , and the posterior conditional densities of them are normal, and Gamma
respectively due to this convenient scale.

Terminology. There are three types of choices we make that determine the specific type of matrix decomposition
model we use, namely, the likelihood function, the priors we place over the factor matrices W and Z, and whether
we use any further hierarchical priors. We will call the model by the density function in the order of the types of
likelihood and priors. For example, if the likelihood function for the model is chosen to be a Gaussian density, and the
two prior density functions are selected to be exponential density and Gaussian density functions respectively, then
the model will be denoted as Gaussian Exponential-Gaussian (GEG) model. Sometimes, we will put a hyperprior
over the parameters of the prior density functions, e.g., we put a Gamma prior over the Gaussian density, then it
will further be termed as a Gaussian Exponential-Gaussian Gamma (GEGA) model. In this sense, the proposed
hierarchical model is named the GBT and GBTN model where B stands for Beta-Bernoulli density intrinsically.

3.2 Gibbs Sampler
In this paper, we use Gibbs sampling since it tends to be very accurate at finding the true posterior. Other than this
method, variational Bayesian inference can be an alternative way but we shall not go into the details. We shortly de-
scribe the posterior conditional density in this section. A detailed derivation can be found in Appendix Appendix A.
The conditional density of ykl is a general-truncated-normal density. Denote all elements of Y except ykl as Y−kl ,
we then have

p(ykl |A, X, Y−kl , µkl , τkl , σ2)

∝ p(A|X, Y , σ2) · p(ykl |µkl , τkl) =
M,N

∏
i,j=1

N
(

aij|x>i yj, σ2
)
· GT N (ykl |µkl ,

1
τkl

,−1, 1)

∝ GT N (ykl |µ̃, (τ̃)−1, a = −1, b = 1),

(7)

where τ̃ = ∑M
i x2

ik
σ2 + τkl is the posterior “parent precision” of the GTN distribution, and

µ̃ =

(
1

σ2

M

∑
i

xik
(
ail −

N

∑
j 6=k

xijyjl
)
+ τklµkl

)/
τ̃

is the posterior “parent mean” of the GTN distribution.
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Algorithm 1 Gibbs sampler for GBT and GBTN ID models. The procedure presented here may not be efficient but
is explanatory. A more efficient one can be implemented in a vectorized manner. By default, uninformative priors
are a = −1, b = 1, ασ = 0.1, βσ = 1, ({µkl} = 0, {τkl} = 1) for GBT, (µµ = 0, τµ = 0.1, αt = βt = 1) for GBTN.

1: for t = 1 to T do
2: Sample state vector r from Eq. (9);
3: Update matrix X by A[:, J] where index vector J is the index of r with value 1 and set X[:, I] = 0 where index

vector I is the index of r with value 0;
4: Sample σ2 from p(σ2|X, Y , A) in Eq. (10);
5: for k = 1 to N do
6: for l = 1 to N do
7: Sample ykl from Eq. (7);
8: (GBTN only) Sample µkl from Eq. (11);
9: (GBTN only) Sample τkl from Eq. (12);

10: end for
11: end for
12: Report loss in Eq. (2), stop if it converges.
13: end for
14: Report mean loss in Eq. (2) after burn-in iterations.

Given the state vector r = [r1, r2, . . . , rN ]> ∈ RN , the relation between r and the index set J is simple; J = J(r) =
{n|rn = 1}N

n=1 and I = I(r) = {n|rn = 0}N
n=1. A new value of state vector r is to select one index j from index set J

and another index i from index sets I (we note that rj = 1 and ri = 0 for the old state vector r) such that

oj =
p(rj = 0, ri = 1|A, σ2, Y , r−ji)

p(rj = 1, ri = 0|A, σ2, Y , r−ji)

=
p(rj = 0, ri = 1)
p(rj = 1, ri = 0)

×
p(A|σ2, Y , r−ji, rj = 0, ri = 1)
p(A|σ2, Y , r−ji, rj = 1, ri = 0)

,

(8)

where r−ji denotes all elements of r except j-th and i-th entries. Trivially, we can set p(rj = 0, ri = 1) = p(rj =

1, ri = 0). Then the full conditionally probability of p(rj = 0, ri = 1|A, σ2, Y , r−ji) can be calculated by

p(rj = 0, ri = 1|A, σ2, Y , r−ji) =
oj

1 + oj
. (9)

Finally, the conditional density of σ2 is an inverse-Gamma distribution by conjugacy,

p(σ2|X, Y , A) = G−1(σ2|α̃σ, β̃σ), (10)

where α̃σ = MN
2 + ασ, β̃σ = 1

2 ∑M,N
i,j=1(aij − x>i yj)

2 + βσ.

Extra updates for the GBTN model. Following the graphical representation of the GBTN model in Figure 2, the
conditional density of µkl can be derived,

p(µkl |τkl , µµ, τµ, at, bt, ykl)

∝ GT N (ykl |µkl , (τkl)
−1, a = −1, b = 1)× GT NSNG(µkl , τkl |µµ, (τµ)

−1, αt, βt)

∝ N (µkl |m̃, ( t̃ )−1),

(11)

where t̃ = τkl + τµ, and m̃ = (τklykl + τµµµ)/t̃ are the posterior precision and mean of the normal density. Similarly,
the conditional density of τkl is,

p(τkl |µkl , µµ, τµ, at, bt, ykl)

∝ GT N (ykl |µkl , (τkl)
−1, a = −1, b = 1)× GT NSNG(µkl , τkl |µµ, (τµ)

−1, αt, βt)

∝ G(τkl |ã, b̃),

(12)

where ã = at + 1/2 and b̃ = bt +
(ykl−µkl)

2

2 are the posterior parameters of the Gamma density. The full procedure
is then formulated in Algorithm 1.

5



Studies in Engineering and Technology Vol. 9, No. 1; 2022

3.3 Aggressive Update
In Algorithm 1, we notice that we set X[:, I] = 0 when the new state vector r is sampled. However, in the next
iteration step, the index set I may be updated in which case one entry i of I may be altered to have value of 1:

ri = 0 → ri = 1.

This may cause problems in the update of ykl in Eq. (7), a zero i-th column in X cannot update Y accordingly. One
solution is to record a proposal state vector r2 and a proposal factor matrix X2 from the r2 vector. When the update
in the next iteration selects the old state vector r, the factor matrix X is adopted to finish the updates; while the
algorithm chooses the proposal state vector r2, the proposal factor matrix X2 is applied to do the updates. We call
this procedure the aggressive update. The aggressive sampler for the GBT model is formulated in Algorithm 2. For
the sake of simplicity, we don’t include the sampler for the GBTN model because it may be done in a similar way.

Algorithm 2 Aggressive Gibbs sampler for GBT ID model. The procedure presented here may not be efficient but
is explanatory. A more efficient one can be implemented in a vectorized manner. By default, uninformative priors
are a = −1, b = 1, ασ = 0.1, βσ = 1, ({µkl} = 0, {τkl} = 1) for GBT.

1: for t = 1 to T do
2: Sample state vector r from {r1, r2} by Eq. (9);
3: Decide Y : Y = Y1 if r is r1; Y = Y2 if r is r2;
4: Update state vector r1 = r;
5: Sample proposal state vector r2 based on r;
6: Update matrix X by r = r1;
7: Update proposal X2 by r2;
8: Sample σ2 from p(σ2|X, Y , A) in Eq. (10);
9: Sample Y1 = {ykl} using X;

10: Sample Y2 = {ykl} using X2;
11: Report loss in Eq. (2), stop if it converges.
12: end for
13: Report mean loss in Eq. (2) after burn-in iterations.

Table 1. Overview of the CCLE EC50, CCLE IC50, CTRP EC50,
and MovieLens 100K datasets, giving the number of rows, columns
(after copying twice for redundancy), and the fraction of entries that
are observed. The MovieLens 100K dataset has a larger fraction of
unobserved entries.

Dataset Rows Columns Fraction of observations
CCLE EC50 502 48 0.632
CCLE IC50 504 48 0.965
CTRP EC50 887 1090 0.801
MovieLens 100K 943 2946 0.072

3.4 Post Processing
The Gibbs sampling algorithm finds the approximation A ≈ XY where X ∈ RM×N and Y ∈ RN×N . As stated
above, the redundant columns in X and redundant rows in Y can be removed by the index vector J:

C = X[:, J] = A[:, J], W = Y [J, :].

Since the submatrix Y [J, J] = W [:, J] (Eq. (1)) from the Gibbs sampling procedure is not enforced to be an identity
matrix (as required in the interpolative decomposition). We need to set it to be an identity matrix manually. This
will basically reduce the reconstructive error further. The post processing procedure is shown in Figure 1.

4. Experiments

To evaluate the strategy and demonstrate the main advantages of the proposed Bayesian ID method, we conduct
experiments with different analysis tasks; and different data sets including Cancer Cell Line Encyclopedia (CCLE
EC50 and CCLE IC50 datasets, (Barretina et al., 2012)) and Cancer Therapeutics Response Portal (CRTP EC50,
(Seashore-Ludlow et al., 2015)) from bioinformatics, and MovieLens 100K from movie ratings for different users
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2 1 0 1
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Figure 3. Data distribution of CCLE EC50, CCLE IC50, CTRP EC50, and MovieLens 100K datasets. The former
three datasets have complex distributions and the last one has a Gaussian-like distribution.
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(a) Convergence of the models on the CCLE EC50, CCLE IC50, CTRP EC50, and MovieLens 100K datasets, measuring the training
data fit (mean squared error). The algorithm almost converges in less than 50 iterations.
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(b) Averaged autocorrelation coefficients of samples of ykl computed using Gibbs sampling on the CCLE EC50, CCLE IC50, CTRP
EC50, and MovieLens 100K datasets.
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(c) Reconstructive analysis on the CCLE EC50, CCLE IC50, CTRP EC50, and MovieLens 100K datasets with increasing latent dimension
K.
Figure 4. Convergence results (upper), sampling mixing analysis (middle), and reconstructive results (lower) on the
CCLE EC50, CCLE IC50, CTRP EC50, and MovieLens 100K datasets for various latent dimensions.

(Harper & Konstan, 2015). Following Brouwer & Lio (2017), we preprocess these datasets by capping high values
to 100 and undoing the natural log transform for the former three datasets. Then we standardize to have zero mean
and unit variance for all datasets and fill missing entries by 0. Moreover, the user vectors or movie vectors with less
than 3 observed entries are cleaned in the MovieLens 100K dataset. Finally, we copy every column twice in order to
increase redundancy in the matrix. A summary of the four datasets can be seen in Table 1 and their distributions
are shown in Figure 3. The MovieLens 100K dataset is unbalanced in that it has a larger fraction of unobserved
entries with only 7.2% being observed so that the algorithm may tend to simply predict all entries to be zero.

In all scenarios, the same parameter initialization is adopted when conducting different tasks. Experimental evidence
reveals that post processing procedure can increase performance to a minor level, and that the outcomes of the
GBT and GBTN models (aggressive and non-aggressive versions) are relatively similar. For clarification, we only
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Table 2. Mean squared error measure with various la-
tent dimension K parameters for CCLE EC50, CCLE
IC50, CTRP EC50, and MovieLens 100K datasets.

Data K GBT RID

CCLE EC50
5 0.35 0.50
10 0.22 0.36
15 0.13 0.22
20 0.07 0.08

CCLE IC50
5 0.30 0.45
10 0.23 0.30
15 0.16 0.17
20 0.13 0.09

CTRP EC50
20 0.58 1.11
100 0.48 1.91
150 0.47 1.79

MovieLens 100K
20 0.06 0.12
100 0.05 0.24
150 0.05 0.26

Table 3. Magnitude that exceeds 1 in randomized ID
algorithm with various latent dimensions K for differ-
ent datasets.

Dataset K = 5 K = 10 K = 15
CCLE EC50 0.0 4.44e-16 4.44e-16
CCLE IC50 1.99e-2 4.44e-16 6.66e-16
Dataset K = 20 K = 100 K = 150
CTRP EC50 4.44e-16 2.69e-2 1.99e-15
MovieLens 100K 2.22e-16 6.66e-16 8.88e-16

provide the findings of the GBT model after an aggressive update and post processing. We compare the results with
randomized ID (RID) algorithm (Liberty et al., 2007). In a wide range of scenarios across various datasets, the GBT
model improves reconstructive error and leads to performances that are as good or better than the randomized ID
method in low-rank ID approximation. We also notice that all the four datasets contain missing entries that are
filled by zero values. When the fraction of unobserved data is large, the model can simply predict the entries with
zero. So we also report the mean squared error for observed entries, termed as GBT (Observed) for the proposed
GBT model, and RID (Observed) for the randomized ID model.

In order to measure overall decomposition performance, we use mean square error (MSE, Eq. (2)), which measures
the similarity between the true and reconstructive; the smaller the better performance.

4.1 Hyperparameters
In this experiments, we use a = −1, b = 1, ασ = 0.1, βσ = 1, ({µkl} = 0, {τkl} = 1) for GBT, (µµ = 0, τµ =

0.1, αt = βt = 1) for GBTN. These are very weak prior choices and the models are not sensitive to them. As long
as the hyperparameters are set, the observed or unobserved variables are initialized from random draws as this
initialization procedure provides a better initial guess of the right patterns in the matrices. In all experiments,
we run the Gibbs sampler 500 iterations with a burn-in of 100 iterations and a thinning of 5 iterations as the
convergence analysis shows the algorithm can converge in less than 50 iterations.

4.2 Convergence Analysis
Firstly we show the convergence in terms of iterations on the CCLE EC50, CCLE IC50, CTRP EC50 and MovieLens
100K datasets. We run each model with K = 5, 10, 15, 20 for the CCLE EC50 and CCLE IC50 datasets, and
K = 20, 100, 150, 200 for the CTRP EC50 and MovieLens 100K datasets; and the loss is measured by mean squared
error (MSE). Figure 4(a) shows the average convergence results. Figure 4(b) shows autocorrelation coefficients of
samples computed using Gibbs sampling. The coefficients are less than 0.1 when the lags are more than 10 showing
the mixing of the Gibbs sampler is good. In all experiments, the algorithm converges in less than 50 iterations. On
the CCLE EC50 and MovieLens 100K datasets, the sampling are less noisy; while on the CCLE IC50 and CTRP
EC50 datasets, the sampling seems to be noisy.

4.3 Comparison with Randomized ID
Comparative results for the proposed GBT model and the RID model on the four datasets are given in Figure 4(c)
and Table 2. We also observe that, in all experiments, the MSEs of the observed entries are worse than those of all
the entries. In the results of CCLE EC50 and CCLE IC50 datasets, the proposed GBT model recovers smaller MSE
when the latent dimension is lower than 15 (for both the observed ones and all entries); However, when K tends to
be closer to the rank (24 in this case), the RID becomes better. Similar results can also be observed on the CTRP
EC50 dataset whose rank is 545, and on the MovieLens 100K dataset whose rank is 943. This demonstrates that
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our proposed models are more competitive when we need a low-rank ID approximation that can distill data to a
great extent.

For the proposed Bayesian GBT and GBTN models, in all circumstances, the maximal magnitude of the factored
matrix W is no greater than 1 because the prior densities in Bayesian ID models guarantee the magnitude constraint.
The randomized ID, on the other hand, finds a weaker interpolative decomposition with a maximal magnitude of
no more than 2. Table 3 shows the magnitudes of the randomized ID model for different datasets and different
latent dimensions. We may notice that when K = 100 on the CTRP EC50 dataset, the maximal magnitude is about
1.0269. Though this is not a big issue in many applications, it has potential problems for other applications that
have a high requirement for numerical stability. Advani & O’Hagan (2021) also reports that the randomized ID
may have a magnitude larger than 167 making it less numerical stable.

5. Conclusion

The aim of this paper is to solve the numerical stability issue of the randomized algorithms in computing the
low-rank ID approximation. We propose a simple and computationally efficient algorithm that requires little extra
computation and is easy to implement for interpolative decomposition. Overall, we show that the proposed GBT and
GBTN models are versatile algorithms that have good convergence results and better reconstructive performances
on both sparse and dense datasets, especially for low-rank approximation ID. GBT and GBTN are able to force
the magnitude of the factored matrix to be no greater than 1 such that numerical stability is guaranteed.
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Appendix A. Derivation of Gibbs Sampler for Bayesian Interpolative Decomposition

In this section, we give the derivation of the Gibbs sampler for the proposed Bayesian ID models. As shown in the
main paper, the observed data (m, n)-th entry amn of matrix A is modeled using a Gaussian likelihood with variance
σ2 and mean given by the latent decomposition x>myn (Eq. (2)),

p(amn|x>myn, σ2) = N (amn|x>myn, σ2);

p(A|θ) =
M,N

∏
m,n=1

N
(

amn|(XY)mn, σ2
)
=

M,N

∏
m,n=1

N
(

amn|(XY)mn, τ−1
)

,

where θ = {X, Y , σ2} denotes all parameters in the model, σ2 is the variance, τ−1 = σ2 is the precision,

Prior. We choose a conjugate prior on the data variance, an inverse-Gamma distribution with shape ασ and scale
βσ,

p(σ2|ασ, βσ) = G−1(σ2|ασ, βσ).

We assume further that the latent variable ykl ’s are drawn from a general-truncated-normal prior,

p(ykl |·) = GT N (ykl |µkl , τ−1
kl , a = −1, b = 1) =

√
τkl
2π exp{− τkl

2 (ykl − µkl)
2}

Φ((b − µkl) ·
√

τkl)− Φ((a − µkl) ·
√

τkl)
u(ykl |a, b), (A.1)

where u(x|a, b) is a step function with a value of 1 when a ≤ x ≤ b and 0 otherwise.

Let r ∈ {0, 1}N be the state vector with each element indicating the type of the corresponding column. If rn = 1,
then an is a basis column; otherwise, an is interpolated using the basis columns plus some error term.

Hyperprior. To further favor flexibility, we choose a convenient joint hyperprior density over the parameters
{µkl , τkl} of GTN prior in Eq. (A.1), namely, the GTN-scaled-normal-Gamma (GTNSNG) prior,

p(µkl , τkl |·) = GT NSNG(µkl , τkl |µµ, (τµ)
−1, αt, βt)

=
{

Φ((b − µµ) ·
√

τµ)− Φ((a − µµ) ·
√

τµ)
}
· N (µkl |µµ, (τµ)

−1) · G(τkl |at, bt).
(A.2)

This prior can decouple parameters µkl , τkl , and the posterior conditional densities of them are normal and Gamma
respectively due to this convenient scale.

Posterior. Following the graphical representation of the GBT (or the GBTN) model in Figure 2, the conditional
density of yW

kl can be derived,

p(ykl |A, X, Y−kl , µkl , τkl , σ2) ∝ p(A|X, Y , σ2) · p(ykl |µkl , τkl)

=
M,N

∏
i,j=1

N
(

aij|x>i yj, σ2
)
× GT N (ykl |µkl , (τkl)

−1, a = −1, b = 1)

∝ exp

− 1
2σ2

M,N

∑
i,j=1

(aij − x>i yj)
2

 exp{− τkl
2
(ykl − µkl)

2}u(ykl |a, b)

∝ exp

{
− 1

2σ2

M

∑
i
(ail − x>i yl)

2

}
exp{− τ

2
(ykl − µkl)

2}u(ykl |a, b)

∝ exp

− 1
2σ2

M

∑
i

(
x2

iky2
kl + 2xikykl(

N

∑
j 6=k

xijyjl − ail)

) exp{− τkl
2
(ykl − µkl)

2}u(ykl |a, b)

∝ exp


−y2

kl
(∑M

i x2
ik

2σ2 +
τkl
2
)
+ ykl

(
1

σ2

M

∑
i

xik
(
ail −

N

∑
j 6=k

xijyjl
)
+ τklµkl

)
︸ ︷︷ ︸

τ̃µ̃


u(ykl |a, b)

∝ N (ykl |µ̃, (τ̃)−1)u(ykl |a, b) ∝ GT N (ykl |µ̃, (τ̃)−1, a = −1, b = 1),
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where again, for simplicity, we assume the rows of X are denoted by xi’s and columns of Y are denoted by yj’s,

τ̃ = ∑M
i x2

ik
σ2 + τkl is the posterior “parent precision” of the general-truncated-normal distribution, and

µ̃ =

(
1

σ2

M

∑
i

xik
(
ail −

N

∑
j 6=k

xijyjl
)
+ τklµkl

)/
τ̃

is the posterior “parent mean” of the general-truncated-normal distribution.

Given the state vector r = [r1, r2, . . . , rN ]> ∈ RN , the relation between r and the index sets J is simple; J = J(r) =
{n|rn = 1}N

n=1 and I = I(r) = {n|rn = 0}N
n=1. A new value of state vector r is to select one index j from index sets

J and another index i from index sets I (we note that rj = 1 and ri = 0 for the old state vector r) such that

oj =
p(rj = 0, ri = 1|A, σ2, Y , r−ji)

p(rj = 1, ri = 0|A, σ2, Y , r−ji)
=

p(rj = 0, ri = 1)
p(rj = 1, ri = 0)

×
p(A|σ2, Y , r−ji, rj = 0, ri = 1)
p(A|σ2, Y , r−ji, rj = 1, ri = 0)

,

where r−ji denotes all elements of r except j-th and i-th entries. Trivially, we can set p(rj = 0, ri = 1) = p(rj =

1, ri = 0). Then the full conditionally probability of p(rj = 0, ri = 1|A, σ2, Y , r−ji) can be calculated by

p(rj = 0, ri = 1|A, σ2, Y , r−ji) =
oj

1 + oj
.

Finally, the conditional density of σ2 is an inverse-Gamma distribution by conjugacy,

p(σ2|X, Y , A) = G−1(σ2|α̃σ, β̃σ),

where α̃σ = MN
2 + ασ, β̃σ = 1

2 ∑M,N
i,j=1(aij − x>i yj)

2 + βσ.

Extra update for GBTN model. Following the graphical representation of the GBTN model in Figure 2, the
conditional density of µkl can be derived,

p(µkl |τkl , µµ, τµ, at, bt, ykl) ∝ GT N (ykl |µkl , (τkl)
−1, a = −1, b = 1) · GT NSNG(µkl , τkl |µµ, (τµ)

−1, αt, βt)

∝ GT N (ykl |µkl , (τkl)
−1, a = −1, b = 1) ·

{
Φ((b − µµ) ·

√
τµ)− Φ((a − µµ) ·

√
τµ)

}
· N (µkl |µµ, (τµ)

−1) ·�����G(τkl |at, bt)

∝
√

τkl · exp
{
− τkl

2
(ykl − µkl)

2
}
· exp

{
−

τµ

2
(µµ − µkl)

2
}

∝ exp

−
τkl + τµ

2
µ2

kl + µkl (τklykl + τµµµ)︸ ︷︷ ︸
m̃·t̃

 ∝ N (µkl |m̃, ( t̃ )−1),

where t̃ = τkl + τµ, and m̃ = (τklykl + τµµµ)/t̃ are the posterior precision and mean of the normal density. Similarly,
the conditional density of τkl is,

p(τkl |µkl , µµ, τµ, at, bt, ykl) ∝ GT N (ykl |µkl , (τkl)
−1, a = −1, b = 1) · GT NSNG(µkl , τkl |µµ, (τµ)

−1, αt, βt)

∝ GT N (ykl |µkl , (τkl)
−1, a = −1, b = 1) ·

{
Φ((b − µµ) ·

√
τµ)− Φ((a − µµ) ·

√
τµ)

}
·((((((((
N (µkl |µµ, (τµ)

−1) · G(τkl |at, bt)

∝ exp
{
−τkl

(ykl − µkl)
2

2

}
τ1/2

kl τat−1
kl exp {−btτkl} ∝ exp

{
−τkl

[
bt +

(ykl − µkl)
2

2

]}
· τ

(at+1/2)−1
kl

∝ G(τkl |ã, b̃),

where ã = at + 1/2 and b̃ = bt +
(ykl−µkl)

2

2 are the posterior parameters of the Gamma density.
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