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of roads or earthquakes, and it is expected to keep road quality (Reina G, Leanza A & Messina A. 2018; Kasaiezadeh A, 
Jahromi R. M. & Alasty A. 2005). The profile of IRI is a collection of big-data for roughness of road surface and hence, it 
demands computationally intensive tasks and time for analyses, primarily by employing statistical method to obtain 
probabilistic results. It is not readily accessible for all researchers to check data because it demands certain budget of 
research and takes much computation time to get a probabilistic result, which restricts accessibility to the data and 
impedes progresses of the field. The roughness of road surface is one of random phenomena, but vibrations induced in a 
system should be understood as dynamical phenomena. It is necessary to introduce a method to understand corresponding 
results given by statistical big-data and associated dynamical vibration phenomena. 

We proposed a dynamical model by introducing a model Lagrangian to analyze mechanical systems of vibrations and the 
profile of IRI (Uechi T. S. & Uechi H. 2018)., which would help the analysis of vibrations induced by impacts of rough 
road surfaces. The Lagrangian model of vibrations can be applied to the analysis of unmanned surface vehicles (USV), or 
wave energy converter (WEC), related to dynamical motions of three-dimensional systems affected by internal 
oscillations and trembles. In the current paper, a mechanoelectric energy conversion from vibrations to electric energy and 
its application to the profile of IRI and ride-quality are discussed. 

Mechanical vibrations of vehicles are usually diminished by sophisticated modern suspension technologies by 
way of tires, tire air, springs, shock absorbers. The mechanical system of vehicles can be considered as the 
multi-leveled, stratified spring systems as shown in Fig. 1. Drivers and passengers are on the higher level of the 
system whose ride quality is maximized and vibrations of vehicles are minimized, and unwanted vibrations and 
impacts are absorbed and maintained in the low-level spring system. This is essential for the concept of 
mechanical-induced electric energy conversion by employing an flexible energy-converter module simplistically 
drawn as a black box z3 in Fig. 2, which is shown in sec. 2. However, because the energy-converter module, z3, is 
different from conventional converter designs, technical details are not disclosed due to the preparation of patent 
applications. 

The energy harvesting technologies and designs have been developing, and demands for the fabrication of the efficient 
electronics are actively investigated by employing piezoelectric-based energy harvesting devices of crystals and ceramics 
which can generate a small voltage whenever they are mechanically deformed. The piezoelectric effect is the internal 
generation of electrical charge resulting from an applied mechanical force, and the reverse piezoelectric effect is the 
internal generation of a mechanical strain resulting from an applied electrical field. The energy harvesting and storage 
systems of intermediate and macroscopic energy harvesting technologies are essential for applications, recycles of 
energies and sustainability of ecology and natural environment. The technological design, construction, and maintenance 
of the natural and artificial environment are disciplines of the civil engineering, which encompasses mechanics of physics, 
materials science and electrical circuitry, and hence, researchers from vast fields of sciences and engineering would 
contribute to energy harvesting research. There are many vibrational, thermodynamical, wind and wave, solar and 
luminous, heat and chemical phenomena able to be applied to energy harvesting technologies. 

Mechanical vibrations have both information and energy produced by corresponding systems, but these useful vibrations 
are extracted when an appropriate energy-conversion module is realized. The energy conversion-module used for 
numerical calculations can be directly applied to other mechanical systems of vibrations. In section 2, energy-convertible 
damping oscillations obtained from mechanical systems are discussed. The numerical results of energy-convertible 
oscillations and induced electric charge and current are shown in section 3. The applications to IRI and ride quality are 
discussed in section 4, and conclusions and perspectives are in section 5. 

2. Energy-Convertible Mechanical Vibrations in Systems of Vehicles 

Mathematical models of vehicle’s response-type measurement for roughness of road surface have been investigated since 
1940s starting from applications to airplanes and military vehicles. Mechanical responses to external impacts are essential 
for aircrafts moving runways, standard fabrication for steel of fast-growing railroads, maintenance of infrastructure of 
road and automobiles (The National Cooperative Highway Re-search Program (NCHRP) 1962). The vibrations caused by 
road surfaces, vehicles, buildings, bridges and railways are important information on mechanical structures and materials. 

Because of the demand of ride quality at the upper level of vehicles supported by suspension systems, the lower 
suspension systems are expected to absorb most of vibrations and impacts exerted on a vehicle. Although the suspension 
model in Fig. 1 seems to be crudely simplified, we discussed that it can reasonably reproduce realistic vibrational motions 
experienced in our daily life, and then, we numerically extracted independent damping oscillations produced by external 
impacts exerted by roughness of road surface (Uechi T. S. & Uechi H. 2018). 

The equations of motion for vibrations associated with the profile of IRI data are discussed with the 

Lagrangian, LIRI, resulting in (Uechi T. S. & Uechi H. 2018): 
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The stratified spring system generates smooth damping oscillations convertible to electricity that can be found in the 
module of z3 where a technical scheme for mechanical vibration-based electromagnetic generation is specifically 
designed, and the module z3 is removable and flexibly installed in other vibrational systems for oscillation analyses. We 
will discuss solutions to equations from (2.1) (2.4) and suggest the current results of mechanical vibration-induced electric 
current as a standard measure for the profile of international roughness index (IRI) (Uechi T. S. & Uechi H. 2018; Du Y, 
Liu C, Wu D & Jiang S. 2014; Kropac O. & Mucka P. 2009) and ride quality of vehicles (Reina G, Leanza A & Messina A. 
2018; Kasaiezadeh A, Jahromi R. M. & Alasty A. 2005). 

3. The Mechanical Vibrations and Induced Charges and Currents 

The numerical simulations of four external forces of impacts, X(t), in Fig. 3 are employed to show mechanical vibrations, 
z2(t) and z3(t), the induced electric charge Q(t) and current I(t). The strength of rectangular external force of impacts is 
within, hi = 1.0 2.0 cm, and each impact continues 2.0 seconds in time. Though forces of impacts seem to be rough at the 
first glance from the figures, the longitudinal impacts of road surface 3(a) 3(d) are relatively smooth in practice, because 
the speed of vehicles is supposed to be about 10 km/h. Phenomenological constants in eqs. (2.1) (2.4) are adjusted and 
fixed in all calculations so that the characteristic responses of oscillations, z2(t) and z3(t), and the induced currents I(t) can 
be clearly observed. The model constants connected to roughness of road surface are also numerically tested for 
simulations of IRI (Uechi T. S. & Uechi H. 2018). The coupling constants are fixed in the current numerical calculation 
as: 

m1 = 300 kg, m2 = 0.25m1, m3 = 10 5m1; k1 = 1.5m1, k2 = 0.25m1, k3 = 1.5m3; C1 = 7.0m1, C2 = 
0.05m1, C3 = 0.20m3, C4 = 0.20m3. 

These coupling constants should be determined in practice by experiments of ride quality of vehicles and optimal designs 
of energy-conversion of the module z3. 

3.1 The Simulation 1: X(T), A Rectangular Convex Impact, the Induced Charge and Current (Fig. 4) 

The external force of impact 3(a) produces the vibration ∆z2(t), and simultaneously, the energy convertible mechanical 
oscillation, z3(t), is produced. The mechanoelectrical energy conversion module z3 produces the associated charge Q(t) 
and electric current I(t), shown in figures 4(c) and 4(d), respectively. The roughness of road surface defined by a 
rectangular convex impact (hi = 1.0 cm) produces the damping oscillation, ∆z2(t) . 0.3 (cm) in Fig. 4(a), simultaneously 
generating the oscillation-damping, z3(t), with the maximum amplitude |z3

max| 0.15 cm. 

The induced charge, Q(t), in a capacitor in the converter module is a smooth oscillation-damping function of time with the 
maximum magnitude, |Qmax| 0.2 mC. The induced current, I(t), is a smooth oscillation-damping function in time with the 
maximum current, |Imax| 0.4 mA, but the discrete changes of positions, ∆z2(t) or z3(t), by the external force of impact 
become more visible in the induced electric current shown in Fig. 4(d), because the electric current is given by the 
derivative of charge as I(t) = dQ(t)/dt. The electric current is susceptible to discrete changes of oscillations in z3, and it is 
suitable for detecting discrete, longitudinal mechanical vibrations. Conventional and piezoelectric energy converters 
(Arroyoa E., Badela A., Formosaa F., Y. Wu Y & J. Qiu J. 2012; Constantinou P, Mellor PH & Wilcox PD. 2012) may be 
applicable for the design of the energy-conversion module. 

The phenomenological dissipation constants, C1, C2, C3, C4, and spring constants, k1, k2, k3 determine responses to 
external forces and overall dynamical motions of the coupled system. When these constants are increased, reductions and 
restrictions to frequency and amplitude of oscillations are observed, resulting in an rapid oscillation damping, and with 
some combinations of constants, one often obtains no oscillatory solutions which are irrelevant to mechanoelectric energy 
conversions. The ratios among phenomenological constants are important for determining dynamical motions of a 
coupled spring system, but the overall property of simulations is not sensitive to the change of mass, m1, as long as it is 
large compared to other component masses. The motions of other component masses, m2 and m3 in the current model, are 
sensitive to ratios of phenomenological constants, which is also empirically observed in coupled mechanical systems. 

3.2 The Simulation 2: X(T), the Four Convex-Concave Rectangular Impacts, the Induced Charge and Current (Fig. 5) 

The external four convex-concave impacts 3(b), (|hi| = 1.0 or 2.0 cm), produce the associated vibrations, ∆z2(t), and the 
coupled energy-convertible mechanical oscillation, z3(t). Accordingly, the mechanical oscillation, z3(t), generates the 
electric charge Q(t) and current I(t) as shown in Figs. 5(c) and 5(d). The maximum amplitude of ∆z2

max(t) . 0.6 (cm) in Fig. 
5(a), and the oscillation-damping is generated in z3(t) with the maximum amplitude |z3

max| 0.30 cm. 

The induced charge Q(t) by the four convex-concave rectangular impacts in Fig. 3(b) shows a smooth damping oscillation 
with |Qmax | 0.60 mC. The induced current I(t) also shows an oscillation-damping property with |Imax | 1.5 mA, and the 
timing of impacts coming from roughness of the road surface can be observed as discrete longitudinal changes in the 
electric current in Fig. 5(d). The roughness of road surface can be precisely observed as discrete changes in the 
mechanical vibration-induced current I(t). 
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generation, transducer and storage technologies for small, wireless autonomous devices used in wearable electronics and 
wireless sensor networks are expected to become reliable power modules, and more importantly, we need sustainable 
power stations for large systems in the near future (Bowen R. C., Topolov Y. V. & Kim A. H. 2016); for that purpose, 
convenient and interesting, useful energy harvesting technologies should be developed and investigated further. 

References 

Alhawari, M., Mohammad, B., Saleh, H., & Ismail, M. (2018). Energy Harvesting for Self-Powered Wearable Devices, 
Springer. https://doi.org/10.1007/978-3-319-62578-2 

Arroyoa, E., Badela, A., Formosaa, F., Wu, Y., & Qiu, J. (2012) Comparison of electromagnetic and piezoelectric 
vibration energy harvesters: model and experiments. Sensors Actuators A 183, 148-156. 
https://doi.org/10.1016/j.sna.2012.04.033 

Bowen, R. C., Topolov, Y. V., & Kim, A. H. (2016). Modern Piezoelectric Energy-Harvesting Materials, Springer. 
https://doi.org/10.1007/978-3-319-29143-7 

Constantinou, P., Mellor, P. H., & Wilcox, P. D. (2012). A magnetically sprung generator for energy harvesting 
applications. Mechatronics, IEEE/ASME Trans, 17(3), 415-424. https://doi.org/10.1109/TMECH.2012.2188834 

Du, Y., Liu, C., Wu, D., & Jiang, S. (2014). Measurement of International Roughness Index by Using Z-Axis 
Accelerometers and GPS. Mathematical Problems in Engineering. https://doi.org/10.1155/2014/928980 

Eshleman, R. (1999). Basic machinery vibrations: An introduction to machine testing, analysis, and monitoring. 

Kasaiezadeh, A., Jahromi, R. M., & Alasty, A. (2005). Fatigue Life Assessment Approach to Ride Comfort Optimization 
of a Passenger Car under Random Road Execution Conditions, SAE International by University of Edinburgh. 
https://doi.org/10.4271/2005-01-0805 

Kathy, L. (2014). Materials in Energy Conversion, Harvesting, and Storage, John Wiley & Sons. 

Kropac, O., & Mucka P. (2009). Classification Scheme for Random Longitudinal Road Unevenness Considering Road 
Waviness and Vehicle Response. Shock and Vibration, 16, 273-289. https://doi.org/10.1155/2009/935858 

Priya, S., & Inman, J. D. (2009). Energy Harvesting Technologies, Springer. https://doi.org/10.1007/978-0-387-76464-1 

Reina, G., Leanza, A., & Messina, A. (2018). On the vibration analysis of off-road vehicles: Influence of terrain 
deformation and irregularity, Journal of Vibration and Control 1-19. https://doi.org/10.1177/1077546318754682 

The National Cooperative Highway Research Program (NCHRP). (Established in 1962). Federal Highway 
Administration and US Department of Transportation. 

Uechi, T. S., & Uechi, H. (2018). The Profiling of International Roughness Index (IRI) Based on Lagrangian Method. 
World Journal of Engineering and Technology, 6(2018), 885-902. https://doi.org/10.4236/wjet.2018.64059 

Wang, X. (2016). Frequency Analysis of Vibration Energy Harvesting Systems, Elsevier. 
https://doi.org/10.1016/B978-0-12-802321-1.00009-1 

 

 

 

 

 

 

 

 

 

 

Copyrights 

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.  

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly 
cited. 


