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Abstract 

In the environment of large forest, the factors causing fire are nonlinear and uncertain. If the data collected by the sensor 

is simply analyzed and compared, the false alarm rate will be higher. How to combine the data of several sensors for 

effective fire warning is a difficult point. In order to improve the accuracy of prediction, aiming at the shortcomings of 

traditional forest fire prevention early warning system, we propose a forest fire prevention early warning method based 

on fuzzy Bayesian network. Firstly, we combine the fuzzy control system and the Bayesian network in series, and 

pre-process the collected sensor data. The pre-processed data is sent to the previously trained Bayesian network for 

processing. Then the calculated open fire probability, smoldering fire probability, and no fire probability are used as 

input data of fuzzy control system, and fuzzy inference is performed. Finally, we de-fuzzify the results of fuzzy 

reasoning and get the probability of fire. Simulation results show that our method can effectively combine the data 

collected by multiple sensors, quickly and accurately determine fire occurrence probability, improve the accuracy of 

forest fire prevention warning, and reduce the false positive rate. 
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1. Introduction 

Forest fires are characterized by sudden bursts, rapid spread, and high hazard, which is difficult to extinguish. How to 

give the probability of forest fires in a timely and accurate manner and prevent the emergence of fire sources is 

particularly important. Many of the factors that cause forest fires change irregularly over time, making identification of 

forest fires very difficult. Using a single sensor or simply analyzing multiple sensor signals to determine the likelihood 

of a fire can result in a higher false alarm rate and false negative rate for the fire. At present, most of the literature is 

based on the research on the fire size and fire development trend after the fire, and has achieved scientific research 

results, but there are few studies on the algorithm for calculating the probability of fire occurrence. Shijun Sun (Shijun 

Sun, 2017) proposed a forest fire monitoring and early warning model based on grid GIS platform. Chen Zhang (Chen 

Zhang, 2017) studied the fire alarm and positioning scheme based on infrared technology. Yajun Liu (Yajun Liu, 2017) 

introduced a remote sensing fire monitoring model based on meteorological satellites. Dong Wang (Dong Wang, 2017) 

designed a forest fire management system based on big data. Chunxiang Liu (Chunxiang Liu, 2017) established a 

transmission line mountain fire risk assessment model based on BP neural network. Different from above methods, we 

find a new method based on the characteristics of Bayesian network and fuzzy system, which only need to be carried by 

a drone instead of launching satellites or building GIS platforms. 

Bayesian networks and fuzzy control systems have their own basic characteristics and applications. Fuzzy control 

system is based on people's control experience and knowledge of the controlled system (Jianrong Gu, 2000). It is 

especially suitable for complex objects that are difficult to model or cannot be modeled. It is easy to be accepted by 

people, and the algorithm is simple, easy to implement, and extremely strong robustness. Bayesian network based on 

probabilistic reasoning (Finn Verner Jensen, 1996) is a technology developed in recent years to solve the problem of 

uncertainty and incompleteness. It is very expert in solving the faults caused by complex system uncertainty and 

interconnectivity and currently becomes one of the most effective theoretical models in the field of uncertain knowledge 

representation and reasoning. Similarly, Jiangzhou C proposed a fuzzy cognitive Bayesian network modeling method 

based on the possibility principle for fault diagnosis of hydropower units (Jiangzhou Cheng, 2018). Therefore, based on 
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the characteristics of Bayesian network and fuzzy system, we design a forest fire prevention early warning method 

model based on fuzzy Bayesian network. 

We mainly classify the input sensor detection data into the Bayesian network, then send the Bayesian network output 

signal to the fuzzy control system for fuzzy reasoning, and finally output the fire probability and make a judgment of 

forest fire. The biggest feature of this method is that the Bayesian network and the fuzzy control system are independent 

of each other. The Bayesian network first processes the data samples to achieve data collection and aggregation, and can 

suppress noise and then send it to the fuzzy control system, which makes the acquisition of fuzzy rules becomes easier. 

2. Method 

2.1 Forest Fire Prevention Warning Model 

There must be three conditions for forest fires: 1. Combustible materials (including trees, grass irrigation, etc.) are the 

material basis for forest fires; 2. Weather is an important condition for fires; 3. Fire sources are the main cause of forest 

fires. If one of the above three conditions is missing, a forest fire will not occur. Therefore, the temperature, relative 

humidity, smoke concentration and CO concentration of the forest are collected by temperature sensor, humidity sensor, 

smoke sensor and CO concentration sensor respectively, and the fire warning analysis is carried out in combination with 

the number of consecutive sunny days and the number of flammable plants in the local forest. Our forest fire prevention 

warning model is shown in figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Forest fire prevention warning model 

The fuzzy Bayesian network we use is a series structure, which is mainly divided into three parts: 1. The training of 

Bayesian network. The training sample set is given to obtain the optimal network structure. Then, using the network 

topology, training sample set and prior knowledge, the conditional probability density at each node of the Bayesian 

network model is determined, and the Bayesian network training is completed. 2. Use the Bayesian network to predict 

the probability of fire. Firstly, the data collected by temperature sensor, humidity sensor, smoke sensor and gas sensor, 

as well as the number of local continuous sunny days and the number of flammable plants is classified and processed as 

the input vector of the Bayesian network. The data is processed by the Bayesian network and output open fire 

probability, smoldering fire probability and no fire probability. 3. Calculate the probability of the final fire. Firstly, open 

fire probability, smoldering fire probability and no fire probability are sent to the fuzzy system, then the appropriate 

membership function is selected to fuzzify the input probability value, the fuzzy rule is established, then the fuzzy 

reasoning is performed, and finally the defuzzification is performed. 

2.2 Forest Fire Prevention Early Warning Algorithm Based on Fuzzy Bayesian Network 

2.2.1 Data Classification Preprocessing 

We classify the data collected by temperature sensors, smoke sensors, humidity sensors and gas sensors (Hongyuan Ge, 2018), 

as well as the number of sunny days and the number of flammable plants, as a secondary feature node of the Bayesian 

network (Xiaowei Li, 2013). Value of the feature node is divided into four levels: general, high, high, and very high, and the 

values are 0/1/2/3/4 respectively. Then we train the Bayesian network structure, the combustion nodes are graded, and the 

open fire probability is divided into four levels: open fire probability (PB), open fire probability (PM), open fire probability 

(PS), and open fire probability zero (NP) and the values are 0/1/2/3 respectively; the probability of smoldering fire is divided 

into smoldering fire probability (PB), smoldering fire probability (PM), smoldering fire probability (PS), smoldering fire 

probability zero (NP) and the values are 0/1/2/3 respectively; the non-fire probability is divided into three levels: no fire 
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probability (PB), no fire probability (PM), and no fire probability (PS) and the values are 0/1/2 respectively. 

2.2.2 Bayesian Network Training 

Many of the factors that cause forest fires change irregularly with time (Hongyu Gao, 2018). The data collected by the 

sensors have large differences (including approximate continuity, large span discreteness), so they need to be built 

before the Bayesian network is built (Lam Wai, 2002). This process of ranking is complicated. In the process of 

establishing the Bayesian network model, we use the structure learning algorithm and the EM 

(expectation-maximization) algorithm with multiple iterations to establish the forest fireproof Bayesian network. 

Bayesian network structure learning is to find a network structure that matches the training sample set D given a set of 

data samples D. 

Our Bayesian network structure learning algorithm uses the K2 scoring algorithm and uses P(G, D) as the scoring 

function (Qingsong Cai, 2018): 
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Where: 
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For example, if an expert suggests that there is a particular edge or a local structure, then a given network structure 

should be given a higher prior probability. If there is no prior probability for the network structure, or there is no special 

priority network structure, then the prior probability P(G) can be assumed to be uniformly distributed, that is, P(G)=c, 

and c is a constant. Given a network structure G, the conditional probability  ijk  can be estimated by a Bayesian 

estimator: 

( | , ) ( 1) / ( )    ijk ijk ijk ij iE D G N N r  

Where: 

E = Expectation 

The Bayesian score can be interpreted as: If for all network structures G, a network structure G0 has

( 0, ) ( , )P G D P G D , then for the current data set D, G0 is Bayeux. The score is the most consistent with the 

network structure of D. In the algorithm implementation process, the formula (2) is usually simplified, and 

log( ( , ))P G D is used instead of ( , )P G D to obtain the decomposition form of the scoring function as follows. 
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The parameter learning of Bayesian network seeks the probability distribution of each node of the network based on the 

sample data. We use the network topology and training sample set and prior knowledge to determine the conditional 
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probability density at each node of the Bayesian network model, denoted as ( | , )P D G .The Bayesian network 

parameter learning algorithm is actually the process of solving the convergence to the optimal parameters of the local 

nodes s . Firstly, the s configuration is initialized, and then the iterative E and M are used to find the maximum 

posterior probability hypothesis and converge the optimal value. The maximum likelihood estimation of the data is 

carried out to simulate the parameters that best fit the structure. The specific steps are as follows: 

1) E step (Expectation) 
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Where: 

D = Training samples 

S = Optimal parameters, in which  1 2, ,..., ir

i i i iX x x x  
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k

i iX x  and 
i j   are satisfied in the data set D 

iy = The number of data lost in D 
hS = The Bayesian network structure selection hypothesis 

2) M step(Maximum estimate) 

We list the maximum likelihood estimation function as follows: 
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Maximum posterior estimate is 
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Where: 
'

ijkN = Prior statistical sufficient factor 

ijkN = Sample data sufficient statistical factor 

2.2.3 Fuzzy Control System Design 

The three output signals of the Bayesian network are used as the input of the fuzzy control system, and then the fuzzy 

logic processing is performed to improve the output precision and fault tolerance of the forest fire prevention early 

warning system. 

The fuzzy rule form is “If open fire probability is iA  and smoldering fire probability is iB  and no fire probability is

iC , then fire probability of is iP ”. Among them, iA , iB  and iC  respectively indicate the fuzzy quantization level 

of open fire probability, smoldering fire probability, and no fire probability, which is the quantitative level of fire 

probability. 

According to the experience of experts in the field of forest fires, and through a large number of experimental 

experiments, get 48 fuzzy inference rules, such as: if (open fire probability is NP) and (smoldering fire probability is NP) 

and (no fire probability is PS) then (fire probability is PS); if (open fire probability is NP) and (smoldering fire 

probability is NP) and (no fire probability is PM) then (fire probability is NP). 

Taking the above fuzzy control rule "if x is iA  and y is iB  and z is iC , then u is iP ", the corresponding fuzzy 

implication relationship is defined as (Yaqin Zhao, 2015) 
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( )i i i i iR A B C P     

Where: 

x= Open fire probability 

y= Smoldering fire probability 

z= No fire probability 

u= Fire probability 

For all fuzzy implication relations, the fuzzy relationship corresponding to all control rules is 

48 48
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For the fuzzy control rule is " if x is iA  and y is iB  and z is iC , then u is iP ", then fuzzy reasoning can be used to 

find that the fire probability iP  is 

、 、 、(     )
i
P A and B and C R  

The resulting iP  is a fuzzy set that needs to be refined. We use the center of gravity method to accurately process the 

fire probability to obtain the accurate output of fire probability 0u : 
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2.3 An Example of Forest fire Prevention Early Warning Method Based on Fuzzy Bayesian Network 

In this section we build a Bayesian network model for forest fire prevention based on expert knowledge and historical 

data in the field of forest fire prevention. The Full BNT-1.04 platform is used for simulation research, and the output 

results of Bayesian network and fuzzy control are simulated and verified. Verify the effectiveness of the method model 

for forest fire prevention warnings. 

2.3.1 Building a Bayesian Network Model 

In the Bayesian network model, there are three kinds of nodes: (1) first characteristics nodes; (2) secondary 

characteristics nodes; and (3) burning nodes. The first characteristics nodes are connected to the secondary 

characteristics nodes, and the secondary characteristics nodes are connected to the burning nodes. figure. 2 is a model 

diagram of a forest fireproof Bayesian network initially established using the MATLAB aids on the Full BNT-1.04 

platform based on expert knowledge and historical data in the field of forest fire prevention. 

Table 1. Burning node included in the model 

Smoldering fire probability Q1 

No fire probability Q2 

Open fire probability Q3 

Table 2. Feature nodes included in the model 

Feature level node 

Node name 

Feature secondary node 

Node name 

 

Fire weather F(1) 

Number of consecutive sunny days F(1-1) 

Temperature F(1-2) 

Relative humidity F(1-3) 

 

Direct fire source F(2) 

Smoke concentration F(2-1) 

CO gas concentration F(2-2) 

Combustible material F(3) Number of flammable plants F(3-1) 

 



Studies in Engineering and Technology                                                            Vol. 6, No. 1; 2019 

43 

 

 

 

 

 

 

 

 

Figure 2. Forest fire prevention warning model 

2.3.2 Bayesian Network Accuracy Verification Experiment 

According to the forest fireproof Bayesian network obtained above, and using this network as the true value, the 

network uses probability sampling method to generate 6000 sets of sample data, which is divided into 10 experiments, 

each experimental data is 600 sets, and the first 550 sets are used as training data, the last 50 groups were used as test 

data. Table 3. lists the training and test data for one of the experiments. Using the structure learning K2 scoring 

algorithm and the parameter learning EM algorithm given above, 550 sets of training data were used to train the new 

Bayesian network. Then, the characteristic node data of 50 sets of test data is input into the trained Bayesian network, 

and the burning node prediction result of 50 sets of data is obtained, and the state of 3 fault nodes of Q1 and Q3 of the 

original 50 sets of data is compared. Take Q2 as an example. If the predicted number of datas in 50 sets of data is M, 

and the total number of datas is N=50, the correct rate of Q2 is PQ2=M/N, and the correct rate of the three faulty nodes 

Q1 to Q3 are respectively counted. We take Q2 (no fire probability) as an example to study and calculate the correct rate. 

The predicted result statistics of the node Q2 after 10 experiments are shown in Table 4. For other burning nodes, the 

experimental verification results are similar. 

Table 3. The 550 sets of training data and 50 sets of test data for the first experiment 

 Feature node data Burning node data 

 F(1-1) F(1-2) F(1-3) ⋯ F(3-1) Q1 Q2 Q3 

Training data 

1 0 3 0 ⋯ 1 1 0 2 

2 1 0 4 ⋯ 2 0 2 0 

3 1 2 1 ⋯ 0 1 1 3 

⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋯ 

549 1 0 3 ⋯ 4 3 0 1 

550 1 1 2 ⋯ 3 1 0 0 

Test Data 

1 0 3 1 ⋯ 0 0 0 1 

2 1 1 0 ⋯ 0 0 1 3 

3 2 1 4 ⋯ 1 3 1 0 

⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋯ 

49 1 4 1 ⋯ 0 0 1     3 

50 1 1 0 ⋯ 0 1 0 0 

Table 4. Combustion node Q2 prediction result 

frequency 1 2 3 4 5 

Correct rate/% 82.31 84.15 83.81 85.92 88.51 

frequency 6 7 8 9 10 

Correct rate /% 83.34 89.31 87.70 83.41 86.17 

From the data in Table 4, it can be concluded that the average prediction accuracy of 10 experiments is 85.463%. The average 

training time recorded was 98s. The Bayesian network after training has a high correct rate and the program runs fast. 
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2.3.3 Different Data Volume Prediction Experiments 

This experiment was conducted to find the amount of training data suitable for the Bayesian network studied in this 

paper. According to the probability network, 12000 sets of data were generated by the known network, and the 

experiment was divided into 10 experiments. The data of each experiment was 1200 groups. The first 1150 groups were 

used as training data, and the last 50 groups were used as test data. The experimental steps are the same as those in 

Section 4.2. Similarly, one of the three burning nodes Q2 (no fire probability) is selected, and the prediction results of 

the node Q2 after repeating 10 experiments are shown in Table 5. The average training time recorded was 190s. For 

other faulty nodes, the experimental verification results are similar. 

Table 5. Forecast accuracy table for 1200 sets of data 

frequency 1 2 3 4 5 

Correct rate/% 85.42 84.23 87.65 83.25 90.33 

frequency 6 7 8 9 10 

Correct rate /% 83.69 82.24 86.13 81.33 83.32 

Then, the known network generates 18000 sets of data according to probability sampling, and the above experiment is 

repeated. The prediction result of the node Q2 is shown in Table 6. The average training time recorded was 451s. 

Table 6. Forecast accuracy table for 1800 sets of data 

frequency 1 2 3 4 5 

Correct rate/% 86.66 86.18 86.33 83.34 85.86 

frequency 6 7 8 9 10 

Correct rate /% 86.42 87.11 88.35 85.19 84.94 

Draw a line chart according to Table 4 - Table 6 to observe the effect of different numbers of training samples on the 

correct rate of Bayesian network output. 

 

 

 

 

 

 

 

Figure 3. Correct rate of forest fireproof Bayesian network under different data volume training 

 

 

 

 

 

 

 

Figure 4. Forest fire prevention Bayesian network training time under different data volumes 

As can be seen from figure 3 and figure 4, since the algorithm used in the network learning includes iterative processes, 

as the amount of data increases, although the accuracy of the Bayesian network increases slightly, the training time 

increases substantially. It can be seen that the amount of data required for training the Bayesian network is moderate, 

not as much as possible. 

2.3.4 Fire Warning Performance Verification 

The fuzzy controller outputs the fire probability, which is based on the fuzzy proposed in this paper. The final output of 

the Bayesian network, as shown in figure 5 and figure 6, shows the relationship between open fire probability and 

smoldering fire probability, open fire probability and no fire probability, smoldering fire probability and no fire 
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probability and fire probability. The simulation results show that the trend of change is relatively smooth, and fire 

probability increases with the increase of open fire probability and smoldering fire probability, and decreases with the 

increase of no fire probability. Therefore, the designed fuzzy controller is ideal and meets the requirements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Relationship among open fire probability, no fire probability and fire probability 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Relationship among smoldering fire probability, no fire probability and fire probability 
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3. Results 

We constructed a fuzzy Bayesian network structure in which Bayesian networks and fuzzy systems are connected in 

series for forest fire prevention warning. We identified the Bayesian network model for forest fire prevention and 

designed the fuzzy controller. We use MATLAB to verify the simulation results. The results show that the Bayesian 

network of the algorithm can accurately give open fire probability, smoldering fire probability and no fire probability. 

The fuzzy controller can accurately give fire probability. Therefore, the forest fire prevention early warning method 

based on fuzzy Bayesian network is very effective in forest fire prevention early warning and has broad application 

prospects. 
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