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Abstract 

Small signal stability of electrical machines at frequency domain has been shown by toque coefficients and eigenvalue 

of motional impedance matrix in state space form. The relation of damping, synchronizing and total synchronizing 

torque coefficients with the eigenvalue or the roots of the characteristic equation of the perturbed machine shows that 

the instability occurs at 2 different modes. Static mode represented by real root at over load condition, and dynamic 

mode represented by complex root at the condition when the total synchronizing coefficient exhibits zero value within 

the negative range of the damping torque coefficient. However, small signal instability details at time domain are not 

given in the literatures. This paper discusses with figures the time domain signals of the induction motor perturbation 

variables under hunting condition, and presents the differences observed between inverse Laplace transform and Fourier 

transform in time domain response, based on the transform of the transfer function from the frequency domain, The 

figures demonstrate and confirm the machine small signal stability performance given in frequency domain. 
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1. Introduction 

Damping TD, synchronizing TS and total synchronizing TSt torque coefficients are important for small signal stability 

of electrical machines because of their indirect relation and direct link to the roots of the characteristic equation of state 

space form of the perturbed machines [Barsoum N. N 1991]. The theorems given in [Barsoum, N. N. & Harris, M. R 

2001] proved that instability may occur in 2 different modes. Static mode represented by real root at over load condition 

at low speed or low frequency, and dynamic mode represented by complex root at the condition when the total 

synchronizing coefficient exhibits zero value within the negative range of the damping torque coefficient. This 

instability mode can occur at both low and high frequency  [Barsoum N. N 1998] depends on machine parameters, 

particularly stator resistance, and working condition of both constant flux and weakening magnetic field. 

This remark about the magnitude of the transfer function in [Barsoum, N. N. & Harris, M. R 2001, Barsoum, N. N. 2001] 

and its characteristics with the perturbation frequency  in frequency domain, gives a relation to stability characteristics 

in terms of torque coefficients, damping TD and total synchronizing TSt, in time domain. It shows the time response of 

the perturbation velocity p (the derivative of the perturbation displacement) and the relation to stability and 

instability of both real and complex roots [Barsoum, N. N. & Harris, M. R 2001]. Since the impedance matrix of 

electrical machines can be represented in three different reference frames, stator, rotor and synchronous reference 

frames as well as the true reference frame [Barsoum, N. N 1991], the induction motor under hunting condition is 

represented in synchronous flux wave reference frame in this paper, and the response of p is observed in this 

particular frame. Two types of transformations are used in this paper, Laplace and Fourier. 

These will show the similarity in the response of p of the motor in case of stable machine, and the unsimilarity for 

the unstable machine [Barsoum, N. N. & Harris, M. R 2001, Barsoum, N. N 1998]; where Laplace is available to apply 

on a single operating condition, given by the eigenvalue, while Fourier is for evaluating the response of the transfer 

function in frequency domain, by considering all the values of  from 0 to , for the same operating condition [Gibbs, 

W. J 1962]. This matter is discussed in the following section. 

2. Laplace and Fourier Transforms for Torque Coefficients 

In this section both transformations are applied to obtain the response of p for the induction motor, defined by h(t) in 

time domain, for a given unit impulse of torque Tm. The transfer function in frequency domain is therefore: 
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 , which transformed into h(t) = p(t), at Tm = 1 unit step, in time domain. 

In Laplace transform, the solution of h(t) is given by equation (4) in the appendix, which contains all the eigenvalues for 

particular operating condition. This is solved in the appendix by means of partial fraction operation (equation (3)) at 

Tm = 1. This depends on the numerical solution of the eigenvalue, which are obtained from the characteristic equation, 

found in the denominator of equation (2) in the appendix. 

It can be seen that the solution of h(t) is directly related to the condition for stability. It is of damped oscillation for 

stable machine, increasing with oscillation if the machine has an unstable complex eigenvalue, and increasing 

exponentially if it has an unstable real eigenvalue [Chen, W. H. 1963]; while the retain eigenvalue remain stable. These 

are shown in all of Figs(a), but the behavior is different in case of applying Fourier transform shown in all Figs (b). 

Fourier transform has been defined by [Heading, J 1969, Chen, W. H. 1963] as: 
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In (1),  needs to be sufficiently high  
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
, where t is the smallest time step of interest, as it discussed in [Heading, J 

1969, Chen, W. H. 1963], so that the integration of H(j) needs a sufficiently high t-value, for converging h(t)0. The 

way of doing this is to get the Gibbs oscillation problem [Gibbs, W. J 1962] well away from the main swing frequency, 

as it appears in Fig(8a). 

The transformation equation (1) has been established in [Chen, W. H. 1963] for all 0     and used in this result to 

apply on: 
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For induction motor, it can be appreciated from the characteristics of the magnitude of transfer function TF = |H(j)| in 

[Barsoum, N. N. & Harris, M. R 2001, Barsoum, N. N. 2001, Barsoum, N. N.1991], that if the machine is stable, then 

Fourier h(t) is similar to Laplace h(t) when the dominant eigenvalue is lightly damped. (It should be noticed that 

Laplace transform is obtained by the eigenvalue, i.e. for a single value of , which is the frequency of oscillation  of 

the dominant root; while Fourier is concerned with all -values between 0 and .)  If the machine works on the 

stability boundary, where the real part of the dominant root  = 0, then TF =  at  =  of the same root of having  = 0. 

Thus, Laplace h(t) will oscillate freely at the stability boundary of the complex root, but it is constant at the boundary of 

the real root (where  = 0). While Fourier h(t) does not exist in both cases, since |H(j)| =  at  =  (if complex) or at  

= 0 (if real). Similarly, for a machine with heavily damped pair of eigenvalue, that |H(j)|0 as  and therefore it 

contributes very little to H and consequently Fourier h(t)0. Note that, |H(j)|0 usually occurs for induction motor 

when  , so that h(t) of (1) 0, but starts to oscillate at high t-values, only in case of having very high -value, 

and courses Gibbs problem. These purposes are all illustrated in Figs(1 to 8). 

If the machine is unstable, whether dynamically (in complex root) or statically (in real root) [Barsoum, N. N. & Harris, 

M. R 2001] or both together, then according to the existence theorems Fourier h(t) excludes all the unstable eigenvalue 

and measures TD and TSt as the coefficients of the sum of the remaining stable roots. Obviously, it is true for Fourier 

transform in the high-order systems, which shows the response for the stable roots only, without measuring what is 

included on the right hand side of complex plane within the coefficients of the transfer function, as the existence 
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theorems state. Therefore, Fourier h(t) concerns only with the stable roots, but if one root is on the boundary then H(j) 

does not exist. Figs(b) show the differences of this method corresponding to Figs(a). 

However, this seems unlikely to happen in the second-order system with a pair of unstable roots. The remaining stable 

roots are none, and so TSt and TD should be in such a way to give H(j) = 0 for all . This seems to require |TSt + 

jTD| =  for all values of , which seems impossible. 

In Figs(b, 8b, 8c),  is chosen to be 4 per unit (pu), and the step of  is 0.001 pu. So the integration (1) is of time step 

equals 0.25 sec. and includes 4000 value for each TSt and TD. However, in Fig(8a),  = 10 pu, which is  the reason of 

finding Gibbs oscillation at high t as shown while it is not found in the other figures (8a, 8b) at the same t = 1000 sec. 

Figs(b) show the discrete Fourier transform (DFT, in which the integration (1) is effectively a summation of H(j) with 

an infinitesimal steps in a long range of  [Heading, J 1969, Chen, W. H. 1963]) of h(t) and explain how the 

characteristics of the coefficients TD and TSt diagnose the stability characteristics in very different way than the 

characteristics of Figs(a), which are investigated by Laplace transform. This difference appears in h(t) response, when it 

carries the effects of the harmonics (in amplitude and frequency) in some steps of  if it is obtained by Fourier equation 

(1), while these harmonics are not involved if it is obtained by Laplace equation (4), appendix. 

Harmonic effect appears as some ripples occur with the fundamental wave, and can be seen from the cases of heavily 

damped and real root on the boundary Figs(3b, 4b). In all cases, the magnitudes and frequencies are not the same, 

comparing Laplace (fundamental) with Fourier (fundamental plus harmonics), but Fourier also shows the cases of 

stability, instability and boundary of each eigenvalue in different ways of Laplace. These are shown in all Figs(a, b) and 

illustrate that Fourier h(t) can define all these conditions, but does not recognize the instability in h(t) according to an 

unstable root.  This in fact indicates that Fourier is only concerning with the remaining stable roots in measuring TSt 

and TD coefficients from  = 0 to , as shown in Figs(5b ,6b). 

Although Fourier h(t) shows the case of stability boundary in Figs(3b, 4b), which are similar to Figs(3a, 4a) of Laplace 

(but are not realy identical), Fourier function in frequency domain  H(j) at   =  of the root on the boundary is 

infinity, and Fourier h(t) of that root does not exist. But in principle the effect of the root on the boundary dominates the 

solution of h(t), since the other roots are stable and attractive. Thus, the solution is of constant amplitude of the peak 

values, as shown in the figures. 

Figs. 1 show the lightly damping operation of induction motor. The parameters in per unit are: 

Rs = 0.03, Rr = 0.015, Lls = 0.1, Llr = 0.1, M = 4, S = 0.0, J = 745.0, v =  = 0.13 

 
Figure 1a. Laplace transform at unit impuls torque 

 

Figure 1b. Fourier transform at unit impulse torque 
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Figs. 2 show the heavily damping operation of induction motor. The parameters in per unit are: 

Rs = Rr = 0.01, Lls = Llr = 0.08, M = 3, v = 0.09, S = 0.0625, J = 36,  = 0.3 

 
Figure 2a. Laplace transform at unit impulse torque 

 

Figure 2b. Fourier transform at unit impulse torque 

Figs. 3 show the complex root on stability boundary of induction motor. The Parameters in per unit are: 

Rs = Rr = 0.01, Lls = Llr = 0.08, M = 3, J = 36, S = 0.0625, v =  = 0.3 

 

Figure 3a. Laplace transform at unit impuls torque 

 

Figure 3b. Fourier transform at unit impulse torque 
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Figs. 4 show the real root on stability boundary of induction motor The parameters in per unit are: 

Rs = 0.025, Rr = 0.015, Lls = Llr = 0.1, M = 3.5, S = 0.075, J = 62.8, v =  = 1.0  

 
Figure 4a. Laplace transform at unit impulse torque 

 
Figure 4b. Fourier transform at unit impulse torque 

Figs. 5 show the unstable complex root of induction motor, The parameters in per unit are: 

Rs = 0.03, Rr = 0.02, Lls = Llr = 0.1, M = 5, S = 0.005, J = 314,  = 0.1, v = 0.08 

 

Figure 5a. Laplace transform at unit impuls torque 

 

Figure 5b. Fourier transform at unit impulse torque 



Studies in Engineering and Technology                                                            Vol. 1, No. 2; 2014 

6 

Figs. 6 show the unstable real root of induction motor. The parameters in per unit are: 

Rs = 0.025, Rr = 0.015, Lls = Llr = 0.1, M = 3.5, S = 0.075, J = 62.8,  = 1.3, v = 5.6 

 

 

Figure 6a. Laplace transform at unit impulse torque 

 

Figure 6b. Fourier transform at unit impulse torque 

 

Figs. 7 show the unstable real and complex roots together of induction motor. The parameters in per unit are: 

Rs = 0.035, Rr = 0.015, Lls = Llr = 0.1, M = 3.5, S = 0.085, J = 62.8,  = 1.0, v = 5.6 

  

 

Figure 7a. Laplace transform at unit impulse torque 
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Figure 7b. Fourier transform at unit impulse torque 

 
Figure 8a. Fourier transform with  = 10 per unit  for stable machine 

 

Figure 8b. Fourier transform with  = 4 per unit for the same case of Fig(8a) 

 

Figure 8c. Fourier transform with  = 4 for unstable machine, in complex root 
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3. Conclusion 

The paper presents some figures on time domain response of the output speed p for an input impulse shaft torque of 

the induction motor perturbation variables under hunting condition. It shows the similarity of the response between two 

methods of transformations, Laplace and  Fourier in case of small signal stable mode, and the difference on response 

in two cases, one in finding an unstable root, and one in finding a root on the boundary. This indicates that the response 

of an unstable machine cannot be truly observed by using Fourier transform. It is, therefore, important to put the 

machine under test for stability, during the practical work of design, using the method of parameter estimation with 

Fourier transform. This must be applied when the machine variables are expressed in synchronous flux wave reference 

frame (not the stator reference frame), since the perturbed variables have a time-invariant coefficients. 
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Appendix 

The solution of the output perturbation velocity p in the dynamic machine equation [Barsoum, N. N 1998, Barsoum, 

N. N 1991] for the induction motor is h(t), given by Laplace transform where h(t) is the response of  p in 

time-domain to a unit impulse of the torque input Tm. 

By applying Laplace transform to the dynamic machine equation [Barsoum, N. N 1991] with  Tm() = 1 and all the 

initial values of the perturbation currents and speed are zero which can be deduced from the motional impedance matrix 

at t = 0 where, p = 0 and  = 0. Therefore, the Laplace transform of p is denoted by p(), where: 

0
C)

1
C

1
(B2)

2
C

2
(B3)

3
C

3
(B4

4
B5

5
B

1
B

2
B2

3
B3

4
B4

5
B

  )(p





 

where  is the Laplace symbol, and the coefficients B1 to B5 and C0 to C3 are defined in [Barsoum, N. N 1998, Barsoum, 

N. N 1991] in terms of machine parameters. 

In particular operating condition, the expression of p () can be written as follows: 
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where, (1  j1), (2  j2) and 3 are the eigenvalue of the induction motor model [Barsoum, N. N 1998] at that 

operating point. 

Equation (2) can be splitted into 5-terms by the method of the partial fraction as follows: 
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where:  

K1 = X1 + jY1        K2 = X2 + jY2 

   K1
* = X1 - jY1       K2

*= X2 - jY2  



Studies in Engineering and Technology                                                            Vol. 1, No. 2; 2014 

9 

(* denotes the conjugate), and equation (3) can, therefore, be written as: 
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Thus, the solution of p in time-domain is the Laplace inverse of p() of equation (3), which is equal to h(t), where: 
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