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Abstract 

Data Envelopment Analysis (DEA) is a mathematical programming method for measuring the relative efficiency of 

Decision Making Units (DMUs) by evaluating their outputs and inputs. In the history of DEA, the cross-efficiency of 

jth DMU is widely used as an efficiency measure of a given DMUo among researchers. The approach always utilizes 

weights related to inputs and outputs in the assessment. Unfortunately, the weights are not always uniquely determined 

in the cross-efficiency measurement because DEA always suffers from an occurrence of multiple solutions, so 

indicating an occurrence of multiple weights. To overcome such a difficulty, this paper proposes a new approach for 

determining a common weight vector of DEA based on bargaining game. 

Keywords: Bargaining Game, Kalai-Smorodinsky Bargaining Solution, Data Envelopment Analysis, Common Weight 

Vector 

1. Introduction 

A large number of studies on Data Envelopment Analysis (DEA) have developed after DEA was first proposed by 

Charnes, Cooper and Rhodes (1978), as confirmed by Glover and Sueyoshi (2009). DEA is a mathematical 

programming approach to assess relative efficiencies within a group of Decision Making Units (DMUs). An important 

result of such an analysis is a set of virtual multipliers, or weights, accorded to production factors (i.e., inputs or 

outputs). The set of weights are often different for each of the participating DMUs. 

Sexton, Silkman and Hogan (1986) have defined the cross-efficiency of jth DMU (DMUj) as a measure of DMUo that is 

the ratio of weighted outputs to weighted inputs obtained when we use both input and output levels of DMU j. There 

were several research efforts (e.g. Kao & Hung, 2005, Sugiyama & Yamada, 2001) that applied the cross-efficiency. 

Moreover, there were other articles (e.g. Kao & Hung, 2005, Boussofiane & Dyson, 1991, Cook, Kress & Seiford, 1992, 

and Roll, Cook & Golany, 1991) that discussed about a use of common weights. However, it is widely known that the 

weights are not always uniquely determined. Therefore, the cross-efficiency method is not uniquely determined in DEA.   

The DEA measurement process regarding efficiency of each DMU can be considered as playing a bargaining game 

(Peters, 1992, and Thomson, 1994). In some cases, the measurement of relative efficiency by using a scheme of the 

bargaining game is useful for group decision making. Thus, this study proposes a new approach for determining a 

common weight vector based on the bargaining game. Furthermore, this research uses an example on Japanese electric 

power industries in order to document the practicality of the proposed approach. 

The remainder of this paper is organized as follows: Section 2 introduces a basic DEA model for making the proposed 

analysis that incorporates cross-efficiency and its related total efficiency measures. Section 3 defines a feasible set from 

the bargaining game for DEA. The section also proposes the calculation on Kalai-Smorodinsky bargaining solution by a 

feasible set. Section 4 applies the proposed approach to measure the productivity analysis of Japanese electric power 

industry. Section 5 summarizes conclusions and future extensions. 

2. DEA Model and the Cross-efficiency 

There are various descriptions about DEA. To uniform symbols and expressions, this study follows a description of 

Cooper, Seiford and Tone (2006). 
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2.1 DEA Model 

DEA presupposes total “n” DMUs as research objects of its analysis. It is also assumed that each DMUj (j=1,2,…,n) has 

common inputs and outputs which contain m inputs xij>0 (i=1,2,…,m) and s outputs yrj>0 (r=1,2,…,s). Input-oriented 

radial model under constant Returns to Scale (RTS), which is a basic DEA model on DMUo (o=1,2,…,n) to be 

examined, has the following mathematical formulation:  
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The dual form of Model (1) are expressed by 
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The DMUo has an efficiency measure o that is obtained by a relative comparison with total n of DMUs’ production 

activities. The optimal value 
*
o  obtained from Model (1) is often called “technical efficiency” in production 

economics. The status of DEA-efficiency needs both 1* o  and all slack variables are zero, i.e., 0* 
ros  for all 

 ,...,s,r 21  and 0* 
ios  for all  mi ,...,2,1 . If 1* o  and at least one or more slack variables are 0* 

ros  for some 

 sr ,...,2,1  and 0* 
ios  for some  mi ,...,2,1 or 1* o , DMUo is defined as inefficient. Hence, Model (1) can be 

usually solved by two steps of optimization without providing a specific value to ε, which is a non-Archimedean 

infinitesimal (Cooper et al., 2006). This study extends the discussion by using this radial model under constant RTS. 

The radial model is expressed as:  
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Here, let 
*
rou  be an optimal value of rou , and, let *

iov  be an optimal value of iov  in the Model (2). This study refers 

to  these *
rou  and *

iov as DEA-solutions.  

2.2 The Cross-efficiency and the Accommodated Total Efficiency 

The cross-efficiency was first proposed by Sexton et al. (1986). They have defined the cross-efficiency of DMUj as 

measured by DMUo as the ratio of weighted outputs to weighted inputs obtained when we use the input and output 

levels of DMUj along with these weights derived for DMUo, as discussed previously. Mathematically, the 
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cross-efficiency is the ratio of the sums on the left side of constraint j in Model (3) for DMUo: 
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The cross-efficiencies are simply the ratios in the constraints of Model (3). The cross-efficiencies are easily summarized 

by an nn  matrix, whose (o,j) component is ojE . Sexton et al. (1986) called it as cross-efficiency matrix. The 

conventional efficiency measures exist on the diagonal of the cross-efficiency matrix. 

By examining the row o of the cross-efficiency matrix, this study can identify how DMUo rates each of the other DMUs, 

that is, how efficient each of the other DMUs is when an optimal weights generated by DMUo are used for its 

measurement. The mean efficiency in the row o (including the diagonal) is called EROW(o)   


n
j ojn

E
1

1 . The measure 

indicates the average efficiency of all DMUs according to DMUo. In a similar manner, this study can examine the 

column j of the cross-efficiency matrix to identify how DMUj is rated by each of the other DMUs when it is evaluated 

by means of the optimal weights that they are generated. The mean efficiency in the column j (including the diagonal) is 

referred to as ECOL(j)   


n
o ojn

E
1

1 . The measure indicates the average efficiency of DMUj according to all other 

DMUs. They can compute the average of all the cross-efficiency values, or EBAR. However, there may be no common 

weights of the cross-efficiency because DEA always suffers from an occurrence of multiple solutions. 

The accommodated total efficiency was proposed by Sugiyama and Yamada (2001). They showed that the 

accommodated total efficiency is a general form for the cross-efficiency. The accommodated total efficiencies of DMUs 

are calculated from the following three steps. (a) In the first step, they evaluate the relative efficiencies of DMUs as 

group members. (b) In the second step, the mutual evaluation information of DMUs can be defined and calculated by 

using their weights. They indicate the mutual evaluation information by a form of matrix which they called it as 

“Accommodation Efficiency Matrix.” It is widely known that the weights are not always uniquely determined. The 

mutual evaluation information is not uniquely determined. Here, they have proposed a method for determining the 

weights uniquely by minimizing square of the weights differences. (c) In the third step, they calculate the 

accommodated total efficiency which is the group efficiencies of DMUs by using the maximum eigenvalue of 

“Accommodation Efficiency Matrix.” 

3. A Common Weight Vector by the Bargaining Game Approach 

This section defines some feasible sets of bargaining game on DEA and proposes the Kalai-Smorodinsky bargaining 

solution by using those feasible sets. There are various descriptions about the bargaining game, and many articles. See, 

for example, Peters (1992) and Thomson (1994). The study of DEA with the Game theory can be found in Banker, 

Charnes, Cooper and Clarke (1989), Semple (1996), Hao, Wei and Yan (2000), Nakabayashi and Tone (2006), and etc. 

On the other hand, Du, Liang, Chen, Cook and Zhu (2011) described DEA on the bargaining game. A Nash bargaining 

game has also been proposed for measuring the performance of a two-stage network DEA system. 

3.1 The Bargaining Game 

By  nN ,...,2,1 , this study denotes the set of players. The bargaining game (Peters, 1992, and Thomson, 1994) is 

defined by a pair of  d,S . The players in N try to reach a unanimous agreement on some outcome Sη , yielding 

utility k  for player k. If they fail, the disagreement outcome or disagreement point d occurs in the game. The set S is 

referred to as a feasible set of the bargaining game. The set S needs to be convex, bounded and closed. There is at least 

one point of S strictly dominating d.  

This study chooses one of the bargaining solutions by applying an axiomatic approach. In the axiomatic approach, the 

typical solution on the bargaining game is the Nash bargaining solution (Thomson, 1994). The Nash bargaining solution 

is a single solution on the feasible set S satisfying Pareto-optimality, symmetry, scale invariance and independence of 

irrelevant alternatives (IIA). Here, a solution of the proposed bargaining game on DEA satisfies Pareto-optimality, 

symmetry and scale invariance. However, the solution of the bargaining game on DEA may not satisfy independence of 

irrelevant alternatives (IIA). Therefore, the Nash bargaining solution is not appropriate. The rationale is because a 

DEA-efficiency score is a relative evaluation score.  

Meanwhile, a DEA solution of the proposed bargaining game fully satisfies individual monotonicity. The 

Kalai-Smorodinsky bargaining solution (Thomson, 1994) is the only solution on a feasible set S satisfying 

Pareto-optimality, symmetry, scale invariance and individual monotonicity. Consequently, this study selects the 

Kalai-Smorodinsky bargaining solution.  

These axioms are described in research efforts (i.e., Peters, 1992, and Thomson, 1994). The definition of the 

Kalai-Smorodinsky bargaining solution (Thomson, 1994) is specified as follows.  
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[The Kalai-Smorodinsky bargaining solution]  SK :  

 SK
 

is the maximal point of S on a segment connecting the origin to  Sa , the ideal point of S, defined by 

   SSa kk  ηmax  for all k.  

[In another definition,  d,SK  is the maximal point of S on a segment connecting d to  d,Sa  where 

   dηηd  ,max, SSa kk   for all k.] 

3.2 The Feasible Set S of the Bargaining Game on DEA 

Let the players be DMUs. Consequently, the number of the players is n. In addition, game situations assume the 

bargaining game. Then, this study generalizes a feasible set of bargaining game on DEA. The feasible set in a correlated 

pure strategy is expressed as follows: 
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The feasible set in correlated pure strategy PS  is the feasible set of a common weight vector of DEA. Moreover, the 

comprehensive hull of PS  is expressed as follows: 
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Here, it is expected that the feasible set in correlated pure strategy PS  is a convex set. However, it is difficult to prove 

whether PS  is a convex set because PS  includes the fractional equations. Let the input and output data for DMUj be 

 T21 ,...,, mjjjj xxxx and  T21 ,...,, mjjjj yyyy , respectively. The symbol “T” denotes vector transpose. In addition, let 

the weight vector be  suuu ,...,, 21u and  mvvv ,...,, 21v . Therefore, this study sets Model (6) by relaxing the equality 

constraints jjj vxuy  into inequality ones. This relaxation of  Pcom S  is naturally accepted in the bargaining 

game. Then, this study calculates the Kalai-Smorodinsky bargaining solution by these feasible sets in the proceeding 

section. By comparing results obtained by the Kalai-Smorodinsky bargaining solution that obtains from the two feasible 

sets, it is possible to confirm that these feasible solutions are convex sets near the Kalai-Smorodinsky bargaining 

solution.  

3.3 The Computational Mode for Bargaining Solution 

Let the ideal point of S  be each DMU's efficiency score 
*
j . The proposed bargaining game can establish various 

kinds of points as the disagreement point d. Therefore, this study sets the disagreement point d as the origin. However, 

this study cannot accept the bargaining solution from the origin. Because the DEA-solutions become 0u * or 0v * . 

The weight of the DEA problem (3) is a non-zero vector. Since PS η0  and 0u   are equivalent, a 

Kalai-Smorodinsky bargaining solution η  such as a common weight vector of DEA is a non-zero vector. In addition, 

since 0y j  for all Nj , 0u   and 0u  , and 0η   are equivalent. Therefore, this study refers to as a 

Kalai-Smorodinsky bargaining solution 0η   as a positive Kalai-Smorodinsky bargaining solution. A 

Kalai-Smorodinsky bargaining solution corresponds to a desirable common DEA weights is a positive 

Kalai-Smorodinsky bargaining solution. 



Studies in Engineering and Technology                                                            Vol. 1, No. 1; 2014 

17 

Since    **
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The maximization of Model (7) is an unbounded problem. Thus, the maximization problem form, modified by adding 

the equation 1jvx , becomes: 
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If  Pcom S  is a feasible set of the bargaining game, then finding a Kalai-Smorodinsky bargaining solution   Pcom SK  

of   0,com PS  is the same of solving the positive optimal value *
j  of 
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The maximization of Model (9) is an unbounded problem, as well. Thus, the maximization problem by adding the 

equation 1jvx  becomes as follows: 
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That is,      P*P comcom SaSK η . Here, this study can set the ideal point of S be an each DMU's efficiency score. 

Furthermore, it is possible to set the disagreement point d as the origin.  

4. Numerical Example 

This section documents the productivity analysis of Japanese electric power industry by applying the proposed approach. 

This example was given in Sugiyama and Yamada (2001). 

4.1 Data 

The subjects of analysis are nine electric power companies in Japan. This study utilizes the management indexes, given 

below, as input/output data of each company in the fiscal year 1991. The data source is “Hand Book of Electric Power 

Industry '91” (Statistics Committee of Electric Utilities Association (Ed.), 1992), in the form of Table 1. 

[Input/Output Items] 

Inputs:  x1j “Number of Employees”, x2j “Maximum Generation Capacity” and x3j “Total Assets”. 

Outputs : y1j “Electricity Sales” and y2j “Number of Customers”. 

Table 1. Observed Inputs and Outputs 

 

Number of 

Employees 

Maximum 

Gen. Cap. 

Total 

Assets 

Electricity 

Sales 

Number of 

Customers 

x1j x2j x3j y1j y2j 

Hokkaido 6,457 5,315 1,320,938 21,389 3,256 

Tohoku 13,557 10,150 2,657,112 55,227 6,445 

Tokyo 40,063 46,905 11,627,131 227,631 23,221 

Chubu 20,285 22,799 4,896,313 103,140 8,711 

Hokuriku 5,338 4,453 1,252,893 21,711 1,712 

Kansai 25,166 33,158 5,931,094 122,749 11,331 

Chugoku 10,898 9,433 2,148,717 44,498 4,578 

Shikoku 6,603 5,423 1,214,685 20,548 2,490 

Kyushu 13,669 14,063 3,305,687 57,272 7,007 

Scale  100  103(kW)  106(YEN)  106(kWh)   103 

Table 2. Modified Input/Output Data by Average 

 

Number of 

Employees 

Maximum 

Gen. Cap. 

Total 

Assets 

Electricity 

Sales 

Number of 

Customers 

x1j x2j x3j y1j y2j 

Hokkaido 0.4091 0.3153 0.3461 0.2855 0.4262 

Tohoku 0.8590 0.6022 0.6961 0.7373 0.8437 

Tokyo 2.5386 2.7828 3.0460 3.0388 3.0398 

Chubu 1.2853 1.3526 1.2827 1.3769 1.1403 

Hokuriku 0.3382 0.2642 0.3282 0.2898 0.2241 

Kansai 1.5946 1.9672 1.5538 1.6387 1.4833 

Chugoku 0.6905 0.5596 0.5629 0.5940 0.5993 

Shikoku 0.4184 0.3217 0.3182 0.2743 0.3260 

Kyushu 0.8661 0.8343 0.8660 0.7646 0.9173 
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4.2 Analysis and Evaluation 

First, DEA is appiled on the nine electric power companies as DMUs. Table 3 summarizes the computational results 

obtained from the proposed analysis, i.e., DEA-efficiency scores *  and its reference set, for each DMU. As a result, 

Hokkaido, Tohoku, Tokyo and Chubu are determined DEA-efficient. In contrast, Hokuriku, Kansai, Chugoku, Shikoku 

and Kyushu are determined DEA-inefficient.  

 

Table 3. DEA-efficiency of Electric Power Companies 

 
DEA-efficiency reference set 

*
o   

Hokkaido 1.0000 --- 

Tohoku 1.0000 --- 

Tokyo 1.0000 --- 

Chubu 1.0000 --- 

Hokuriku 0.9245 Tohoku, Tokyo 

Kansai 0.9928 Tohoku, Tokyo, Chubu 

Chugoku 0.9906 Tohoku, Chubu 

Shikoku 0.8430 Hokkaido, Tohoku 

Kyushu 0.9560 Hokkaido, Tohoku, Tokyo 

 

Second, the study calculates the efficiency of each electric power company from a DEA common weight vector based 

on the Kalai-Smorodinsky bargaining solution. As discussed in Section 3.3, let the ideal point of S be an each DMU's 

efficiency score. The proposed bargaining game can establish various kinds of points as the disagreement point d. This 

study sets the disagreement point d as the origin. To calculate the Kalai-Smorodinsky bargaining solution, this study 

uses the maximization problems (8) and (10), modeled by each feasible set:  Sa  and d. Tables 4 and 5 indicate the 

results on efficiencies for each DMU and a common weight vector obtained from the Kalai-Smorodinsky bargaining 

solution. 

 

Table 4. The Kalai-Smorodinsky Bargaining Solution of Electric Power Companies 

 
The Kalai-Smorodinsky Bargaining Solution DEA-efficiency 

the feasible set PS  the feasible set  Pcom S  *
o  

Hokkaido 0.8411 0.8411 1.0000 

Tohoku 1.0000 1.0000 1.0000 

Tokyo 1.0000 1.0000 1.0000 

Chubu 1.0000 1.0000 1.0000 

Hokuriku 0.8082 0.8082 0.9245 

Kansai 0.9928 0.9928 0.9928 

Chugoku 0.9716 0.9716 0.9906 

Shikoku 0.8071 0.8071 0.8430 

Kyushu 0.8863 0.8863 0.9560 

Table 5. A Common Weight Vector 

 1v  2v  1u  2u  3u  

the feasible set 
PS  0.6779 0.0000 2.3778 2.3584 0.5912 

the feasible set  Pcom S  0.6779 0.0000 2.3778 2.3584 0.5912 

 

In Tables 4 and 5, the results based on the feasible set PS  and the feasible set  Pcom S  are same in each company. 

Consequently, this study assumes that the Kalai-Smorodinsky bargaining solution, the feasible set PS  and  Pcom S are 

a convex set. Therefore, this study determines that Tohoku, Tokyo and Chubu are efficient. Hokkaido, Hokuriku, Kansai, 

Chugoku, Shikoku and Kyushu are inefficient. Thus, this study is able to identify that Tohoku, Tokyo and Chubu attain 

a desirable performance level. On the other hand, Hokkaido, Hokuriku, Kansai, Chugoku, Shikoku and Kyushu do not 

attain the desirable performance level. In this study, the calculated common weight 2v  score is 0000.02 v . In other 

words, the input item jx2  “Maximum Generation Capacity” may not be necessary for measuring the relative 

efficiencies of DMUs. The details of this analysis will become very important information at selecting the input/output 

items on DEA.  
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Table 6. Efficiency of Nine Electric Power Companies 

 
The Kalai-Smorodinsky 

Bargaining Solution 

The Accommodated 

Total Efficiency 

The Cross-Efficiency 

(by the weights 

determined uniquely) 

Hokkaido 0.8411 0.9155 0.8884 

Tohoku 1.0000 1.0000 0.9757 

Tokyo 1.0000 0.9658 0.9419 

Chubu 1.0000 0.8643 0.8476 

Hokuriku 0.8082 0.7244 0.7120 

Kansai 0.9928 0.8500 0.8321 

Chugoku 0.9716 0.9018 0.8824 

Shikoku 0.8071 0.7879 0.7689 

Kyushu 0.8863 0.8893 0.8655 

Third, Table 6 indicates the results obtained from the Kalai-Smorodinsky bargaining solution and conventional 

approaches. The accommodated total efficiencies of each DMU were given in Sugiyama and Yamada (2001), as well. 

Furthermore, the cross-efficiencies (ECOL(j)) of each DMU were calculated by using the weights determined uniquely 

in Sugiyama and Yamada (2001). The Kalai-Smorodinsky bargaining solution satisfies Pareto-optimality, symmetry, 

scale invariance and individual monotonicity, thus the result obtained from the Kalai-Smorodinsky bargaining solution 

may be more useful for a group decision making than other efficiencies. Therefore, each DMU may be able to accept 

the solution more easily.  

Fourth, Table 7 indicates a common weight vector obtained from each approach. Here, the weights of the accommodated 

total efficiency were given in Sugiyama and Yamada (2001), as well. There were not the weights satisfying the 

cross-efficiency in the feasible set of DEA-solutions. Hence, these weights were not calculated in this study.  

Table 7. A Common Weight Vector of Each Approach 

 1v  2v  1u  2u  3u  

The Kalai-Smorodinsky Bargaining Solution 0.6779 0.0000 2.3778 2.3584 0.5912 

The Accommodated Total Efficiency 0.3739 0.3199 0.6984 0.5755 0.6824 

The Cross-Efficiency --- --- --- --- --- 

5. Conclusions and Future Extensions 

This research discussed a methodology for determining a common weight vector of DEA based on the 

Kalai-Smorodinsky bargaining solution. The calculated common weight vector was uniquely determined. This study 

applied the proposed approach to examine the productivity analysis of Japanese electric power industry. The application 

indicates the practicality of the proposed approach. 

This research is the first effort for applying a scheme of bargaining game to determine a common weight vector of DEA. 

Furthermore, this paper contributed to the progress of the study of DEA with the Game theory.  

In conclusion, it is hoped that this study makes a contribution in DEA. We would like to anxiously wait for future 

extensions that are originated from this research effort. 
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