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Abstract 
In recent years, Neural Network (NN) has gained popularity in proffering solution to complex nonlinear problems. 
Monitoring of variations in Petroleum Products Pipeline (PPP) attributes (flow rate, pressure, temperature, viscosity, 
density, inlet and outlet volume) which changes with time is complex due to existence of non linear interaction amongst 
the attributes. The existing works on PPP monitoring are limited by lack of capabilities for pattern recognition and 
learning from previous data. In this paper, NN models with pattern recognition and learning capabilities are compared 
with a view of selecting the best model for monitoring PPP. Data was collected from Pipelines and Products Marketing 
Company (PPMC), Port Harcourt, Nigeria. The data was used for NN training, validation and testing with different NN 
models such as Multilayer Perceptron (MLP), Radial Basis Function (RBF), Generalized Feed Forward (GFF), Support 
Vector Machine (SVM), Time Delay Network (TDN) and Recurrent Neural Network (RNN). Neuro Solutions 6.0 was 
used as the front-end-engine for NN training, validation and testing while My Structured Query Language (MySQL) 
database served as the back-end-engine. Performance of NN models was measured using Mean Squared Error (MSE), 
Mean Absolute Error (MAE), Correlation Coefficient (r), Akaike Information Criteria (AIC) and Minimum Descriptive 
Length (MDL). MLP with one hidden layer and three processing elements performed better than other NN models in 
terms of MSE, MAE, AIC, MDL and r values between the computed and the desired output. 
Keywords: pipeline, monitoring, neural network, multi-layer, perceptron 
1. Introduction 
Petroleum Products Pipelines (PPP) provide a major transportation infrastructure for conveying Premium Motor Spirit 
(PMS), Dual Purpose Kerosene (DPK), Automotive Gas Oil (AGO) and other petroleum products from refineries to the 
marketing and distribution depots. Abnormalities in flow rates of these products are a major sign of products leakages. 
The aftermath of petroleum products leakages include environmental pollution, degradation of soil fertility, poor 
agricultural production, fire outbreak, loss of life and property as well as serious threats to national economy and 
security. Researches in PPP monitoring and response to anomalies have been carried out in (Udoh, 2009; Akinyokun 
and Inyang, 2013; Inyang and Akinyokun, 2014). The existing systems for monitoring PPP are limited by lack of a 
systematic way of learning from previous data and generalizing into unseen patterns. NN offers a plausible solution to 
this learning and pattern recognition problem. NN is presented in (Akinyokun and Inyang, 2013), as a mathematical 
model of biological nervous systems, having the capabilities of fault tolerance, parallelism, learning from training data, 
recalling memorized information and generalizing to the unseen patterns. NN are applied to an increasing number of 
complex real life problems. They offer ideal solutions to signal recognition problems as well as prediction and system 
modeling where the physical processes are not understood or are highly complex.  
In this paper, review of some related works on PPP monitoring are presented in Section 2, Section 3 addresses the 
methodology and design of NN models for monitoring PPP. Results and research findings are presented in Section 4 
while discussion and recommendations for further research are presented in Section 5 and Section 6 respectively. 
2. Related Works 
Petroleum products pipeline monitoring and leak detection technique based on pipeline state equations was proposed in 
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(Chis, 2007). State equations depend on the type of fluid being modeled. No one equation fully describes the variety of 
products that are shipped in pipeline. Therefore, different equations are needed to modeled different products, thereby 
making the task of monitoring of PPP very tedious and difficult. In (Nikles et al., 2009), PPP monitoring system was 
presented using fibre optics. The occurrence and location of leakages were determined by analysis of the temperature 
profiles and the achievable detection limits were within 0.01% of the total throughput for oil leaks. The work suffers 
from false detection and localization of oil spills due to inefficient tools for analysis of pressure and temperature profiles. 
(Cafaro et al., 2010) presented oil-derivatives pipeline logistics system with the aim of evolving a computational tool to 
manage oil products pipeline in a reliable and cost effective manner. The work was limited by lack of capability for 
efficient priority scheduling for pipes and products delivery. The system could not learn patterns from previous 
petroleum products data. (Jiangwen et al., 2012) used a hierarchical leak detection equations based on time difference of 
signal arrival to monitor and localize defects on PPP. Acoustic sensors were placed at fixed points along the pipeline to 
measure and calculate the relative time difference of signal waves transmitted in the pipeline. It was difficult to 
distinguish the leak patterns from the signal waves, this led to high probability of false detection of pipeline defects. 
Pipeline leak detection and control using NN technique was presented in (Adewuji and Okelola, 2013). The work was 
motivated by the need to minimize the increasing oil spillage losses through efficient monitoring and timely detection of 
oil spillage events on PPP. A four-layer NN was designed comprising the input layer, two hidden layers and an output 
layer. The input layer accepted PPP data such as pressure, flow rates and temperature to estimate hydraulic behaviour of 
the products being transported. The second and third layers were used for processing of the input while the output was 
used for estimation of the result. Hyperbolic transfer function was used in the hidden layers and sigmoid transfer 
function was used in the output layer. Back propagation algorithm was used in the training of the network. The work 
contributed to knowledge an intelligent approach for monitoring PPP, but was limited by the use of few PPP attributes 
in the monitoring and training processes, thereby hindering the exploitative and learning power of NN in complex 
scenarios. In (Akinyokun and Inyang, 2013), a framework for oil spillage risk management using neuro-fuzzy-genetic 
techniques was presented. The aim was to predict the occurrence of oil spillage and manage the resultant risk. A 
neuro-fuzzy-genetic model for oil spillage management was designed. Adaptive neuro-fuzzy inference engine was 
designed for the neuro-fuzzy-genetic model using Mamdani inference mechanism. A software system driven by 
neuro-fuzzy-genetic model was designed using 11 Ants Analytics, Matrix Laboratory (MatLab) and Microsoft Access 
database. The functionality of the system was assessed using oil spillage data. The system contributed intelligent model 
for assessment and management of oil spillage but was limited by its lack of capability to monitor the attributes that led 
to oil spillage. This paper attempts to overcome the above limitations of the existing works by comparing NN models 
with a view of selecting the best model for knowledge acquisition and pattern recognition in complex data of PPP oil 
spillage induced parameters. 
3. Methodology 
The methodological workflow adopted in this work spans data collection, description and preprocessing, design of NN 
model, training, validation and testing of designed NN model and performance evaluation.  
3.1 Data Description and Preprocessing 
A set of 2290 data was collected from Pipeline and Products Marketing Company (PPMC) in Port Harcourt Area office, 
Nigeria. The data include attributes from Port Harcourt and Aba (PHAB) pipeline segment, Port Harcourt and Enugu 
(PHEN) pipeline segment as well as Enugu and Markurdi (ENMK) segment. The data attributes collected comprised 
Inlet Pressure (IPS), Inlet Valve Size (IVS), Inlet Volume (IVM), Inlet Temperature (ITP), Viscosity (VSC), Density 
(DTY), Pipe Diameter (PDM), Pipe Length (PLT), Corrosion (CRN), Transient Pressure (TPS), Outlet Valve Size 
(OVS), Outlet Temperature (OTP), Outlet Pressure (OPS), Outlet Volume (OVM) and Flow Rate (FLR) which was used 
as output of the neural network. The 2290 dataset was divided into three parts for training, validation and testing of the 
system in the ratio of 8:1:1 which translates into 1832 data set for training and 229 dataset each for validation and 
system testing. The input and output data were subjected to different NN models such as MLP, RBF, GFF, SVM, TDN 
and RNN invoked from Neuro Solutions 6.0 to facilitate the assessment and selection of best NN model for PPP 
monitoring based on MSE, MAE and r values. 
3.2 Design of Neural Network for PPP Monitoring. 
The design of NN for monitoring PPP was carried out using a three layered feed forward MLP architecture. The input 
layer consists of fourteen (14) data attributes of PPP namely: IPS, IVS, IVM, ITP, VSC, DTY, PDM, PLT, CRN, TPS, 
OVS, OTP, OPS and OVM. The hidden layer is made of six (6) nodes which receive and process the signal from the 
input layer using the connection weights and hyperbolic transfer function. The output layer is made of one (1) node. It 
computes the Flow rate (FLR) of PPP using the connection weights of the hidden layer and sigmoid transfer function. 
The computed output is compared with the desired output and the difference is the error term which is used to adjust the 
connection weights by means of backpropagation algorithm. The process is repeated until the error term is within the 
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acceptable threshold. The NN architecture for PPP monitoring is depicted in Figure 1. 
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Figure 1. Neural Network of PPP Monitoring 

From the multilayer feed-forward schema of Figure 1, the network layers are represented as follows:  
a.  PPP parameter layer Xi : i = 1,2,   , n  
b.  Processing layer hj: j = 1,2,   , m 
c.  Flow rate layer Ok : pk ,...,2,1=   
Let *

jh  and *
ko  be the pre-output (output to be processed by transfer function) at the hidden and output layers. Let 

Wi,j be the matrix of weights on the connection from the ith node in the input layer to the jth node in the hidden layer. 
A system of equations is formulated for the input and hidden layers as follows: 
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In terms of matrices, the system of equations is represented as: *hWx = , where W is the matrix of weights, x is the 
activity detection input vector and *h is the hidden layer pre-output as shown in Equation 1 which is compressed in 
Equation 2 as follows: 
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The actual output of hidden layer node jh  is obtained by subjecting the pre-output in Equation 3 to the hyperbolic 
transfer function as shown in Equation 4 
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Similarly, the computation in the output layer node is performed. Let Wj,k be a matrix of weights that connects jth node 
in the hidden layer to the kth-output layer,  The output layer equation is formulated as shown in Equation5, composed 
in vector form as given in Equation 6 and compressed as shown in Equation 7 

*
,122,111,1 kmm ohwhwhw =+++                     (5) 

[ ]mwww ,12,11,1   



















mh

h
h


2

1

= *
ko              (6)  

*

1 1
, k

p

k

m

j
jkj ohw =

= =

                          (7) 

The actual node value of the output layer node ko  is obtained by subjecting the pre-output in Equation 7 to the 
sigmoid transfer function as shown in Equation 8 
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The backpropagation learning procedure employed in (Udoh, et al., 2012; Udoh, 2016) was used to train the network to 
facilitate knowledge acquisition and pattern recognition.  
4. Results 
The results of NN models (MLP, RBF, GFF, SVM, TDN, RNN) based on Mean Squared Error (MSE), Mean Absolute 
Error (MAE) and correlation coefficient (r) performance indices are depicted in Table 1. These models were built and 
tested for PPP monitoring using Network Building Window of Neuro Solutions 6.0 as depicted in Figure 2. Inputs to the 
system were IPS, IVS, IVM, ITP, VSC, DTY, PDM, PLT, CRN, TPS, OVS, OTP, OPS and OVM while Flow rate (FLR) 
served as the output as shown in Figure 3. Further investigation into NN parameters using MLP is depicted in Figure 4 
and summarized in Table 2.  
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Figure 2. Network Building Window 

 

 
 
 
 
 
 
 
 
 

Figure 3. Input and Desired Output Panel 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Performance Measures Window 
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Table 1. Performance of NN Models on Dataset. 

MODEL NAME 
Training Cross Validation Testing Ave. 

MSE 

Ave. 

MAE 
Ave. r

MSE MAE r MSE MAE r MSE MAE r 

Multilayer Perceptron 0.0002 0.0083 0.998 0.0002 0.0096 0.998 0.0003 0.0102 0.997 0.0002 0.009 0.997

Radial Basis Function 0.0022 0.0233 0.978 0.0004 0.017 0.996 0.0005 0.018 0.995 0.0010 0.019 0.990

Generalized Feed 0.0004 0.0096 0.997 0.0001 0.0087 0.994 0.0003 0.0108 0.997 0.0003 0.010 0.996

Classification SVM 0.1068 0.2427 0.656 0.0792 0.194 0.664 0.1145 0.2502 0.567 0.1002 0.229 0.629

Time Delay Network 0.0005 0.0046 0.998 0.0006 0.0124 0.993 0.0007 0.0128 0.994 0.0006 0.010 0.995

Recurrent Network 0.0141 0.0823 0.888 0.0048 0.0544 0.964 0.0077 0.0697 0.950 0.0089 0.069 0.934

MLP performed better than other NN models. It has the least average MSE of 0.0002, average MAE of 0.009 and 
highest average correlation coefficient of 0.997. Subsequent investigation of NN parameters for monitoring PPP was 
carried out using MLP. Sessions of training with varying number of MLP components were carried out using hyperbolic 
and sigmoid transfer functions in the hidden and output layers respectively. Performance measures were MSE, 
Normalized Mean Squared Error (NMSE), Correlation Coefficient (r), Percentage Error (%), Akaike Information 
Criteria (AIC) and Minimum Descriptive Length (MDL). The summary of the model performance metrics are presented 
in Table 2 
Table 2. Summary of NN Performance Metrics 
Hidden 
Layer 

PEs of Hidden 
layer 

MSE NMSE r % Error AIC MDL 
Train CV Train CV Train CV Train CV Train CV Train CV 

 
1 

2 0.0038 0.0024 0.0864 0.0593 0.9614 0.9725 26.45 4.81 -1447.7 -176.2 -1439.1 -178.9
3 0.0036 0.0061 0.0546 0.0367 0.9723 0.9818 14.32 4.06 -1193.3 -136.2 -1180.6 -140.3
4 0.0043 0.0027 0.0973 0.0640 0.9533 0.9679 26.39 5.05 -1397.1 -153.7 -1380.5 -158.9
5 0.0039 0.0025 0.0899 0.0609 0.9557 0.9691 24.45 5.31 -1407.8 -145.3 -1387.3 -151.8
6 0.0041 0.0026 0.0936 0.0622 0.9551 0.9689 26.29 5.10 -1387.2 -134.6 -1362.7 -142.4

Mean of layer 1 0.0051 0.0033 0.0844 0.0566 0.9596 0.9720 23.58 4.87 -1366.6 -149.2 -1350.0 -154.5
 
2 

2 0.0089 0.0084 0.2038 0.2032 0.9510 0.9497 42.21 6.58 -1209.8 -123.5 -1196.4 -127.9
3 0.0084 0.0073 0.1908 0.1775 0.9440 0.9453 43.92 6.34 -1205.3 -106.1 -1183.2 -113.1
4 0.0071 0.0061 0.1607 0.1458 0.9450 0.9471 39.09 6.32 -1224.3 -86.54 -1192.2 -96.9 
5 0.0063 0.0052 0.1435 0.1269 0.9480 0.9528 36.46 6.19 -1224.5 -61.12 -1180.1 -25.2 
6 0.0054 0.0043 0.1242 0.1055 0.9543 0.9595 33.83 5.73 -1228.4 -33.21 -1170.9 -51.6 

Mean of layer 2 0.0072 0.0063 0.1646 0.1518 0.9485 0.9509 39.10 6.23 -1218.5 -82.1 -1184.6 -82.9 
 
3 

2 0.0389 0.0377 0.8822 0.9089 0.9490 0.9580 85.56 14.86 -811.03 -62.16 -792.40 -67.9 
3 0.0312 0.0306 0.7094 0.7388 0.9378 0.9460 61.82 16.88 -834.57 -35.04 -803.05 -45.1 
4 0.0178 0.0180 0.4040 0.4328 0.9369 0.9386 38.25 12.36 -940.90 -10.65 -892.83 -26.0 
5 0.0099 0.0108 0.2550 0.2425 0.9474 0.9471 29.26 9.18 -1045.5 20.24 -977.78 -1.41 
6 0.0115 0.0110 0.2607 0.2653 0.9513 0.9522 44.27 8.27 -948.8 81.20 -858.23 52.25 

Mean of layer 3 0.0219 0.0216 0.5023 0.5177 0.9445 0.9484 51.83 12.31 -916.2 -1.3 -864.9 -17.6 
 
4 

2 0.0549 0.0539 1.2444 1.3006 0.9080 0.9657 98.72 18.90 -708.22 -38.34 -685.37 -45.64
3 0.0611 0.0605 1.3872 1.4604 0.9193 0.9595 95.73 22.75 -633.54 11.48 -592.56 -1.61 
4 0.0988 0.1001 2.2407 2.4124 0.6321 0.8598 98.23 34.03 -448.96 86.04 -385.13 65.65 
5 0.1109 0.1117 2.2490 2.6920 0.4790 0.7610 97.91 36.79 -358.56 159.67 -259.09 130.47
6 0.0313 0.0305 0.7102 0.7370 0.9450 0.9492 72.79 13.92 -600.27 198.92 -476.56 159.39

Mean of layer 4 0.0714 0.0713 1.5663 1.7205 0.7767 0.8990 92.68 25.28 -549.9 83.6 -479.7 61.7 
 
5 

2 0.1107 0.1124 2.5098 3.7096 0.8100 0.9179 97.98 36.94 -511.01 -2.12 -483.43 10.93 
3 0.1191 0.1210 2.6990 2.9170 0.8184 0.9394 97.72 38.85 -433.77 58.31 -383.34 42.19 
4 0.1196 0.1215 2.7124 3.9306 0.8850 0.9590 96.99 39.08 -358.43 -132.47 -278.84 107.03
5 0.0664 0.0663 1.5060 1.5980 0.8380 0.9392 99.42 23.82 -423.35 202.46 -308.81 165.71
6 0.1479 0.1507 3.3540 3.6322 0.6410 0.8120 97.026 44.71 -106.43 335.54 50.367 285.45

Mean of layer 5 0.1127 0.1144 2.5562 3.1575 0.7985 0.9135 97.83 36.68 -366.6 92.3 -280.8 122.3 
6 2 0.1953 0.1896 1.1011 1.1420 0.3560 0.4130 100.72 14.08 -349.12 27.14 -316.79 16.81 

3 0.1763 0.1665 0.9996 1.0035 0.6787 0.7044 104.89 9.82 -306.06 92.84 -246.18 73.71 
4 0.1176 0.1195 2.6660 2.8810 -0.211 -0.106 97.84 38.52 -341.08 153.90 -252.82 125.71
5 0.0733 0.0735 1.6610 1.7720 0.7670 0.9224 99.07 26.43 -337.86 265.87 -199.17 221.56
6 0.0390 0.0386 0.8850 0.9320 0.9393 0.9430 75.67 17.62 -374.18 374.67 -184.28 313.99

Mean of layer 6 0.1203 0.1175 1.4625 1.5461 0.5060 0.5754 95.64 21.29 -341.7 182.9 -239.8 150.4 
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at epoch 6. The best NN connection weights for updating model parameters are obtained at epoch 5. These weights are 
used to evaluate the flow rate of PPP.  
6. Conclusion and Recommendations 
In this paper, NN models with pattern recognition and learning capabilities for PPP monitoring has been presented. The 
research findings show that MLP has MSE, MAE and r values of 0.0002, 0.009 and 0.997 respectively between the 
desired and the computed output. It performed better than RBF, GFF, SVM, TDN and RNN models in the task of 
monitoring PPP. Further investigation into PPP monitoring using MLP revealed that the model with 1 hidden layer and 3 
processing elements performed better than other MLP models. Determination of PPP attributes importance was also 
carried out using a trained NN. The best four sensitive attributes to flow rate namely: IPS, IVM, OVM and ITP would be 
used in future work for PPP monitoring to reduce NN size and complexity. Alternate use of sigmoid and hyperbolic 
transfer functions in different NN layers would be carried out for optimum result. This work recommends further research 
into self-organising map such as Kohonen neural networks and Adaptive Resonance Theory (ART) with a view of 
establishing an unsupervised learning for visualizing PPP attributes for PPP activities monitoring. 
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