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Abstract 

The Einstein‟s program enables a theoretical economy for quantum double slit experiment, in its wave-particle duality 

behavior, with the unification of first and second quantifications for light and matter. It introduces a space-like 

amplitude function u(r,t), which completes the usual time-like functions ψ(r,t) of quantum mechanics and quantum 

fields. The Einstein‟s program is founded upon a scalar field propagating at speed of light c. It forms a common 

relativist framework, for classical and quantum properties of matter and interactions. Matter properties derive from 

standing waves, and interactions from progressive waves. The classical domain arises in the geometrical optics 

approximation, when frequencies are infinitely high, and then hidden. The quantum domain corresponds to wave optics 

approximation. Adiabatic variations of frequencies yield electromagnetic interaction and dynamical laws of 

energy-momentum conservation and least action principle.  

Keywords: Einstein‟s program, quantum mechanics, hidden variables, wave-particle duality, double-slit experiment  

1. Introduction 

The double-slit experiment plays an emblematic role in quantum mechanics, since it exhibits many of its main specific 

characters: the wave-particle duality, the wave diffraction by slits, the classical Fourier conditions corresponding to the 

Heisenberg quantum relations, and the probabilistic manifestation of a particle in recordings. These quantum features 

had much mobilized physicists, especially after 1920 years. Einstein remained resolutely opposed to the probabilistic 

orientation, generally adopted by physicists, which led to the development of quantum mechanics, even though, or 

because, he brought some major contributions in the elaboration of quantum physics, like the discovery of the particle 

behavior for light in photoelectric effect in 1905, introducing then the first quantum particle, for which he was awarded 

the Nobel prize in 1921, or the stimulated emission for light in 1917, at the base of lasers conceptions.  

He asserted that, in spite of its formal and experimental successes, «The statistical character of the present theory 

would then have to be a necessary consequence of the incompleteness of the description of the systems in quantum 

mechanics… Above all, however, the reader should be convinced that I fully recognize the very important progress 

which the statistical quantum theory has brought in physics.... this theory is until now the only one which unites the 

corpuscular and undulatory dual character of matter in a logically satisfactory fashion; and the (testable) relations, 

which are contained in it, are, within the natural limits fixed by the undeterminacy-relation, complete. The formal 

relations which are given in this theory—i.e., its entire mathematical formalism—will probably have to be maintained, 

in the form of logical inferences, in every useful future theory‖ (Einstein A., 1949). 

We notice that, in absence of a suitable pictorial model for the quantum wave-particle duality, priority was given to 

abstract mathematical formalism. It leads to problems for physical representation, even for prominent physicists like R. 

Feynman. He recognized that “unlike ordinary experience, it is very difficult to get used to, and it appears peculiar and 

mysterious for everyone- both to the novice and to the experienced physicist. Even the experts do not understand it the 

way they would like to, and it is perfectly reasonable that they should not, because all of direct, human experience and 

human intuition applies to large objects. We know how large objects will act, but things on a small scale just do not act 

that way. So we have to learn about them in a sort of abstract or imaginative fashion and not by connection with our 

direct experience.‖The double-slit experiment exhibits “a phenomenon which is impossible, absolutely impossible, to 

explain in any classical way, and which has in it the heart of quantum mechanics. In reality, it contains the only 

mystery” (Feynman, 1965). 

On the contrary, Einstein gave priority to physical models for representations. At first sight, this looks like paradoxical on 

his part, since, from the beginning, the relativity theory has been commonly considered as incomprehensible, both for its 

abstract mathematical formalism, and for its unusual physical manifestations. Nevertheless, it is well known that Einstein 
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was accustomed to rely upon thoughts experiments which describe physical experiments, like the reciprocal electro 

dynamic action of a magnet and a conductor, at the base of special relativity, or the motion of bodies in free fall, for the 

elaboration of general relativity and the geometry of space. He asserted that ―Most of the fundamental ideas of science are 

essentially simple, and may, as a rule, be expressed in a language comprehensible to everyone. To follow up these ideas 

demands the knowledge of a highly refined technique of investigation. Mathematics as a tool of reasoning is necessary if 

we wish to draw conclusions which may be compared with experiment. So long as we are concerned only with 

fundamental physical ideas, we may avoid the language of mathematics‖ (Einstein & Infeld, 1938). 

The basic models of waves and particles are physically and mathematically opposed and complementary: the waves are 

extended through space while the particles are concentrated. The concept of material particle is characterized by a 

double discontinuity, in space and in time. In space, by delimiting an inner « full» part, and an outer « empty » part. In 

time, by delimiting a previous time, defined before its creation, and a posterior time after, during which it is present. 

The concept of wave implies a continue dependence upon time, either infinite for a plane wave, or limited for a wave 

packet. Consequently, in classical physics, either one model, or the other, was admitted as more fundamental for the 

basic constitution of the universe. In this context, the double-slit experiment, performed originally by Thomas Young in 

1801, played a vital part in the acceptance of the wave theory of light, to replace the particle theory adopted following 

Newton.  

When Einstein reintroduced the particle behavior for light, he preserved its theoretical and experimental wave 

characters. He used cautiously the term heuristic, in the title of his article: Concerning an Heuristic Point of View 

Toward the Emission and Transformation of Light, (Einstein, 1905). Then, in spite of the particle signification 

attributed to its energy, through the Planck‟s relation E=hν, physicists continued to admit that light propagated as a 

wave. For instance, in the Bohr‟s model of atoms, which was a cornerstone in the development of quantum mechanics, 

an electron, as a mass-point, moved along a trajectory around a nucleus, while exchanging electromagnetic waves with 

it. The non relativist Schrödinger equation, enabled to supersede this model. Mathematically, through a second order 

partial differential equation with respect to space, it describes a wave, independently of its physical nature. A single 

particle is implicitly described by the first order partial differential equation with respect to time, linked to its energy. It 

restricts to the kinetic energy Ek = p2/2m, instead of the main energy E=mc2  Ek + E0. This emphasizes that the rest 

energy E0 =m0c
2, is admitted as remaining constant in whole processes involved afterwards, justifying that it was then 

eluded, or hidden. Consequently, it is admitted that the mass m0 of a particle, like an electron, remains unaffected by its 

motion and by its interactions. Like in classical physics, the mass-energy extended outside the point-particle in 

neglected, and hidden. Nevertheless, its underlying action continues to operate in that case, but as a second order wave 

approximation, as a perturbation, which corresponds to the Heisenberg relations of quantum mechanics, linked to the 

probabilistic position of a single particle (Elbaz 2015).  

Nowadays, in extension of quantum mechanics, the standard model forms a consistent system to describe universe. It 

admits that the whole universe is constituted of fundamental particles, both for matter and for three, out of the four known, 

different kinds of interactions. They all behave either as waves or as particles, in a probabilistic framework. The fourth 

interaction, gravitation, has resisted to its quantification since a century. It is still described by general relativity, through 

a continuous field, in a classical and determinist framework.  

In addition to its only partial description of the universe, the standard model differs from, and goes beyond, quantum 

mechanics, since it leans on relativist quantum fields. They no longer restrict to a single particle, but apply to many 

identical particles, each one being created or annihilated inside the corresponding field. The two basic categories of 

quantum particles, the bosons and the fermions, differ from one another by their statistical properties, which are then in 

relation with sets of identical particles: Bose–Einstein statistic laws for the first ones, and Fermi-Dirac for the second. A 

single particle appears only as a particular manifestation of a more fundamental continuous field, expressed 

mathematically by partial derivative equations. 

In extension of general relativity and of his different discoveries, including in quantum physics, Einstein had proposed a 

consistent approach for physics, symmetrical to the standard model [(Einstein & Infeld, 1938). He privileged a 

continuous field, propagating at light velocity, and leaning upon physical representations of phenomena, before their 

more precise mathematical description.  

«We have two realities: matter and field. ….We cannot build physics on the basis of the matter concept alone. But the 

division into matter and field is, after the recognition of the equivalence of mass and energy, something artificial and not 

clearly defined. Could we not reject the concept of matter and build a pure field physics? …We could regard matter as the 

regions in space where the field is extremely strong. In this way a new  philosophical background could be 

created….Only field-energy would be left, and the particle would be merely an area of special density of field-energy. In 

that case one could hope to deduce the concept of the mass-point together with the equations of the motion of the particles 

from the field equations- the disturbing dualism would have been removed… One would be compelled to demand that the 



Studies in Engineering and Technology                                                            Vol. 3, No. 1; 2016 

93 

particles themselves would everywhere be describable as singularity free solutions of the completed field-equations. Only 

then would the general theory of general relativity be a complete theory….One could believe that it would be possible to 

find a new and secure foundation for all physics upon the path which had been so successfully begun by Faraday and 

Maxwell.»  

The Einstein‟s Program has been implicitly supported, and validated, by the International Legal Metrology 

Organization, by shifting from material standards of space and time, to field standards. In one hand, the velocity of light 

in vacuum is admitted as a “pure”, or primary, fundamental constant in experimental physics, with its numerical value 

strictly fixed. In another hand, the standard for measures of time is based on the period an electromagnetic wave 

frequency ( Dimarcq, 2013)  

In previous articles (Elbaz, 2012-2015), we showed how the Einstein‟s program forms a consistent system, beside the 

standard model, for the universe description. It allows us to complete the universe grasp, like both eyes give us access to 

tridimensional vision, or both ears to stereophonic audition. Starting from a scalar field propagating at light velocity c, 

its solutions yield properties of matter and interactions. The standing waves corresponds to matter, and their adiabatic 

variations to interactions: variations of frequencies to electromagnetism, and variations of velocity of light to gravitation. 

When the frequencies are infinitely high, and undetectable, defining the geometrical optics approximation, the 

oscillations are hidden. This leads the field to appear as concentrated, as point-like particles for matter, and as rays for 

trajectories of matter and of interactions. This leads also to the kinematical and dynamical laws for matter, in classical 

relativistic and in quantum frameworks. Since high frequencies, leading to point-like particles, are eluded, their 

kinematical and dynamical properties are expressed by time-like functions only. Their descriptions are then incomplete. 

This was explicitly emphasized by Einstein in his program, not only for quantum mechanics, but also for general 

relativity. Consequently, the Einstein‟s program enables to supplement them with a space-like amplitude function. It 

leads to the point-like character for a material particle, to the variational least action principle, and to the 

energy-momentum conservation law, usually admitted independently as fundamental. 

In this article, we propose to show how, following the Einstein‟s program, a scalar field  propagating at light velocity c, 

introduces a space-like amplitude function u, which allows a unified approach of the quantum double slit experiment, 

both for light and for electrons. 

2. The Einstein’s Program 

Since gravity is not directly involved, the velocity of light in vacuum c, is admitted as constant (Elbaz, 2012). We 

summarize some equations deduced from Einstein‟s program, in order to show how they are related to the main 

equations of double slit experiment, otherwise widely documented.  

2.1 Standing Field Kinematics 

Starting from a scalar field  propagating at light velocity c, we are assured that its whole following consequences are 

relativistic. The general harmonic solutions of the d'Alembertian‟s equation  

 =  -(1/c2)(2/t2)= 0,       (1) 

may be reduced to two kinds of elementary ones, according to their kinematic, or their geometric, properties. 

Progressive waves, like cos(t kx) with constant frequency =kc, propagate at speed of light in opposite direction. 

Standing waves, of the form 0(x0,t0)=u0(k0x0)0(0t0)=cos(0t0)cos(k0x0), oscillate locally, as expressed by the 

separation of variables for space and time. They enable then to define a system of coordinates at rest (x0,t0). As the 

functions u0(k0x0) and 0(0t0) are independent, the frequency 0 is necessarily constant in 

(1/u0)0u0 =(1/0)(
20/c

2t0
2)=-k0

2=-0
2/c2. The progressive and standing waves can be considered, either as 

elementary and basic for the field  , or as composed from other kinds, since  

cos(0t0+ k0x0)+ cos(0t0 - k0x0)= 2 cos(0t0)cos(k0x0),    (2) 

cos(0t0)cos(k0x0 ) + sin(0t0)sin(k0x0 )= cos(0t0- k0x0)    (3) 

When, in a system of reference (x,t), the frequencies of opposite progressive waves are different 

cos(1t- k1x)+ cos(2t + k2x)= 2 cos(t-kx)cos(kx-t ),    (4) 

with = (1-2/1+2), and =(1+2)/2=kc. By identification with (2), they form a standing wave, with main frequency 0 

=12 in the system of reference at rest (x0,t0), becoming , for the standing wave in motion with a speed v, in the system 

(x,t). The correspondence between the systems of reference(x0,t0) and (x,t), leads to the Lorentz transformation, and to its 

whole special relativity consequences. 

The geometric properties of standing waves at rest, are described by the function of space u0(k0x0), which obeys the 

Helmholtz‟s equation 0u0+ k0
2u0 =0. Its solutions verify Bessel spherical functions, and particularly its simplest elementary 

solution, with spherical symmetry, finite at origin r0 of the reference system, and representing a lumped function,  
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u0(k0r0) =(sink0r0)/(k0r0),        (5) 

In geometrical optics approximation, when the frequency is very high, tending towards infinity 0=k0 , and then 

undetectable and eluded, the space function u0 tends towards Dirac‟s distribution  u0(k0r0)  (r0). The standing wave 

of the field behaves as a free classical material particle at rest, isolated in space.  

From a kinematical point of view, the central extremum of an extended standing wave, either at rest or in motion, is 

appropriate to localize its position x0, exactly like the centre of mass for a material system. It verifies, for instance from 

(5),  

0u0(x0) =0.         (6) 

In motion, the Helmholtz‟s equation, for the amplitude function u(x,t), becomes u-2u/c2t2+ k0
2u =0. The phase 

function obeys the equation -2/c2t2-k0
2=0. The four-dimensional Minkowski‟s formalism is useful and 

appropriate to express invariance properties of standing waves at rest, when they move uniformly. Confirmation is 

found into invariant quantities obtained from four-quantities, such as coordinates xx
 =x0

2 or xx
 =c2t0

2, and functions 

uu
 = u2(x0) or 

 = 2(t0). Their space-like or time-like character is absolute, according to the depending coordinate 

x0 or t0 in the rest system (x0,t0), in which the variables of space and time are separated. 

In order to point out the necessarily constant frequency for a standing wave, we precise only that the phase function  is 

a plane wave, leaving the amplitude function u(x,t), undetermined inside Helmholtz‟s equation. 

(t,kx) = u(kx,t)exp i(t- kx)    = t-kx,  (7) 

In special relativity, the equations are based on mass-points, as singularities, moving on trajectories. They lean then 

directly upon geometrical optics approximation. The periodic equations, generic of standing fields, are hidden. The 

space coordinates xα ,involved in the metric, are point-like dynamical variables, and not field variables r which would 

describe an extended repartition in space. Then, for standing waves of a scalar field propagating at light velocity c, with 

constant frequency  and velocity v, the kinematic properties are formally identical with mechanic properties of isolated 

matter. The Lorentz transformation, and particularly the coefficient (1-2), is specific of standing waves with respect to 

progressive waves (Elbaz, 1983). 

2.2 Standing Field Dynamics 

All above equations are unlimited with respect to space and time, since x and t may become infinite. Usually, in order to 

limit the field, one imposes boundary conditions, in which matter acts either as a source fixing the frequency , or as a 

detector annealing it, as well as a geometrical space boundary fixing the wavelength λ through k= 2π/λ. This is not 

felicitous from relativistic consistency, since space and time operate separately. In addition, matter is physically 

heterogeneous with respect to field. In order to stay in a homogeneous frame, we rather consider boundaries provided 

by wave packets. Two progressive waves with different frequencies 1,2 propagating in the same direction at light 

velocity, give rise to a wave packet, propagating in the same direction at light velocity, with a main wave with 

frequency =(1+2)/2. It is modulated by a wave with frequency =(1-2)/2=/2=kc/2, wavelength Λ=2/k, 

and period T= Λ/c. Since <1, the modulation wave acts as an envelope, with space extension x=Λ/2 and and time 

extension t=T/2, corresponding to the well known Fourier relations x.k =2 and t.=2. 

Then, the Fourier relations represent homogeneous boundary conditions for the scalar field . From a physical point of 

view, they must be associated with the d'Alembertian‟s equation (1) in order to complete them, emphasizing that the 

field cannot extend to infinity with respect to space and time.  

When the difference of frequencies =(1-2)/2=/2<< is very small, it can be considered as a perturbation with 

respect to the main frequency, =δ. Then a wave packet can be assimilated to a progressive monochromatic wave 

with frequency Ω=δ, inside the limits fixed by the component frequencies 1=+δ and 2=-δ. By difference 

with standing waves frequencies, which must be constant and monochromatic, progressive fields solutions of (1), may 

be more complex, with frequencies varying with space and time. An almost monochromatic wave is characterized by a 

frequency Ω(x,t), varying very slowly around a constant  

Ω(x,t)= K(x,t)c=  δΩ(x,t)   δΩ(x,t)<<   = constant. (8) 

From a physical point of view, we recognize the definition of an adiabatic variation for the frequency (Landau & 

Lifchitz, 1960). We can then expect that all following properties of almost fields, occur inside such a process. Instead of 

admitting a constant frequency  of elementary waves propagating all over space-time as given data, we rather consider 

that it represents the mean value, all over the field, of different slowly varying frequencies Ω(x,t). In other words, the 

modulation waves with perturbation frequencies δΩ(x,t), propagating at light velocity, behave as interactions between 

main waves, leading their mean frequency  to remain practically constant, all over the space-time (Elbaz, 2014,2015). 

From a mathematical point of view, almost fields properties derive from monochromatic ones, through the variation of 
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constants method (Duhamel principle). For an almost standing wave, equation (7) becomes  

(x,t) =U(x,t)exp iɸ(x,t)    ɸ(x,t)= (x,t)t - K(x,t).x +2n,   (9) 

where second order products dt0 and K.dx0, defined modulo 2, are neglected at first order of approximation. 

This is equivalent to incorporate directly, in almost monochromatic solutions, the boundary conditions defined by the 

Fourier relations. 

dɸ(x,t)=(x,t)dt - K(x,t).dx  dt-k.dx.    U(x,t)=u(x,t)U(x,t)  (10) 

Following  =0 in (1), which becomes (x,t)=0, from (9) we obtain,  

U- Uɸ ɸ =0 or 2U/c2t2-2U- U[(ɸ/ct)2-(ɸ)2]=0  (11) 

 (U2 ɸ)=0  or (U2)/c2t+ .(U2K) =0   (12) 

These relations apply to progressive waves for =1, to standing waves at rest for =0 and in motion for 1, to 

monochromatic waves for  and k constant, to almost monochromatic waves for varying (x,t) et K(x,t). They yield 

dynamical properties for energy-momentum conservation, and variational least action principle, both for standing fields 

and for almost standing fields. 

For a standing wave with constant frequency either at rest or in motion, δΩ(x,t)=0, so that (12) reduces to  

u0
2/t0 = 0    u2/t +.u2v=0   or  w

 =0  (13) 

where w=(u2,u2v/c)=u0(x0)
2(1,v/c)/(1-2) is a four-dimensional quantity. This continuity equation for u2, is formally 

identical with Newton‟s continuity equation for matter and its momentum densities  

µ/t +.µv=0  with  u2 =µc2 .     (14) 

We are led to admit, by transposition, that u2 represents the energy density of the standing field.  

Following relations (5) and (6) in the spherical symmetry case, for its kinematical behavior, the space function u0 can be 

reduced to its point-like centre of energy density. Following (6), its position x0 is such that 

0u0
2=0  u2 +(u2v/c2t)=0 ×v=  or =w-w=0, (15) 

Since u2 is a standing wave energy density spread in space, and then a potential energy density, F= -u2 =-wP is a force 

density, and u2v/c2t a density momentum, while  is a four-dimensional force density. 

Equation (15), in which energy density w is a four-dimensional gradient a, is mathematically equivalent to the least 

action relation 

da=0   adx =0 with  w = a.  (16) 

When we transpose the mass density µ=u2/c2, and take into account identities the P2 =2(P.)P+2P(P) and dP/dt= 

P/t +(v.)P for c and v constant, after integration with respect to space, we get the equation for matter 

dp/dt=-mc2+ {(mv)2}/2m   dp/dt=Lm=-m0c
2(1-2).  (17) 

We retrieve the relativistic Lagrangian of mechanics, usually admitted for free matter Lm=-m0c
2(1-2 ). 

2.3 Electromagnetic Interaction 

For of an almost standing wave, the continuity equation relates to the total energy density, W=U2=w+W, sum of the 

mean standing wave w and of the interactions W. Equation (15) becomes 

= W -W =0  or  =  + =0  (18) 

By difference with the null four-dimensional density force  for a standing wave, only the total density force  for 

an almost standing wave vanishes. In the first case, this asserts the space stability of an isolated standing wave, while in 

the second case, the space stability concerns the whole almost standing wave. It behaves as a system composed of two 

sub-systems, the mean standing field with high frequency (x,t)  , and the interaction field with lower frequency 

(x,t), each one exerting an equal and opposite density force  = - against the other. 

In (15), the vanishing four-dimensional force density tensor  of a standing wave, asserts that the energy-momentum 

density four-vector w is four-parallel, or directed along the motion velocity v. By comparison, for an almost standing 

wave, the total energy-momentum density tensor  which still vanishes, asserts also that the total energy-momentum 

density four-vector W is four-parallel, or directed along the motion velocity v. However, the mean energy-momentum 

density tensor , no longer vanishes in (18) as previously in (15): the mean energy-momentum density four-vector w 

is then no longer parallel. This comes from the opposite density force  exerted by the interaction. 

It appears that an almost standing field behaves as a whole system in motion which can be split into two sub-systems: 

the mean standing field and the interaction field. Both are moving with velocity v, while exerting each other opposite 
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forces in different directions, including perpendicularly to the velocity v. The perturbation field, arising from local 

frequency variations (x,t), introduces orthogonal components in interaction density force and momentum, with 

regard to the main constant frequency  of the plane wave (7). 

Relations (17), generalized by constants variation method for mass M(x,t)=mM(x,t), become 

Mc2 +P/t=0    ×P=0        dP/dt=-Mc2+(P2)/2M.   (19) 

The non vanishing density force 0 exerted by the interaction is formally identical with the electromagnetic tensor 

F=A-A0. We can set them in correspondence  = eF, through a constant charge e, in which M(x,t)= 

eV(x,t)/c2 and P(x,t)= eA(x,t)/c. The double sign for mass variation corresponds to the two signs for electric charges, or 

to emission and absorption of electromagnetic energy by matter. We retrieve the minimum coupling of classical 

electrodynamics, P(x,t)=p+eA(x,t)/c, with M(x,t)c2=mc2+eV(x,t), and P(x,t)=p+eA(x,t)/c where electromagnetic 

energy-momentum exchanged with a particle, is very small with respect to its own energy-momentum eA(x,t)/c= 

P(x,t)  p. Electromagnetic interaction is then directly linked to frequencies variations of the field  (Landau & 

Lifchitz 1962). 

Accordingly, the relativistic Newton‟s equation for charged matter, with the Lorentz force, derives from (19) 

dP/dt= -m0c
2(1-2) + e(E+v×H/c).      (20) 

2.4 Adiabatic Invariance 

For an almost standing wave, we get from (11), in first order approximation, 

[U2/t+.U2v]/U2+[/t+.v]/ =0  or  (W
)/W+(

)/ =0.  (21) 

with energy density W=wW=µc2=µc2µc2, four-dimensional energy density W=wW= (µc2, µvc), frequency 

Ω=δΩ, and four-dimensional frequency  =(,v/c), leading to 

W=I   and  W =I      (22), 

when we take into account the double sign in frequency variation . The constant I is an adiabatic invariant density. In 

first approximation, they reduce to energy-momentum densities, and to their variations, relations 

w =I     or    µc2 = I  and µv = I k   (23) 

W =I    or    µc2 = I  and µv = I K  (24) 

Integrations of µ and I densities with respect to space, lead to relations between four-energy and four-frequency through 

the adiabatic invariant H, formally identical with the Planck‟s constant h. 

E=(mc2,pc)=m0c
2u =H=H(,kc)   m0c

2= H0  (25) 

The adiabatic variations frequency  for the standing wave  corresponding to matter, lead to electromagnetic 

interaction constituted by progressive waves. Electromagnetic interaction energy derives from mass variation dE=c2dm, 

leaning directly to the wave property of matter: its energy dE= hdν= c2dm derives from variations of matter energy 

E=hν=mc2.  

2.5 Remarks 

We notice that the double frequencies,    and  of an almost standing wave, enables it to verify 

simultaneously geometrical optics approximation, when experimental boundary conditions are such that, they are very 

large regard to its main wavelength λ=2c/, and of same order of its perturbation wavelength Λ=2c/. In that case 

the particle and the wave behaviors coexist. 

3. Application to Double Slit Experiment 

The Einstein‟s program offers a tool for a unified approach, and treatment, of the double slit experiment, for matter and 

light, in their classical, and quantum, manifestations.  

3.1 Classical Physics 

The specific phenomenon, displayed by the double-slit experiment, is characterized by interference pattern with bright 

and dark bands on the screen. It is specific of the wave behavior of light, exhibited when it passes through the slits.  

The holes must be sufficiently small, of the order of some wavelengths. They behave as secondary sources, enabling the 

light to be diffracted as wavelets, with a definite phase relationship between them. Such a condition is usually obtained 

with a small extended source for light. It behaves then as the centre of spherical light waves, able to interfere coherently 

with themselves. In classical physics, since we do not have access to a model of atom as light source, the emitted 

wavelength λk=2π/kk, is admitted as given data. The distance between the light source and the slits is very much larger 
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than the wavelength. This, it corresponds to the geometrical optics condition λ→0. Experimentally, the light propagates 

along rays, which can be assimilated to point trajectories. 

Because of the static character of boundaries, only the time independent part u(kx), of the propagation equation = 

-(1/c2)(2/t2)=0, is useful to determine the geometrical repartition of the light in space. It verifies the Helmholtz‟s 

equation u+kk
2u =0. Its elementary spherical wavelets solutions verify, either the imaginary form eikr/r, or the real one, 

uk(kkr) =(sinkkr)/(kkr), with origins defined by the positions of the point-like source and slits, as boundaries conditions. 

The following mathematical solutions for the double slit experiment are otherwise well documented. 

We retain that, from physical and mathematical points of view, the continuous second order partial differential 

Helmholtz‟s equation conciliates both characters of light, disclosed by the double-slit experiment: its particle kinematic 

behavior, in geometrical optics approximation where travelled distances are much larger than the wavelength, and its 

wave kinematic behavior, in wave optics approximation where boundaries are of order of the wavelength. The time–

independent character of the Helmholtz‟s equation is consistent with, or expresses, the appearance, at one and same 

time, of the interference pattern extended in space. 

3.2 Quantum Mechanics 

3.2.1 Experiment with Light 

All above considerations remain unchanged in quantum mechanics, except that the interference pattern extended in 

space, does not appear directly and simultaneously. It reveals progressively in time, following the juxtaposition of 

successive impacts due to point-like individual photons.  

Experimentally, in order to realize the double slit quantum experiment, one may maintain geometrically all classical 

material wave conditions. Only the intensity of the emitted light requires to be sufficiently reduced, until reaching level 

of energy quantum E=hν. 

Mathematically, passing from the previous geometrically extended classical solution of the Helmholtz‟s equation 

u+kk
2u=0, to a point-like localization of an individual photon, arises with the introduction of Planck‟s constant h, with 

Heisenberg relations.. 

Physically, such a passage is admitted as representing a collapse. It occurs from an extended, to a concentrated, energy 

repartition in space, following the Heisenberg–von Neumann postulate in quantum mechanics. It implies that the wave 

and the particle behaviors of light must be considered on an equal footing, as solutions of the propagation equation. 

Nevertheless, both aspects do not appear simultaneously: the wave aspect during the motion and before the observation, 

the particle aspect after the emission and the detection. Then, such an energy collapse for light, implies that a photon is 

usually observable only when it disappears. Nevertheless, S. Haroche and his collaborators, has realized “a new type of 

atomic detector, able to record the trace of a single photon, without absorbing energy» (Haroche, S., 2007). 

3.2.2 Experiment with Matter 

In the quantum mechanics framework, the same kind of double-slit experiment can be performed with electrons, leading 

to the same kind of interference patterns. It shows that matter exhibits wave-duality behavior, exactly like light (Merli, 

Missiroli, Pozzi, 1976) (Rosa, 2012). In order to describe it, the d'Alembertian‟s equation of propagation =0, is then 

replaced by the non relativist Schrödinger equation (ih/2)/t +(h2/82m)=0. The energy involved is the kinetic 

energy of the particle Ek = p2/2m, and not its main energy E=mc2  Ek + E0. The mass of electron m0 = E0/c
2 is eluded, 

or hidden, in the whole process. Consequently, one admits that it remains constant and unaffected by the motion. In 

such a framework, it is admitted that an electron behaves always as a particle, and never as a wave. Only its point-like 

position is governed by a wave–like function with the Schrödinger equation. Consequently, the space extension x of 

the Heisenberg relation represents the interval inside which the probabilistic point-like position x may be found.  

The mass of electron m0 does not absorb or emit kinetic energy, which constitutes an external physical entity. Such a 

non relativist treatment process, implies that the physical nature of the electron mass-energy E=mc2, and of its kinetic 

energy Ek = p2/2m, are distinct and independent.  

The Schrödinger equation admits only implicitly the point-like character of an electron. In order to get its experimental 

explicit point-like character, it needs to be supplemented by an extraneous condition. It is mathematically attributed to 

the Heisenberg relations, and physically to the measure, at origin of the collapse. The Schrödinger equation describes 

the electron motion with speed v, with a second order partial differential equation with respect to space, which 

characterizes mathematically a wave. Such a property appears when the boundary conditions are of order of the 

Broglie‟s wavelength λb=2π/k=h/mv, equivalent to the Heisenberg relations, particularly in the especially arranged 

double-slit experimental conditions. Their static character leads to retain the Helmholtz‟s equation u+kb
2u =0. It 

derives from the non relativist Schrödinger‟s propagation equation. It yields interference patterns obtained with 

electrons. The space periodicity is fixed by de Broglie‟s wavelength. 
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In quantum mechanics, the ψ function represents, either a wave function associated with all its possible positions, or a 

quantum state occurring within all possible others, inside the limits fixed by the Heisenberg relations. Its effective 

realization, either through a measured position, or its quantum state, appears then as a collapse, with regard to other 

numerous solutions of ψ. It occurs at the end of the process, expressed when an experimental measurement is made. 

When, following quantum mechanics historical elaboration, we keep close to the experimental evidence, we have 

access to an electron only at emission with quantified energy hν, and at detection as a localized particle, and not during 

its propagation in space wherever between. The collapse describes then a probabilistic event. Such a conclusion leans 

upon the particle point of view admitted all along the quantum process. 

3.3 Hidden Variables 

As well known, Einstein was unsatisfied by such a probabilistic approach. He attributed it to a lack of knowledge. «The 

statistical character of the present theory would then have to be a necessary consequence of the incompleteness of the 

description of the systems in quantum mechanics.‖ Beyond him, since the 1920 years, numerous works were devoted to 

the problem of hidden variables. In general, they concern the position, and not the description, nor the dimension, of an 

electron as a fundamental material particle. They hold inside the framework of the non-relativist Schrödinger equation, 

or its equivalent fundamental formulations. 

For instance, instead of waiting for the collapse to find the experimental position of the particle, Bohm introduced it 

from the beginning, as a hidden variable x(t) of the usual Schrödinger equation. From its solution ψ=a.expi2S/h, the 

nonlocal quantum potential Q=-(h22a)/82a, guides the motion of the particle, whose trajectory verifies 

dx(t)/dt=hS/4πm. (Bohm, 1952)  

The introduction of the mass-energy E0 =m0c
2, in relativist quantum mechanics, completes the non relativist 

Schrödinger equation, or its equivalent formulations of quantum mechanics. It yields the Dirac‟s equation for a single 

particle, with coming out of the spin as a new physical property, and spinors as mathematical expressions. Consequently, 

in quantum field theories, like quantum electrodynamics, a particle can, not only be created or annihilated, but it is no 

longer single and isolated.  

Nevertheless, in all cases, the quantum expression of material particles properties remains incomplete, since the 

fundamental equations are time-like. The absolute, and independent, time-like or space-like characters, leave open the 

geometrical description, and extension, in quantum mechanics: it can be point-like, and represented by a Dirac‟s 

space-like distribution (r0), or extended following, and consistent with, light-like interactions. 

As shown above, for the Einstein‟s program, such a concentrated distribution appears only as the geometrical optics 

approximation of a more general space-like amplitude function u(x,t). It completes the quantum framework, based upon 

time-like equations: of Klein-Gordon, (yielding the non-relativist Schrödinger equation), for bosons, and of Dirac 

(yielding half-integer spins), for fermions. 

3.4 Einstein’s Program Applications 

In addition to introduce a space-like function for material particles, supplementing time-like functions involved in 

quantum field theory, the Einstein‟s program tends towards a theoretical economy by showing how the different 

properties exhibited by matter and light in double slit experiment, derive from a basic scalar field propagating at 

velocity of light c. 

3.4.1 Theoretical Economy 

Following the Einstein‟s program, the same Helmholtz‟s equations describe the space repartition of light and matter. In 

the double slit experiments, one must specify the wave numbers kk =2π/λk =2πc/νk for light with frequency νk, and 

kb=2π/λb=2πmv/h for matter with mass m, in addition to boundary conditions existing for space. In both cases, the 

corresponding Helmholtz‟s equations derive from suitable approximations of the d'Alembertian‟s equation =0, for a 

scalar field propagating at speed of light c.  

Thus, matter and light remain always physically and mathematically closely linked,all along their manifestations, not 

only at their emission and detection, but also along their travel, by interactions with boundaries 

The Einstein‟s program enables a theoretical economy by deriving, such a close link according to the properties of the 

amplitude function U of an almost standing field. Following (11), relations (23) (24) establish the adiabatic invariant I, 

leading formally to Planck‟s constant h. It links energy-momentum densities w =I for the main field, and W =I 

for the interaction field. By transposition, and integration, they correspond respectively to the second quantification for 

matter, and to the first quantification for light. It is well known that, historically, more than two decades separated their 

discoveries: by Planck and Einstein for particles of light, and by de Broglie, Schrödinger, Heisenberg, for particles of 

matter.  
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3.4.2 Wave-particle Duality 

In the non relativist quantum mechanics framework, it is admitted that an individual particle, like an electron or a 

photon, holds continuously its point-like character from its emission by a localized source, to its local detection. During 

its travel, it cannot be destroyed and re-created. Thus, its physically possible opposite behaviors, either as an extended 

wave or as a concentrated particle, according boundary conditions, has intrigued physicists since 1920 years. How a 

point-like particle, could be aware of remote physical boundaries, in order to adapt its motion following a wave 

repartition, particularly in a the double-slit experiment? 

For instance, and as illustration, many experiments were devoted to try to determine through which slit the particle had 

effectively traveled? 

The Einstein‟s program invites us to adopt an opposite point of view, by dealing with wave field all along the process. It 

emphasizes the structural role of standing solutions of the scalar field propagating at light velocity for matter.  

Theoretically, they define rest systems, such the laboratory system. They yield special relativist properties for matter, 

particularly through the Lorentz transformation and its numerical coefficient, with energy conservation law and least 

action principle. 

Experimentally, physical devices rely on matter. The phenomenological boundary conditions for matter show that it is 

locally concentrated in atoms. This justifies that the geometrical optics approximation for the spherical standing waves 

energy, applies for electrons and for light, both at emission and detection from atoms. Depending their geometrical 

extension in double-slits experiments, they determine wave or particle manifestations, for matter first, and consequently 

for light, acting as its relativist main energy perturbation.  

For matter and for light, a unique Helmholtz‟s equation describes the whole results of its motion. Where boundary 

conditions are much larger than the wavelength λ, like the distance L between the source and the slits L ˃˃ λ, fulfilling 

the geometrical optics approximation condition λ→0, either for the light, or for the electron in double slit experiments, 

they behave as particles moving along trajectories or rays. Where boundary conditions are of order of the wavelength, 

like at the slits L ≈ λ, fulfilling the wave optics approximation condition, they lead to wave propagation.  
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