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Table I shows the comparison of test efficiencies between the traditional and swift reliability tests. For the swift test, it 
is plausible to establish accurate reliability prediction based on significantly reduced test time (by a factor of 205). The 
extrapolated device lifetimes at the use condition in Figures 4-6 show good quantitative agreement, within 10% 
variation. This is important not only for quick time-to-market, but also for environmental-friendly product qualification. 

4. Conclusions 

We have extensively studied the reliability characteristics of the 25G EML devices employed in the 100G QSFP 
transceivers over a wide range of stress current. We have developed a new swift reliability test methodology that can 
provide quick qualification feedback with accurate prediction to ensure robust long-term reliability. We have shown that 
the current dependence was stronger than the temperature dependence for the case of conservative Ea value (0.4eV). For 
the traditional aging, the N value was close to 2. For the swift test, the N increased to 6 that enabled excellent test 
efficiency without inducing any new failure mechanism. We have demonstrated that it is feasible to exercise the swift 
reliability test to shorten the qualification time and to improve the energy efficiency.  
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