
Adaptiv

1Department o
Minh City, Vi

Corresponden
Duc Thang Un

 

Received: Apr

doi:10.11114/

 

Abstract 

This paper pr
unknown distu
guarantee the 
controller is 
advantages an

Keywords: ad

1. Introductio

Variable struc
Zak & Hui, 19
in which a sw
on it thereafte
system dynam
VSC are fast 
implementing
system states 
high number o
controllers. O
output-based 
dynamic com
Nersisyan & 
structure syste
Spurgeon, 200
& Lai 2001) 
design was als
conditions. In
uncertain syst
mode output 
compensation
longstanding 
proposed the 
Zhang &Zhen
for a class of
uncertainties, 
order systems
proposed outp
most of the ex

ve Variab

of Power Syst
etnam  

nce: Van Van H
niversity, Ho C

ril 19, 2016   

set.v3i1.1564 

roposes an ada
urbances. Firs
system in slid
designed to f

nd effectivenes

daptive output 

on 

cture control (V
993). The conv

witching contro
er. The second

mics can have 
response and

g variable struc
availability, in
of sensors. In 

One is to use s
controllers, su

mpensators is v
Nisenzov, 19

em (VSS) is w
09; Nunes, Hs
proposed an o
so proposed by
n Choi’s study
tems with mism

feedback co
n scheme, Nun
problem of gl
robust fault-to

ng (2014), the 
f linear system
the authors of

s with mismatc
put feedback v
xisting results 

ble Struct

tems, Faculty 

Huynh, Depart
Chi Minh City,

 Accepted: M

         UR

aptive variable
st, a necessary
ding mode is a
force the syst
ss of the propo

feedback cont

VSC) has emer
ventional VSC
l law is given 
d one is the s
good performa

d strong robus
cture control s
ncluding the in
this situation, 

state observers
uch as static g
very important
90; Esfandiar

worth investig
su & Lizarralde
output feedbac
y Kwan (2001
y (1998), the 
matched uncer

ontrollers for 
nes, Hsu & L
lobal exact ou
olerant control
problem of de
ms with matc
f Ginoya, Shen
ched uncertain
variable struct
for mismatch 

ture Cont

Bach Hoang D

of Electrical &

tment of Powe
, Vietnam 

May 3, 2016  

RL: http://dx.d

e structure con
y and sufficien
asymptotically
tem states rea
sed approache

trol, Variable s

rged as a meth
C design can b
so that the sys

sliding phase. 
ance in the sli
stness with re
scheme on pra
nitial condition
 there are two

s to provide an
ain and dynam
t and has been
i & Khalil, 1
ating (Shyu, T
e, 2009; Hao &
ck controller f
), which discu
problem of d

rtainties. The w
plants with 

Lizarralde (200
utput tracking 
l problem for 
esigning adapti
ched external 
ndge, & Phadk
nties. As a resu
ture control sc
uncertain syst

81 

trol for M

Dinh1, Van Van

& Electronics 

er Systems, Fac

  Online Pub

doi.org/10.1111

ntrol (VSC) f
nt condition in 
y stable. Secon
ach the sliding
es are demonst

structure contr

hod capable of
be divided into
stem trajectory
The switching

iding mode (T
spect to unce

actical systems
ns, is a usually
o approaches in
n estimate of 
mic compensat
n established 
992). Howeve

Tsai, & Lai, 2
& Yang, 2013
for matched u
ussed the contr
designing a lin
works by Silva
matched and 

09) presented 
for uncertain 
uncertain line
ive output feed
disturbance. I

ke (2014) prese
ult, the closed-
cheme is asym
tems are requi

S

I

Mismatche

n Huynh1 

Engineering, 

culty of Electr

blished: July 12

14/set.v3i1.156

for a class of 
terms of linea

nd, an adaptiv
g surface and
trated via a num

rol, mismatche

f use in given r
 two phases. T

y can be trappe
g surface was

Tsai, Mai, & Sh
rtainties and d

s of industrial 
y conservative 
n designing th
the unmeasure
tor. Thus, the 
(Diong & Me
er, the direct 

2001; Kwan, 2
; Zhang &Zhe

uncertain syste
ollers’ design 
near sliding su
a, Edwards & 

mismatched 
a new variab
linear plants. 

ear systems via
dback variable
In order to ha
ented a new sl
-loop of misma

mptotical stable
ired that the di

Studies in Engin
Vol. 

ISSN 2330-203
Published 

URL

ed Uncer

Ton Duc Than

rical & Electro

2, 2016 

64 

mismatched u
ar matrix ineq

ve output feedb
d stay on it th
merical examp

ed uncertain sy

robust control 
The first phase
ed on a switchi
 determined in
hyu, 2006). Th
disturbances. 
relevance, the
and imposes h

he output feedb
ed states. The
design of asy

edanic, 1992; 
output feedba

2001; Choi, 19
eng, 2014). Th
ms. Another d
for uncertain s
urface was pr
Spurgeon (20
uncertainties.

ble structure c
The study by

a sliding mod
e structure con
andle a larger
liding mode ob
atch uncertain 
e. However, it
isturbances are

neering and Te
3, No. 1; Aug

38   E-ISSN 2
by Redfame P

L: http://set.redf

rtain Syst

ng University,

onics Engineer

uncertain syste
qualities is pro
back variable 
hereafter. Fin

ple.  

ystems 

systems (Kwa
e is the reachin
ing surface and
n such a way 
he main advan
However, in t

e assumption o
high set-up co
back variable 

e other is to ut
ymptotic obser
Emelyanov, K

ack design in 
998; Silva, Edw
he work by Shy
direct output f
systems with m
roposed for a
009) proposed 
. By using a

control law to
y Hao & Yang
e output feedb

ntrollers was de
r class of mis
bserver for gen
systems drive

t should be no
e bounded by 

echnology 
gust 2016 
330-2046 

Publishing 
fame.com 

ems 

 Ho Chi 

ring, Ton 

ems with 
posed to 
structure 
ally, the 

an, 1996; 
ng phase, 
d remain 
that the 

ntages of 
terms of 
of all the 
st due to 
structure 
tilize the 
vers and 

Korovinj, 
variable 

wards & 
yu, Tsai, 
feedback 
matching 

class of 
a sliding 
a hybrid 

solve a 
g (2013) 
back. By 
eveloped 
matched 
neral nth 
en by the 
oted that 
a known 



Studies in Engineering and Technology                                                            Vol. 3, No. 1; 2016 

82 

upper bounding function. In this paper, an adaptive variable structure control scheme is proposed for a class of systems 
where disturbances are bounded by an unknown function.  

2. Statement of the Problem 

Let the system to be controlled be represented by the following differential equation: 

  
[ ( , )] [ ( , )]x A A x t x B u g x t

y Cx

    



  (1) 

where nx R  is the state vector, mu R  is the control input, 
py R  is the output and m p n  . The 

matrices ,  A B  and C  are constant matrices with appropriate dimensions. The term A  represents the 
mismatched uncertainty of the plant which the matching condition is not satisfied and ( , )g x t  is the disturbance 
input.  

For the system, the following assumptions are made 

Assumption 1: ( , )A x t  is of the form 

( , ) ( , )A x t DF x t E   

where ( , )F x t  is unknown but bounded as ( , ) 1F x t   for all ( , ) nx t R R  , and D  and E  are known 
matrices of appropriate dimensions. 

Assumption 2: The exogenous disturbance ( , )g t x  is assumed to be bounded by a r-order polynomial of the norm of 
the output variables  

2
1 2 3( , ) ( ) ( ) ... ( )

r
rg x t a a x y t a x y t a x y t      

where the scalars 1 2 3,  ,  ,  . . .,  ra a a a  are unknown bounds, which are not easily obtained due to the complicated 

structure of the uncertainties in practical control systems. 

Assumption 3: The matrices B and C are full rank, and ( )rank CB m . 

 Under assumption 3, it follows from paper (Yan, Spurgeon, & Edwards, 2012) that there exists a coordinate 
transformation z Tx  such that the system (1) has following regular form.  

  1 2 1
1 2

23 4 2

     0
( ) (   ) ( ) [ ( , )]

    

A A D
z t F E E z t u g z t

BA A D

     
        

   
   (2) 

  2( ) 0   ( )y t C z t   (3)          

where 
1 21

3 4

     

    

A A
TAT

A A
  
  
 

,  11
1 2

2

    
D

TDFET F E E
D

  
  
 

, 
2

0
TB

B

 
  
 

 and  1
20      CT C  . The 

matrices 2
m mB R   and 2

p pC R   are non-singular.  

Let 1 2( ) [ ( )  z ( )]T T Tz t z t t  then the equation of (2) can be rewritten as 

1 1 1 1 1 2 1 2 2( ) ( ) ( ) ( ) ( )z t A D FE z t A D FE z t                   (4) 

 2 3 2 1 1 4 2 2 2( ) ( ) ( ) ( ) ( ) [ ( , )]z t A D FE z t A D FE z t u g z t        (5) 
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The output sliding surface can be defined as follows: 

                   
 2

2 2

( ( )) ( ) ( ) 0     C ( )

               ( ) 0

y t Ky t KCx t K z t

K z t

   

 
             (6) 

where m pK R   are obtained from the algorithm given in (Edwards and Spurgeon, 1998) and 2
m mK R   is 

non-singular.  

In sliding mode ( ( )) 0y t   and ( ( )) 0y t  , we have 2( ) 0z t  . Then, from equations (4) and (6), the sliding 
mode dynamics of system (1) associated with the sliding surface (6) is described by  

 1 1 1 1 1( ) ( ) ( )z t A D FE z t    (7) 

In what follows, our attention will be focused on two importance steps. The first step, appropriate LMI stability 
conditions by the Lyapunov method are derived such that sliding motion (7) is asymptotically stable. The second step, 
an adaptive output feedback variable structure control scheme is designed such that the system states reach the sliding 
surface (6) in finite time and stay on it thereafter. 

 Before proceeding, we will need the following lemma 

Lemma 1 (Choi, 1998): Let X , Y  and F  are real matrices of suitable dimension with TF F I  then, for any 
scalar 0  , the following matrix inequality holds: 

1 .T T T T TXFY Y F X XX Y Y     

3. Sliding Mode Stability Analysis 

In this section, the stability of the sliding motion is investigated. Let us begin with considering the following LMI: 
                       

 

1 1 1 1

1
1

1

                  

                -         0 0

                       0           -

T T

T

A P PA PD E

D P I

E I






 
 
  
 
  

  (8) 

where ( ) ( )n m n mP R     is any positive matrix and the scalar 0  . Then, the following theorem shows that 
sliding motion (7) is asymptotically stable. 

Theorem 1: Suppose that LMI (8) has a solution 0P  and the scalar 0  . The sliding surface is given by 
equation (6). Then, the sliding motion described in (7) is asymptotically stable. 

Proof: Now we are going to prove theorem 1. First, let us define a Lyapunov function candidate as 

                              1 1
TV z Pz                                 (9) 

where the positive-definite matrix P  is defined in (8). If we differentiate V  with respect to time combined with (7)  

then 

1 1 1 1 1 1 1 1 1 1 1 1[( ) ( )]  T T T TV z Pz z Pz z A D FE P P A D FE z                      (10) 

Using Lemma 1, we obtain that for the scalar 0    

1
1 1 1 1 1 1 1 1( )T T T TV z A P PA PD D P E E z                             (11) 

By the Schur complement, (8) is equivalent to                

 1
1 1 1 1 1 1 0.T T TA P PA PD D P E E       (12) 

After all, from equations (11) and (12), it is clearly that  
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0.V                                     (13) 

The inequality (13) implies that if the LMI (8) is feasible then sliding motion (7) is asymptotically stable.                       

Remark 1: Theorem 1 provides the new existence condition of the sliding mode via LMI technique, which can be 
easily worked out using LMI Toolbox in Matlab. 

4. Reachability Analysis 

The objective in this section is to design a static output feedback sliding mode control such that system states are driven 
to the sliding surface (6). In order to satisfy the above aim, the modified variable structure controller is selected to be        

    1 1 1
2 2 2( ) [ 0    0    ) ( )]u t B K C TAT K C TD ET t

  


         (14) 

where scalars 0  , 0   and  the adaptive law is defined as:                         

 
11

2
1

ˆ( ) ( )
r

i
i

i

t a t B T y   


   (15) 

where ˆ ( )ia t  is the solution of the following equations 

-11
2ˆ ( ) ,  1 . . . 

i
i ia t q B T y i r                     (16) 

in which scalars 0,  1 . . . iq i r  . 

The following Theorem is established to discuss detail conditions that system states are driven to the sliding surface (6). 

Theorem 2: Suppose that the LMI (8) has a solution 0P   and the sliding surface is given by equation (6). Consider 
the closed loop of system (2)-(3), then the control law (14) guarantees that the system state reaches the sliding surface in 
finite time for ( )z t  .   

Proof: Let us consider the following Lyapunov function 

                                      
2

1

( )1 1
.

2 2

r
T i

ii

a t
V

q
 


  


                    (17) 

where ˆ( ) ( )i i ia t a a t  , the scalar 0iq   1,  . . .,  i r . By differentiating V with regard to time using (6) 

yields that 

                           

 

1 1

2
1

垐( ) ( ) ( ) ( )
( )

ˆ( ) ( )
0    ( ) .

r r
T Ti i i i

i ii i

r
T i i

ii

a t a t a t a t
V Ky t

q q

a t a t
K C z t

q

  



 



   

 

 



    




         (18) 

Substituting equation (2) into equation (18), one can get 

 

 

   

1 1
2 2

1

1 1
2 2 2

2
1

ˆ( ) ( )
0    ( ) ( ) [ ( , )]

   ( 0    0    ) ( )

ˆ( ) ( )
      ( , ) .

r
T T i i

ii

T

r
i i

ii

a t a t
V K C TAT TDFET z t B u g z t

q

K C TAT K C TD ET B u t

a t a t
B g z t

q

 

  



 



 



    

  

 









        (19) 

From assumption 2 we have 
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   

   

1 1
2 2 2

11
2

1 1

1 1
2 2 2

11
2

1 1

( 0    0    ) ( )

ˆ( ) ( )
  

 ( 0    0    ) ( )

ˆ( ) ( )
  .

T

r r
i i i

i
ii i

T

r r
i i i

i
ii i

V K C TAT K C TD ET z B u t

a t a t
a B T z y

q

K C TAT K C TD ET B u t

a t a t
a B T y

q

 



  

 

 



 

 



 

  

 

  

 

 

 







        (20) 

Substituting equations (14)-(16) into equation (20), it is clearly that  

1 11 1
2 2

1 1

( ) ( ) .
r r

i i
i i

i i

V t a B T y a t B T y       

 
             (21) 

Clearly, we obtain 

0.V                     (22) 

Thus, the proof is completed.                                                                                     

Remark 2: From VSC theory, Theorems 1 and 2 together show that the sliding surface (6) with the output feedback 
variable structure controller (14) guarantee that: 1) at any initial value the system states reach the sliding surface and 
stay on its thereafter; and 2) the mismatched uncertain system (1) is asymptotically stable. 

5. Numerical Example 

In this section, we test the proposed adaptive output feedback controller on the mismatched uncertain system used by 
Silva, Edwards & Spurgeon (2009) 

1     1     -1 0

( 1   -1     0 ) 0 ( )

4     0     2 1

x A x u g

   
          
      

             (23) 

0    1     0

0    0     1
y x

 
  
 

     (24) 

where the mismatched uncertain is given as A DFE   with  1    1    1
T

D  ,  1    1    1E   and 

0.9sin( )F x ; the disturbance is assumed to satisfy as 
2

( , )) 0.01 0.9 0.9x t y y    . 

The coordinate transformation is given as 

-1     0     0

0    -1     0

-5      0     1

T

 
   
  

. The matrices 2 1B  , 2
-1    0

 0    1
C

 
  
 

 are 

non-singular and the matrix 1
-4     1

 1    -1
A

 
  
 

 is stable. Using LMI approach which mentioned in (8), we can find the 
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