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Abstract 

The overall aim of this study is to investigate the effect of school-related factors and early learning experiences on 

mathematics achievement. In this causal-comparative research, HLM analysis was performed on the data of 6378 

students, their parents, and 241 school principals and primary school teachers. As a result of the HLM analysis, at the 

student level, learning resources at home, parent-child communication on homework/assignments, parent-child 

activities in early learning years, and the skills acquired during these years were found to have statistically significant 

effects on the mathematics academic achievement scores of primary school students. At the school level, on the other 

hand, the socioeconomic structure of the school, the importance that the school attaches to mathematics academic 

achievement and teachers’ perceptions about it, teachers’ experiences, and a safe and disciplined school environment 

have significant effects. These results indicate the importance of early learning experiences especially in the 

development of the academic performance of primary school students. 

Keywords: early learning experiences, school characteristics, TIMSS 2015, mathematics achievement, HLM analysis 

1. Introduction 

Considering the education system’s objectives of raising effective individuals, the quality of educational activities 

comes to the forefront to raise individuals with prediction skills, curiosity, and an improved ability to reason, analyse, 

and to solve real-life problems. Increasing the quality of education improves students’ knowledge and skills in different 

areas and enables them to perform better.  

The approach to be adopted to carry out the monitoring and evaluation activities in line with this in a healthy manner is 

important. Reddy (2005) argues that the most realistic approach to such activities is an international comparison. 

International comparisons help compare different education systems and provide countries with the opportunity to make 

necessary changes in light of the scientific data. 

In this respect, one of the international applications that Turkey has participated is the ‘Trends in Mathematics and 

Science Study- TIMSS’, applied to students at grades 4 and 8 in four-year periods by IEA. It aims to evaluate students’ 

mathematics and science knowledge and skills (IEA, 2017). For this purpose, TIMSS examines student, home, school 

and class factors associated with students’ achievement. 

Various environmental factors significantly affect students' academic achievement (Eccles & Wigfield, 2002; Scherer & 

Nilsen, 2016; Lamb & Fullarton, 2002; Marzano, 2003; Hattie, 2009). One of these is, as defined in TIMSS 2015, 

school-related factors (Hooper, Mullis & Martin, 2013): socioeconomic structures of schools, impacts of schools on 

academic achievement, safe and disciplined school climate, educational activities at school, and qualifications of 

teachers. 

Also, for the first time in TIMSS 2015, a different factor was put forward that may affect the academic achievement of 

4th grade students: “home context”. The items in the home survey developed in this direction include factors associated 

with early learning experiences which are critical in childhood (Teale & Sulzby, 1992). 

The fact that the early childhood period has a significant share in the development of academic knowledge and skills in 
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primary school makes the studies on this subject important. Indeed, some studies (Kyriakides, 2006; Blomeke, Suhl & 

Kaiser, 2011; OECD, 2013) have reported that the interaction between parents and schools affects students' achievement. 

Scherer and Nilsen (2016) stated that there are a limited number of studies (Seidel & Shavelson, 2007; Wang & Degol, 

2015) that address various school-related factors, qualifications of classroom teaching activities, and parental 

characteristics concerning the international academic achievement.  

The present study brings together some family-based factors, early childhood experiences, and some school-related 

factors with the aim of investigating to what extent these factors affect students' mathematics achievement in primary 

school. 

1.1 The Purpose of the Research 

The overall aim of this study is to investigate the effect of school-related factors and early learning experiences on 

academic achievement (mathematics achievement). To this end, answers to the following questions were sought: 

1.  How much of the differences in students’ mathematics achievements result from the differences between schools?  

2. Do students’ mathematics achievement scores differ regarding their early learning experiences? If there are 

differences, what are the early learning experiences that explain this difference? 

3. How much of the variance in mathematics achievement scores is explained by the early learning experiences with 

significant effects? 

4. Do students’ mathematics achievement scores differ regarding school-related factors? If there are differences, which 

school-related factors explain this difference? 

5. How much of the variance in mathematics achievement scores is explained by the school-related factors with 

significant effects? 

2. Method 

2.1 Research Model 

Since the present study aimed to determine and compare the variables affecting the mathematics achievement scores of 

the 4th-grade students who participated in TIMSS 2015, it was conducted with the causal-comparative design, one of 

the quantitative research methods. The causal-comparative design is a research design that seeks to determine the cause 

or consequences of differences that already exist between or among groups of individuals. In other words, it aims to 

identify the causal variables that affect the consequence-related variable or the consequences of the cause without any 

intervention on participants and conditions (Buyukozturk, Cakmak, Akgun, Karadeniz & Demirel, 2011, p. 226; 

Fraenkel, Wallen & Hyun, 2012). Since the linear relations, as well as strong nonlinear relations, were predicted among 

the variables, relational screening models were not preferred in order not to fail to notice these relationships (Tabacnick 

& Fidell, 2001). 

2.2 Sample 

In the first stage of the implementation of the TIMSS, schools were listed according to their demographic variables. After 

that, schools were determined from this list using the probability-proportional-to-size sampling method. Then, random 

branches were selected from the schools (LaRoche, Joncas&Foy, 2016, p. 3.11). 

TIMSS 2015 enrolled a total of 6456 Turkish fourth-grade students, the parents of these students (n= 6456), the teachers 

of these students (n=249), and the principals of schools (n=242)(LaRoche&Foy, 2016). As a result of the preliminary 

analysis, this study was carried out with data obtained from 6378 parents, 241 primary school teachers, and 241 school 

principals. Within the scope of the research, average mathematics achievement scores (PV1-5) of 6378 students (3148 

girls and 3230 boys) were calculated. 

2.3 Data Collection Tools 

As indicators of students’ mathematics achievement, the results obtained from the mathematics achievement test in 

TIMSS (plausible values) were used. A booklet contains an average of 10-15 mathematics questions, half of which is 

multiple choice and the other half is structured test-item response. The items include the following learning areas: 50% 

numbers, 35% geometric shapes and measurement, 15% data display. Besides, the cognitive domain distribution of items 

is as follows: 40% knowledge, 40% practice and 20% reasoning (Martin, Mullis & Foy, 2013). 

“Teacher surveys” were used to obtain data on classroom teaching practices and teachers’ characteristics. Of the 21 

items, 11 mathematics-related items were filled in by the teachers. 

Another part of school-level variables was obtained through the “school survey”. The 22-item survey was filled in by 

the principals. All the student-level variables were obtained by the “early learning (home) survey”.  
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This 23-item survey was filled in by parents. The items were on the following topics: home resources that support 

children’s reading and arithmetic skills; literacy in early childhood; children’s arithmetic and science skills; parents’ 

educational backgrounds, occupations and attitudes towards science and mathematics (Hooper et al., 2013).  

2.4 Data Collection 

The data of the study were obtained through the achievement tests and surveys applied to the 4th-grade students in 

TIMSS 2015 (TIMSS, 2015).  

2.5 Data Analysis 

2.5.1 Multilevel Analysis  

The majority of the data obtained in the studies measuring the qualifications of students are hierarchical (graded) due to 

the sampling structure or sampling techniques (Atar, 2014). The TIMSS exhibits a hierarchical structure: students are 

clustered in classes, classes in schools, schools in regions and regions in countries (Hooper et al., 2013). Hox (2002) 

argues that the application of single-level models for the analysis of data in this structure will cause statistical and 

conceptual problems.  

Multilevel models while working on data with hierarchical structure enables the separation of the variances within 

groups and between groups. Therefore, more reliable results are obtained since the effects both within and between 

groups can be analyzed separately. However, since single-level analysis methods require the aggregation of data at a 

higher level or the disaggregation of data to a lower level (Raudenbush & Bryk, 2002; Heck and Thomas, 2009), group 

effect is not noticed in the disaggregation model and the individual effect not noticed in the aggregation model. 

Therefore, the effects of the individual or group cannot be seen (Raudenbush & Bryk, 2002). 

One of the basic assumptions of single-level analysis methods is the homoscedasticity. Multilevel models allow the 

calculation of within-group and between-groups variances associated with dependent variables, enabling an 

understanding of the effects of the levels (Raudenbush and Bryk, 2002; Hox, 2002; Heck and Thomas, 2009). Another 

of the basic assumptions of single-level analysis methods is the independence of observations. Osborne (2002) argues 

that the data obtained for different groups in a hierarchical structure tend to be more similar to each other. In this case, it 

is impossible to achieve completely independent observations from the students in the same unit. Multilevel models 

may violate the assumption of independence of observations. 

Another statistical problem in the use of single-level models in the analysis of data in a hierarchical structure is that the 

standard errors of the regression coefficient estimates are underestimated. In this case, the severity of the estimated 

regression coefficients can be overestimated. In multi-level models, however, this can be eliminated by including a 

random effect factor ( ) at each level. Thus, variability in random effects is taken into account, and standard errors 

can be estimated accurately (Raudenbush and Bryk, 2002). 

Due to the statistical advantages mentioned in the analysis of the hierarchical data, the data of this study were analysed 

by the Hierarchical Linear Modelling (HLM).  

2.5.2 HLM Analysis  

Level-1 variables in the HLM are student-level variables. Level-2 variables are school-level variables. In the first stage 

of the analysis, the following steps were applied to the variables included in the home, teacher and school surveys and 

preliminary analyses were performed. After the data were arranged in line with the purpose of the study, they were 

included in the HLM analysis. 

 The Arrangement of Data: “X” refers to Level-1 variables while “W” refers to Level-2 variables. SPSS files were 

created for student and school-level variables. The category of multi-category variables was reduced to two.  

 Data Cleaning: By the purpose of the research and relevant literature, some items in the surveys were excluded 

from the data. Variables with index score were deleted from the data. 

 Correlation between Variables: Correlation between dependent variables and independent variables was examined, 

and student and school-level variables not correlated with the dependent variable were checked. Among the 

independent variables included in the study, there was none that was not correlated with the dependent variable. 

 Multicollinearity: The correlations of the independent variables in Level-1 were examined to see if there was 

multicollinearity. Multicollinearity exists whenever there is a correlation value greater than 0.90 (Tabachnick & Fidell, 

2001, 88). Among the variables predicted to be included in Level-1, those with a high (> 0.90) relationship were 

checked. Since no highly correlated variables were found, no variables from the Level-1 file were deleted.  

 Missing Value Analysis: Firstly, it was checked whether the missing data in Level-1 was systematically distributed. 

The missing data analysis performed in the SPSS program and the significance of Little’s MCAR test showed that the 
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missing data was systematically distributed. If the missing data is below 5%, the listwise method can be applied 

(Garson, 2008). An alternative to handling missing values for quantitative missing data of over 5% and with systematic 

distribution in large samples is to make estimations about the missing value (imputation) and to use these values in the 

actual analysis (Cokluk, Olculuoglu & Buyukozturk, 2018, 11). The most common three methods are "the use of past 

information", "mean substitution", and "regression" (Tabacnick & Fidell, 2001; Mertler &Vannatta, 2005; Cokluk et al., 

2018). In this study, the missing data without a random distribution was not deleted (the listwise method was not 

applied); rather, multiple imputation-MI was conducted by the SPSS regression technique. The advantage of regression 

over the mean substitution technique is that it is more objective than the prediction made by the researcher and contains 

more information than simply assigning a mean value (Tabachnick & Fidell, 2001). 

 Outlier Removal: In scientific research, differentiation of any subject from the rest of the sample constitutes an 

outlier. Especially when working on large samples (n>400), outlier removal procedure is performed to check if there is 

a value that is left ± 4 points outside after values of continuous variables are converted to Z points (Tabacnick & Fidell, 

2001; Mertler & Vannatta, 2005). Once the outliers were removed from the data set, the sample of the study consisted 

of 6378 students, 6378 parents, 241 schools and 241 teachers.  

 Exploratory Analysis: It was conducted for Level-2 variables. The t-test is one of the best indicators to determine 

which Level-2 variables will be included in the HLM analysis. The obtained t value shows the approximate result to be 

achieved when a predictor variable is added to the Level-2 equation. Therefore, if the t value is greater than 1, then the 

corresponding variable can be included in the analysis (Raudenbush & Bryk, 2002, p. 270). Of the 26 variables 

associated with mathematics achievement, the t values of 19 variables were significant. All the variables with 

significant t value were included in the model.  

Variables with insignificant t value were excluded from the analysis. Finally, there were 16 student-level variables and 

19 school-level variables associated with mathematics achievement. 

Variables: The dependent variables were TIMSS 2015 mathematics achievement scores. The independent variables 

were student-level (Level-1) characteristics (home survey), and school-level (Level-2) characteristics (school and 

teacher surveys). Table 1 and Table 2 present descriptive statistics of the variables included in the HLM program. 

Table 1. Descriptive statistics of Level-1 variables included in the HLM analysis 

Variables N Mean SD Minimum Maximum 

X12 6378 8.42 1.98 0.69 15.03 

X13 6378 9.05 2.25 1.52 15.30 

X14 6378 9.15 2.39 2.00 15.54 

X15 6378 1.05 0.92 0 3 

X16 6378 1.54 0.49 1 2 

X17 6378 10.65 1.87 3.94 12.45 

X18 6378 10.71 1.70 2.47 12.66 

X19A 6378 1.25 0.74 1 5 

X19B 6378 2.07 1.28 1 5 

X19C 6378 1.93 1.27 1 5 

PV1 6378 483.174 95.21 114.44 770.91 

PV2 6378 482.703 95.58 116.41 766.78 

PV3 6378 483.417 95.57 72.05 773.45 

PV4 6378 482.573 96.09 84.48 868.08 

PV5 6378 483.175 95.87 84.73 784.46 
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Table 2. Descriptive statistics of Level-2 variables included in the HLM analysis 

Variables N Mean SD Minimum Maximum 

W1 241 9.07 2.01 1.11 16.73 

W2 241 8.66 2.23 3.69 12.88 

W3 241 2.29 0.80 1.00 3.00 

W8 241 15.92 10.43 1.00 42.00 

W9 241 10.31 1.75 4.30 12.40 

W10 241 0.01 0.99 -1.62 3.17 

W12 241 9.29 1.97 2.81 15.82 

W13 241 9.67 2.16 3.75 13.41 

W14 241 8.95 2.25 3.19 13.57 

W15 241 11.48 2.08 5.54 18.41 

W16 241 8.77 1.74 3.80 14.51 

W17B 241 1.57 0.551 1.00 3.00 

W19 241 9.31 2.03 2.81 15.82 

W20C 241 2.47 0.76 1.00 4.00 

W20D 241 2.88 0.85 1.00 4.00 

W20E 241 2.31 0.91 1.00 4.00 

W20F 241 1.48 0.74 1.00 4.00 

W20G 241 1.59 0.79 1.00 4.00 

W20H 241 1.19 0.50 1.00 3.00 

“X” is encoded for Level-1 variables and “W” for Level-2 variables. Accordingly, X12 denotes learning resources at 

home; X13 pre-school learning activities; X14 pre-school skills; X15 level of participation in pre-school education; X16 

primary school starting age; X17 parents’ opinions on students’ performance; X18 parents’ attitudes towards science and 

mathematics; X19A school assignments; X19B parents’ helping with assignment; and X19C parents’ monitoring 

assignments. For these variables, parents’ responses to the home survey were used. W1 denotes the importance schools 

attach to academic achievement; W2 a safe and disciplined school environment; and W3 socioeconomic structure of 

schools. For these variables, principals’ responses to the school survey were used. Furthermore, W8 denotes teachers’ 

experiences; W9 professional satisfaction; W10 self-confidence in mathematics teaching; W12 teachers’ perceptions 

about the importance that schools attach to academic achievement (teachers); W13, perceptions of a safe and disciplined 

school structure (teachers); W14 problems related to school facilities and resources (teachers); W15, difficulties 

encountered (teachers); W16, limited education due to students’ needs; W17B feedback on mathematics homework; 

W19 emphasis on research; 20C use of interesting material s;20D challenging activities; 20E classroom discussions; 

20F connection between new contents-previous contents; 20G deciding on problem-solving durations; and 20H 

expressing thoughts. For these variables, teachers’ responses to the teacher survey were used. 

 Assumptions of HLM: Following preliminary analyses, the assumptions were first checked for HLM analysis. Using 

the data from the residual files created for Level-1 and Level-2, the normal distribution of residues, their homogeneity 

and their relations with each other were investigated. The results of the Shapiro-Wilk test for the normality of residues 

at both levels were significant (p =0,000); Skewness and Kurtosis values within the range of +1 to -1 (± 1) indicate that 

the residues at both levels did not show large deviation (Cokluk, Sekercioglu & Buyukozturk, 2012). The residues in 

Level-1 showed a homogeneous distribution close to normal and the variables were independent of " r it", which is the 

error term at this level, and of random effects at other levels. For Level-2, the slope coefficients of the cut-off point and 

variables at this level showed a normal distribution. The variables were independent of “u0j”, which is the error term at 

this level. Also, Level-2 errors show multiple normalities with an average of zero. Therefore, the assumptions of HLM 

for Level-1 and Level-2 were met. 

 Construction of Multivariate Data Matrix (MDM) Files: According to the results of the assumptions, MDM files 

were created in the HLM program, and the models related to answering the research problems were analysed through 

these files. 

 Centering the variables: In the study, centering was performed to eliminate the bias caused by the multicollinearity 

problem (Raudenbush & Bryk, 2002). For the continuous variables in Level-1 and Level-2, grand-mean centering was 

performed; and for the categorical variables in both levels, un-centering was performed.  

 Random and Fixed Effects: In the two-level Hierarchical Linear Model, student-level (Level-1) variables were 

randomly assigned to the second model to test the significance of the error terms of the variables. The variables with 

significant error terms (u0j) were randomly assigned to model 3 where the intersection and slope coefficients were 

output; the variables with insignificant error terms (u0j) were fixed to the model. 

 Effect Size: To determine whether the interpretations as a result of the data analysis indicated significance about 

daily life, the effect size calculation was performed by dividing the constant coefficients obtained by the analysis 
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conducted at each level to the standard deviation of the residual value at the corresponding level. An effect size of 0.41 

is considered “minimum”, an effect size of 1.15 is considered “medium”, and an effect size of 2.70 is considered “large” 

(Ferguson, 2009).  

With the completion of preliminary analyzes, HLM models were established. To answer the research problems, 

SPSS-based HLM 7.01 program developed by Raudenbush and Bryk (2002) was used, and the models were tested. 

2.5.3 HLM Models  

1) One-Way ANOVA with Random Effects: With this model, the question “How much of the differences in students’ 

mathematics achievements result from the differences between schools?” was answered. Also, it was checked whether 

the HLM is suitable for the analysis of the data. In this model, there is no explanatory variable for Level-1 or Level-2 

(Hox, 2002). Model equations are as follows (Raudenbush & Bryk, 2002). 

 Level 1: Yij=β0j+rij (1) 

  Level 2: β0j=γ00+u0j (2) 

Here,  

“Yij” denotes the i student’s mathematics achievement score at the j school; 

“β0j” denotes the average mathematics achievement score of the j school, 

“rij” denotes the error score of the i student at the j school, i.e. the difference between the i student’s average 

mathematics achievement score and the j school’s average mathematics achievement score. It is assumed that the error 

score at each student level is normally distributed with “0” average and fixed Level-1 (σ2) variance. 

“γ00” denotes the average mathematics achievement scores of the schools;  

“u0j” denotes the error score of the j school, i.e. the difference between the average mathematics achievement score of 

the j school and the general average mathematics achievement score. It is assumed that the error score at each school 

level is normally distributed with “0” average and “τ00” variance. An u0j value close to zero means that there is very 

little difference between schools.  

2) Random Coefficients: In this model, student variables associated with mathematics scores were assigned to the 

Level-1 to determine which student-level variable affects mathematics achievement score. Level-2 variables are not 

included in this model (Raudenbush&Bryk, 2002). Equations of the model are as follows. 

            Level 1: Yij=β0j+β1jXij+rij (3)  

         Level 2: β0j= γ00+u0j (4)  

          β1j= γ10+u1j 

Here, 

“β1j” denotes expected change in the average mathematics achievement scores for a one-unit change in the 

corresponding independent variable at the j school (when other predictive variables are controlled); 

“Xij” denotes the value of the independent variable for the I student at the j school; 

“β1j” denotes expected change in the average mathematics achievement scores versus one-unit change in the 

corresponding independent variable at the j school (when other predictive variables are controlled);  

“γ10” denotes the average school slope for the corresponding variable at the school level (the effect of the 

corresponding variable on the mathematics achievement score of the j class); 

“u1j” denotes the effect of the j school on the Level-1 slope. 

3) Intercepts and Slopes as Outcomes Model: To Level 1 of this model established to answer the questions 4 and 5, 

student-level variables, and to Level 2, school-level variables were assigned. Then, the HLM analysis was performed. 

School-level variables associated with mathematics achievement scores were determined. Also, the relationship 

between school-level variables and student-level variables could be observed. Equations of the model established in this 

direction are as follows (Raudenbush&Bryk, 2002):  

  Level 1: Yij=β0j+βijXij+rij (5) 

      Level 2: β0j= γ00+ γ01(Wj)+u0j (6) 

           β1j=γ01+ γ11(Wj)+u1j 

Here, 
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“γ00” denotes Level-1 intercept in the case any school has a value of 0 in the corresponding independent value (W=0); 

“γ01” denotes the estimated effect of a unit change in the corresponding school-level variable on average mathematics 

achievement scores when other predictive variables in the model are controlled;  

“Wj” denotes the corresponding independent value at school-level; 

“γ10” denotes the estimated Level-1 slope for a group with W=0; 

“u1” denotes the effect of the j school in Level-1 slope when Wj is kept constant 

3. Results 

3.1.1 Research Problems 

Table 3a. and Table 3b. present the results of the analysis of the One-Way ANOVA with Random Effects conducted to 

determine whether there is a difference between the mathematics achievement scores of the schools in TIMSS 2015. 

 

Table 3a. One-Way ANOVA Fixed Effects Model Analysis Results 

Fixed Effects Coefficients Standard Error 

(SE) 

T Approximate 

s.d. 

p 

Cut-off Point, γ00 481.49* 3.98 120.97 240 0.000 

*p <0.05 

According to Table 3a., the average mathematics achievement score can be estimated as 481.49 with a standard error of 

3.98. When the confidence interval is calculated for the estimated overall averages [%95CI(γ00)=γ00± (1.96)(SH)], the 

real value of the average mathematics achievement scores is expected to be between 483.45 and 479.53. Furthermore, 

the reliability coefficient of the overall average of mathematics achievement scores was 0.927. According to these 

results, fixed parameters were significant (p <0.05). Mathematics achievement varies significantly between schools. In 

this respect, the data has a nested structure, and therefore it should be analysed with multilevel models. 

Table 3b. One-Way ANOVA Random Effects Model Analysis Results 

Random Effects Standard Deviation Variance Component s.d. χ2 

Level -2, (u0) 59.56* 3547.72 240 4435.79 

Level -1, (rij) 74.31 5522.79   

*p <0.05 

In Table 3b, intra-school variability (σ2) on average mathematics achievement score was estimated as 5522.79 while the 

inter-school variability (τ00) was estimated as 3547.72 (χ2 =4435.79, s.d.=240). The extent to which the variability 

between mathematics achievement scores is explained by the levels is calculated using the inter-class correlation (ICC) 

(Raudenbush & Bryk, 2002). 

 ρ=σ2/(τ00 + σ2):5522.79/ (3547.72+5522.79)=0.60 (7) 

 ρ=τ00/(τ00 + σ2): 3547.72/(3547.72+5522.79)=0.40 (8) 

Accordingly, 40% of the total variability in the mathematics achievement scores is due to the differences between 

schools, and 60% is due to the differences between students.  

3.2 Research Problems 

According to the results of the analyzes of the Random Coefficient-Regression Model established to find answers to the 

2nd and 3rd problems, six student-level variables [parents’ monitoring children’s assignments (X19A), parents’ helping 

children with their assignments (X19B), learning resources at home (X12), pre-school learning activities (X13), 

pre-school skills (X14), parents’ attitudes towards science and mathematics (X18)] have significant effects on 

mathematics achievement scores (p <0.05) while four variables [parents’ control of children’s assignments (X19C), 

parents’ views on school performance (X17), level of participation in pre-school education (X15), primary school 

starting age (X16)]] do not have significant effects (p >0.05). 

The variables with insignificant effects on mathematics achievement scores [X19C (γ80=4.98, SH=2.10, p >0.05), X17 

(γ80=4.98, SH=2.10, p >0.05), X15 (γ80=0.43, SH=1.18, p >0.05), ve X16 (γ80=2.21 SH=2.24, p>0.05)] were 

excluded from the analysis and the Final Random Coefficient Regression Model was established. The results of the 

fixed effects and variance components of the final model obtained by the final analysis are given below. 
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Table 4a. Estimation of Fixed Effects of Random Coefficient Regression Model 

Fixed Effects Coefficients Standar Error t Approximate sd p Effect Size 

Cut-off point1, β0 
Cut-off point2, γ00 

 
481.42 

 
3.99 

 
120.64 

 
240 

 
0.000 

 
----- 

X19A Slope, β1 
Cut-off point2, γ10 

 
-3.96 

 
1.86 

 
-2.12 

 
130 

 
0.035 

 
-0.05 

X19B Slope β2 
Cut-off point2, γ20 

 
2.91 

 
0.96 

 
3.03 

 
57 

 
0.004 

 
0.03 

X12 Slope, β4 
Cut-off point2, γ40 

 
11.78 

 
0.76 

 
15.37 

 
240 

 
0.000 

 
0.15 

X13, β5 
Cut-off point2, γ50 

 
4.79 

 
0.76 

 
15.37 

 
240 

 
0.000 

 
0.06 

X14 Slope, β6 
Cut-off point2 γ60 

 
4.31 

 
0.54 

 
7.84 

 
240 

 
0.000 

 
0.05 

X18 Slope, β8 
Cut-off point2, γ80 

 
1.03 

 
0.65 

 
1.58 

 
240 

 
0.114 

 
----- 

According to Table 4a., the average mathematics achievement scores of the schools as a result of the variables in the 

analysis is 481.42. This value reflects a student’s score if the student’s other variables in the model are equal to the 

average value of the group. 

“Learning resources at home (X12)” variable has the highest effect on the average mathematics achievement of schools. 
(β4) was estimated to be approximately 11.78 with a standard error of about 0.76. Since the p-value of this coefficient 

was statistically significant (p<0.05, sd.=240), when the other variables in the model are controlled, a one-unit increase 

in learning resources at home may result in an 11.79 unit increase in the students’ mathematics achievement scores. 

Furthermore, the average mathematics achievement score of students with a lot of learning resources at home is 11.79 

units more than the students with less learning resources at home. When a 95% confidence interval for (β4) is generated, 

its actual value is expected to be in the range of 13.75 to 9.83. Considering its sie (0.15), the effect of this variable is too 

small to be felt in daily life. 

The variable “parents’ helping the children with their assignments (X19B)” has the lowest effect on the average 

mathematics achievement of schools γ20=2.91, SH=0.96, p<0.05). Finally, the variable “parents’ attitudes towards 

Science and Mathematics (X18)” does not significantly affect students’ academic achievements (γ60=1.03, SH=0.65, 

p>>0.05). 

Table 4b presents the estimation of the variance components of the Final Random Coefficient-Regression Model to 

determine how students’ mathematics achievement scores differ between schools according to their early learning 

experiences. 

Table 4b. Estimation of the Variance Components of the Final Random Coefficient Regression Model 

Random Effect Standard 
Deviation 

Variance 
Component 

s.d. χ2 p 

Level-2 Error Term, u0j 59.912 3589.55 209 5120.00955 0.000 
X19A Slope, u1 11.202 125.49 209 125.49005 0.034 
X19B Slope, u2 3.635 13.21 209 204.46677 >.500 
X12 Slope, u3 6.140 37.71 209 265.42784 0.005 
X13 Slope, u4 3.175 10.08 209 218.24732 0.316 
X14 Slope, u5 3.286 10.80 209 240.56226 0.066 
X18 Slope, u6 4.697 22.06 209 247.60361 0.035 

Level-1 Error Term, rij 67.968 4619.66    

According to Table 4b, random effects of u1, u3, u6 coefficients are significant (p <0.05). The residual variance at 

student level (4619.66) is smaller than the variance (5522.79) obtained in the ANOVA model. This indicates that the 

difference between the students in mathematics achievement scores decreases by the addition of early learning 

experiences. 

In line with the “[(5522.79-4619.70)/5522.79]= 0.16” value obtained by the “ [σ2(ANOVA)-σ2(Final Random 

Coefficient Model)]/σ2(ANOVA)] ” operation to explain how the inclusion of determined student-level variables in the 

model reduces the random error variance at the student level, 16% of the differences between students’ mathematics 

achievement scores (60%) is explained by parents’ monitoring their children’s assignments, parents’ helping with their 

children’s assignments, learning resources at home, pre-school learning activities, and pre-school skills. The remaining 

84% of the variance can be explained by other student-level variables not included in this model. 
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3.3 Findings on the 4th and 5th Research Problems 

To answer the 4th and 5th questions, HLM analysis was established in which the intersection and slope coefficients 

were the dependent variables. According to the analysis of the model, the variables included in the model [the 

importance the school attaches to academic achievement (W1) (γ01=7.57, SH=1.96, p <0.05), a safe and disciplined 

school environment (W2) (γ02=3.60, SH=1.46, p<0.05), socioeconomic structure of the school (W3) (γ03=-10.54, 

SH=4.51, p <0.05), teachers’ experiences (W8) (γ04=1.47, SH=0.306, p<0.05), and teachers’ perceptions of the 

importance that the school attaches to academic achievement (W12) (γ14=5.73, SH=2.33, p <0.05)] significantly affect 

students’ mathematics achievement.  

The variables with insignificant effects were excluded from the model, and the analyses were repeated. The final model 

was established only with the variables with significant effects. Table 5a presents the results of the final analysis. 

Table 5a. Estimation of Fixed Effects of the Final Model where the Intersect and Slope Coefficients were Output 

Fixed Effects Coefficients Standard 
Error 

t p Effect Size 

Average Mathematics 
Achievement, β0 

Fixedγ00 

 
481.322 

 
3.00 

 
160.113 

 
0.000 

 
----- 

W1, γ01 8.530 1.88 4.528 0.000 0.14 
W2, γ02 3.482 1.39 2.504 0.013 0.05 
W3, γ03 -10.276 4.37 -2.348 0.020 0.17 
W8, γ04 1.518 0.29 5.517 0.000 0.02 

W12, γ014 5.829 1.72 3.378 0.001 0.09 
X19A Model for Slope, β1 

Fixed, γ10 
 

-4.09 
 

1.88 
 

-2.174 
 

0.031 
 

----- 
X19B Model for Slope, β2 

Fixed, γ20 
 

2.955 
 

0.94 
 

3.126 
 

0.000 
 

----- 
X12 Model for Slope, β4 

Fixed, γ40 
 

11.865 
 

0.76 
 

15.514 
 

0.000 
 

----- 
X13 Model for Slope, β5 

Fixed, γ50 
 

4.830 
 

0.68 
 

7.047 
 

0.000 
 

----- 
X14 Model for Slope, β6 

Fixed, γ60 
 

4.162 
 

0.50 
 

8.316 
 

0.000 
 

----- 
X18 Model for Slope, β8 

Fixed, γ80 
 

0.914 
 

0.66 
 

1.369 
 

0.172 
 

----- 

The socioeconomic structure of the school (W3) has the highest impact on the average mathematics achievement of 

schools. However, this effect is negative. After controlling other variables in the model, the effect of the variable on the 

average mathematics achievement of schools was estimated as -10.276; the standard error of the estimation is 4.37. A 

one-unit increase in schools where students with poor economic background are enrolled will cause a decrease of 11 

points in mathematics achievement scores. The effect (0.17) of the variable with a statistically significant (p <0.05) 

effect on mathematics achievement is felt at a moderate level in daily life. 

The variable “teachers’ experiences” (W8) has the lowest impact on the average mathematics achievement of schools. 

After controlling other variables in the model, the effect of W8 on the average mathematics achievement of schools was 

estimated to be 1.51. A one-unit increase in teachers’ experience variable will produce an increase of approximately 

1.50 points in students’ mathematics achievement scores. The effect of the variable with a statistically significant effect 

(p <0.05) on mathematics achievement is felt at a moderate level in daily life. 

Also, considering the coefficients of the variables associated with early learning experiences in this final model, there is 

no significant change in the gamma (β) coefficients compared to the previous models ((β1=-4.09, β2= 2.95, β3=11.86, 

β4=4.83, β5=4.16 and β6=0.91) and their significant effects are continuing. Table 5b presents the estimation of the 

variance components of the final model, where the intersection and slope coefficients are the dependent variables. 

Table 5b. Estimation of the variance components of the Final Model, where the intersection and slope coefficients are 

the dependent variables  

Random Effect Standard 

deviation 

Variance 

Component 

s.d. χ2 p 

Level-2 Error Term, u0j 43.93 1930.19 208 2650.240 0.000 

X19A, u1 11.81 139.49 213 288.601 0.001 

X12, u3 6.11 37.36 213 310.163 0.000 

X18, u6 5.03 25.32 213 289.095 0.001 

Level-1 Error Term, rij 68.47 4689.20    
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When the variance components of the model were examined, the variance of the average mathematical achievement of 

schools (residual variance) was determined as 1930.19 after controlling X19A, X12, and X18 at the school level. For 

average mathematics achievements, the variance ratio index explained by “[τ00 (Model 2)- τ00 (Model 3) / τ00 (Model 

2)]” was calculated between the estimated variance values of Random Coefficient Regression Model (Model 2) and the 

Model where the Intersect and Slope Coefficients are output  

This value (46%) shows that about 46% of the differences between schools in mathematics achievement (40%) are 

explained by school-level variables (W1, W2, W3, W8, and W12) with significant effects. The remaining 54% of the 

variance can be explained by other school-level variables not included in this model. 

Also, 40% of the difference between mathematics achievement scores can be explained by differences between schools 

according to the results of One-Way ANOVA Random Effects. Accordingly, 18% of the students’ mathematics 

achievement (%40*%46) can be explained by the school-level variables. 

4. Discussion and Conclusion 

Considering the objectives and theoretical approach of the study, ten variables from the parent survey and 19 variables 

from the teacher and school survey were included in the HLM analysis. 

Firstly, the extent to which the levels explain the differences in mathematics achievement scores was investigated. 

Recent meta-analysis studies (Sirin, 2005; Hattie, 2009) indicate that the predictions of differences in students’ 

achievement are divided into two. Some studies (Yilmaz & Aztekin, 2012; Mohammadpour & Abdul Ghafar, 2014; 

Ipekcioglu Onal, 2015) reported that school-level variables explain most of the differences in students’ achievement. 

There are also some studies (Ryoo, 2001; Akyuz&Berberoglu, 2010; Aydin, 2015) suggesting that school-level variables 

explain a part of the differences in students’ achievement. In this study, student-level variables explain a large part of the 

variance in mathematics achievement scores. It can, therefore, be argued that various student-level factors in Turkey 

affect academic achievement more.  

The second part of the study examines the effects of early learning experiences on mathematics achievement scores. A 

meta-analysis of the studies on student-level factors associated with students’ achievement (Marzano, 2003; Hattie, 

2009) indicates that student-level factors have a high impact on the determinants of academic achievement. According 

to Hox (1995), student-related features forming the basis of measurement activities in education may be students’ 

attitudes, readiness, interests, etc. in a certain subject. The factors associated with students' parents, school and class 

affect these features. Nilsen, Gustafsson, and Blomeke (2016) state that students' past experiences and characteristics 

have a significant impact on the student outputs. Schmidt and Cogan (1996) argue that parents’ educational 

backgrounds, learning activities at home, and educational resources also affect students’ achievement. Dewald, Meijer, 

Oort, Kerkhof, and Bogels (2010) stated that educational conditions at home and socio-economic levels of parents affect 

students’ achievement. Bradley and Corwyn (2002) state that students who are advantageous regarding learning 

resources at home are more successful at school than others. Furthermore, a positive parent-child relationship has a 

positive effect on academic achievement (Dahl&Lochner, 2005). 

Given these studies, it is possible to bring together the variables that affect students’ achievement under the heading of 

early learning experiences (Epstein, 1992; Huira, 1996; Arnold, Zeljo, Doctoroff & Ortiz, 2008). Therefore, learning 

resources at home, pre-school skills, early learning activities, and healthy parent-child relationships about the child’s 

assignments are examined in studies on early learning experiences (Epstein, 1992). As a result of this study, the 

variables with significant effects on academic skills are consistent with the literature on the components of early 

learning experiences. 

To determine the extent to which parents support the learning process, Akyuz (2006) examined the relationship of 

parental involvement with academic achievement. Uninvolved parenting, evaluated as a limitation in the teaching 

process, has a negative effect on academic achievement. However, according to the results of this research, parents’ 

monitoring their children’s assignments has significant negative effects while parents’ helping with students’ 

assignments has positive effects on achievement. Therefore, the fact that students’ achievement increases as their 

parents help with their assignments is consistent with the findings of Akyuz (2006). However, another finding of this 

research is that the academic achievement of students whose parents monitor their assignments is lower than that of 

those whose parents do not. Students may be displeased with parental monitoring, and their achievements may be 

negatively affected by this. If the parents who do not monitor their children’s assignments are considered as “neglectful”, 

then the findings of the present study are not consistent with those of Akyuz (2006).  

Besides, the results of the study indicate that the attitudes of parents toward the courses have no significant effect on 

academic achievement. Lyons (2006) states that students’ attitudes towards science and mathematics and hence their 

performance in these courses are influenced by their parents’ perspectives on these courses. Parents’ positive attitudes 
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towards science and mathematics increase students’ science and mathematics achievement. Ipekcioglu Onal (2015) 

found insignificant relationships between parental involvement and students’ achievement. The results of this study are 

partly consistent with previous studies because parents’ attitudes towards science and mathematics have insignificant 

effects on students’ achievement. 

In the final part of the study, the effects of school-level factors on mathematics achievement scores were examined. The 

importance that the school attaches to academic achievement (responses of principals), teachers’ perceptions about it, 

and a safe and disciplined school environment have significant effects on academic achievement. The meta-analysis 

study by Hattie (2012) reported the significant effects of school-related factors on academic achievement. In their study 

on the determinants of student outputs, Nilsen et al. (2016) stated that the importance attached by schools to academic 

achievement, perceptions of teachers about it, and a safe and disciplined school environment affect students’ 

achievement.  

Some studies (Buluc, 2014; Olculuoglu & Cetin, 2016) stated that the importance of the safe and disciplined school 

environment and the importance that schools attach to academic achievement significantly affect academic achievement. 

Furthermore, some studies (Freiberg&Stein, 1999; Stanco, 2012) reported a low academic achievement in schools 

where incidents of property damage and theft, and threats and verbal abuse among students frequently occur. Nilsen and 

Gustafsson (2014) argued that a safe and disciplined school environment would also enhance the school’s emphasis on 

academic achievement and make it easier to focus on learning. Therefore, the results of the present study are consistent 

with those of previous studies. 

The socioeconomic structure of the school is also one of the variables with significant effects. Agirdag, Van Houtte and 

Van Avermaet (2012) stated that students from poor socio-economic backgrounds are more likely to develop apathy 

towards school, arguing that academic achievement is negatively affected by this situation. One of the variables with 

significant effects is the experience of teachers. Akyuz (2006) and Atar (2014) stated that teachers' experiences do not 

have significant effects on students’ achievement. However, there are also studies reporting that teachers' experiences 

have significant effects on students’ achievement (Rice, 2003; Leigh, 2010; Harris & Sass, 2011).  

According to the results of this research, students’ academic performance varies from school to school in Turkey. The 

most important reason for this variance is socioeconomic factors. Similarly, the academic performance of students 

varies according to the educational conditions, especially in the early childhood period. International studies such as 

TIMSS allow countries to compare the academic performance of students at a global level. Another contribution of 

TIMSS to countries is that it provides policymakers with information on how much of the differences in the 

performance levels of participating students result from regional differences and how much from socioeconomic 

differences. This information is essential regarding equal opportunities in education. Therefore, the results of this 

research can provide some ideas to the relevant institutions and organizations in Turkey on educational practices. The 

findings of this study support the need for preschool education and the steps to be taken in the education of families in 

Turkey. Similarly, it can also be inferred from the findings of the research that students’ motivation and achievement 

will increase as a result of efforts by principals and teachers on academic achievement. In this regard, to ensure and 

maintain a positive climate in schools, all the officials, principals and teachers in particular need to undertake 

fundamental responsibilities and take beneficial steps. The findings of the study are also of particular concern to parents. 

Important effects of parent-child communication on students’ academic achievements highlight the importance of 

school-family cooperation and parent-centered activities both in pre-school and primary school periods. 
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