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Abstract 

This paper presents the possibility of classifying and regressing learner’s scores according to different cognitive tasks 

which are grouped with difficulty level, type and category. This environment is namely, Logic environment. It is mainly 

divided into three main categories: memory, concentration and reasoning. To classify and regress learner’s scores 

according to the category and the type of cognitive task acquired, we trained and tested different machine learning 

algorithms such as linear regression, support vector machines, random forests and gradient boosting. Primary results 

shows that a random forest algorithm is the most suitable model for classifying and regressing the learners’ scores in 

cognitive tasks, where the features most important for the model are, in descending order: the task difficulty and the 

task category in the case of regression, the task difficulty, the time taken by the participant before completing it, and his 

electroencephalogram mental metrics in the case of classification. 

Keywords: Cognitive tasks, task information, engagement, workload, distraction, machine-learning algorithms 

1. Introduction 

In Intelligent Tutoring Systems (ITS) and Massive Open Online Courses (MOOC), recognition of user affective states, 

cognitive status and performance evolution during a task remain of great importance (Berka et al. 2004, Pope et al. 1995, 

Prinzel & Freeman 2000, Ramesh et al. 2014). In fact, several studies have shown that the emotional state in which a 

learner is placed has an impact on learning the concept (Damasio 1995, Isen 1999). This receptivity is subject to several 

complex parameters: emotions that are the basis of these affective states, the category of the task, the type of the task, 

the level of the learner, the individual differences (such as intelligence quotient) and his objectives. To detect and assess 

users’ alertness several studies have been undertaken in the field of artificial intelligence, human computer interaction, 

cognition and neuroscience (Prinzel & Freeman 2000, Wilson 2004). These works focus on using electroencephalogram 

(EEG) to extract more important features and bands. Three fundamental mental metrics are commonly used from EEG, 

namely, mental engagement, mental workload and distraction. Mental engagement is related to the level of mental 

vigilance and alertness during the task (high or low states of vigilance). For instance, highly challenging or difficult 

tasks involve more engagement. Mental workload can also be seen as the mental vigilance and cognitive load in a 

particular task. It was calculated according to three electroencephalogram (EEG) channels and two ratios extracted from 

Power Spectral Densities (Berka et al. 2004). However, distraction or drowsiness reflects the feeling of being sleepy and 

lethargic (Stevens et al. 2007). It was calculated mainly from Theta band. 

These measures intervene when a learner is involved in a task. They can reflect the degree of a learner’s concentration 

during a task that is necessarily depending on different types of factors such as a learner’s situation during the task (if he 

is relaxed or not), his familiarity with the presented task (the level of the learner), the type of task presented, the 

difficulty of the task, his motivation and emotions. All these factors lead the learner to reach a skill level that allows him 

or not to complete the task and acquire some knowledge. Purely calculating his score or performance on each task can 

assess this skill level. Despite the effort of many researchers to establish a classification and/or regression of a learner’s 

performance in some cognitive tasks (Galan & Beal 2012), it seems that it is very difficult to establish an accurate 

estimation of a learner’s performance due to all factors that we previously mentioned.  

In the same vein and in order to have an overview of a learner’s performance before accomplishing a cognitive task, we 

have developed Logic environment which contains seven types of cognitive tasks. These tasks are grouped into three 
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different categories (memory, concentration and reasoning) and explored different machine learning (ML) algorithms in 

order to select the most suitable model for the possibility of classifying the learners into different groups according to 

their levels or numerically predicting directly a learner’s score using different regression models. In this paper, we will 

present a new approach, which is based mainly on gathering different types of data (EEG, task duration, task difficulty, 

emotion, task category, etc.) from a cognitive environment (Logic environment) and using them to train different 

machine learning algorithms. In this paper, our purpose is to answer the following questions: (1) Which are the most 

suitable machine learning algorithms that could be used to classify and/ or regress learner’s scores before completing a 

cognitive task?, (2) Which are the most important features that contributes significantly in classifying or regressing 

learners’ scores? And (3) How individual difference (more precisely EEG metrics) and task information (duration, 

difficulty, type, etc.) have an influence in learners’ scores?  

In the following section, we present related works to our study, our methodological approach, and a discussion of our 

results. An experimental study was also conducted to gather data for training and testing ML algorithms. Finally, we 

present the results obtained from these algorithms and give some suggestions for future use according to different 

features used in this study (EEG mental metrics, task information and self-reported emotions, gender and age). 

2. Related Works 

To date several studies were conducted to detect, assess and predict some learner’s states in ITS or MOOCs. Among 

these states, we quote learner’s emotions, behaviours, performance, etc. For instance, to assess a learner’s emotions, 

researchers use many methods, which are divided into five main categories: (1) self-judgment where the learner is 

asked to report his current emotion each period of time. It uses a questionnaire based on a Likert scale, (2) 

peer-judgment is to record a video of a learner (his face) and then give it to another learner to judge emotions from this 

video once every slice of time (e.g., a slice of 5 seconds), (3) trained-judgment where humans (teachers or pedagogue) 

are trained to manually codify learners’ emotions from a recorded video of their face (using the motions of different 

components of the face and the theory of Actions Units defined by Ekman (Ekman 1999). It detects mainly seven types 

of emotions: disgust, contempt, sadness, happiness, neutrality, surprise and anger, (4) automatic detection by using 

software that implements algorithms for detecting and tracking the learner’s face components such as FaceReader, Facet 

and Affdex and (5) physiological sensors that can assess posture, Heart Rate (HR), Galvanic Skin Response (GSR), 

temperature and respiration (Derbali et al. 2011).  

To detect and predict a learner’s behaviours such as engagement or disengagement on a task, Baker and his colleagues 

(2013) combined log files; data mining and machine learning techniques in order to automatically establish a 

classification of a learner’s behaviours of disengagement (Baker & Rossi 2013). Four categories are reported: (1) 

off-task behaviour that is defined as following: “a behaviour that does not involve interaction with a system or 

performing a learning task such as conversations or inactivity” (Baker 2006), (2) Gaming the system has been defined 

as “exploiting proprieties of the system rather than learning the material and trying to use that knowledge to answer 

correctly” (Baker et al. 2006), (3) carelessness has been defined as “ an error made on a task that a student already 

knows (Clements 1982) or as impulsive and/or hurried actions (Olivares & Zurilla 1995)” and (4) Without Thinking 

Behaviour is a “behaviour that seems unrelated to a student’s learning task” (Rowe et al. 2009). 

In addition, some researchers used EEG analysis and feature selection to detect and classify whether the student is 

engaged or not in a task. For example, Berka (Berka et al. 2004) explored the feasibility of monitoring EEG indices of 

engagement and workload acquired and measured during the completion of cognitive tests. Results showed an increase 

in engagement and workload during the encoding period of verbal and image learning and memory tests compared with 

the recognition period. They also showed that the workload index increased linearly with the level of difficulty. Pope 

(Pope et al. 1995) has developed an EEG engagement index based on brainwave band power spectral densities and 

applied in a closed-loop system to modulate task allocation. Performance improvement was reported using this 

engagement index for task allocation mode (manual or automated). In (Chaouachi & Frasson 2012) it was 

experimentally demonstrated that learners’ mental workload and engagement are closely related to specific emotions 

with regards to different learning phases. A high level of workload indicated the elicitation of negative emotions 

whereas engagement level was mainly associated with positive emotions. Galan and Beal (Galan & Beal 2012) 

evaluated positively the use of EEG for estimating attention and cognitive load during mathematical problems. They 

could be used for predicting their success or failure by a combination of engagement and workload measures with a 

support vector machine model. Finally, Jraidi and Frasson (Jraidi & Frasson 2010) used three sensors (EEG, HR and 

GSR) in order to evaluate the effect of using a subliminal method to enhance learners’ self-esteem during completing 

three different logic tasks. Their tasks are similar to our categories of reasoning tasks. But, to our knowledge, they did 

not use machine-learning techniques to classify or regress learners’ performance in these tasks. 

Some other studies are focused on classifying and/or regressing a learner’s performance. For instance, Ramesh (Ramesh 
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et al. 2014) constructs a probabilistic model that connects student’s behaviours based on engagement and class 

performance. Instructors to initiate interventions and assist students could use his model. Recently, the US Army 

Research Laboratory (ARL) evaluated and developed concepts for two types of learner models: short-term learners and 

long-term learners (Sottilare 2014). Sottilare (Sottilare 2014) also studied the feasibility of using recorded learners’ 

performances in the development of adaptive tutoring learning chains to design future learner models. Naser (Naser 

2012) used knowledge extracted from learner models to determine the academic performance of a learner in order to 

offer him the proper difficulty level of problems to solve.  

Unlike other works, we will show in the next sections that it is possible to use different types of data for real time 

classification and/or regression of a learner’s performance. As features, we will use mainly three indices extracted from 

EEG and calculated from Power Spectral Densities by B-Alert Software (workload, distraction and engagement), 

nominal data indicating different types of cognitive tasks (difficulty, category and duration of a task), self-reported 

emotions, and participant attributes (age and sex). Our evaluation relies on comparing different machine learning 

models in terms of mean accuracies for classification, and their coefficient of determination in the case of regression. 

Our main goal is to find the best algorithm that fit our data collected from subjects for these types of cognitive tasks. We 

aim also to extract the most relevant features that contribute to learners’ performance improvement. 

3. Justification and Description of Logic Environment 

In order to evaluate the importance of introducing the category, the type and the difficulty of a task for the classification 

or prediction of the learner’s performance, we developed Logic environment which contains seven cognitive tasks. 

These tasks are inspired from Bloom’s revised taxonomy classification of cognitive tasks. In fact, Bloom (Krathwohl 

2002) has created a hierarchical taxonomy that classifies cognitive tasks into six main categories: (1) remembering 

which consists of recall or retrieve previous information, (2) understanding which deals with comprehending the 

meaning, translate and interpolate objects, (3) applying which consists of using a concept in a new situation by 

computing or predicting information, (4) analyzing which requires analyzing, comparing, inferring and selecting 

material, (5) evaluating which consists of making judgments about the existing material by using a self-report 

questionnaire and finally (6) creating which deals with creating a new model from the previous material. This latter is 

not addressed in this work. An organization chart summarizes the taxonomy (figure 1). We presented in green color the 

aspects that we integrated in our cognitive tasks, orange the aspects that are a little bit addressed and red one the aspects 

not reached here. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The six dimensions of Bloom’s taxonomy of cognitive tasks 

In the following, we will describe in detail our Logic environment composed of three categories of cognitive tasks. At 

the end, we will reproduce Bloom’s diagram by adding the corresponding cognitive tasks in the appropriate cases of this 

diagram. As we mentioned before, Logic environment (Ghali et al. 2015) is divided into three categories: memory (the 

ability of retain and recall information), concentration (the ability to identify, classify and recognize similar object) and 

reasoning (the capacity of calculate, analyze, identify the mismatching images, explain and complete some logical 

series). These tasks are extracted from Cambridge Brain Sciences (CBS). 

3.1 Memory 

This category is mainly based on the famous task of Digit Span (DS). In this task, the learner is shown a series of 

numbers according to an ascending difficulty level and asked to remember and type them on the appropriate place. In 
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this category, we developed Forward Digit Span (FDS) where the learner has to type the numbers in the same order that 

they appeared on the screen. We also developed Backward Digit Span (BDS) where numbers should be entered in 

reverse. This task had six difficulty levels (ranging from 1 to 6) where the learner has to retain a fixed number of digits 

according to his capacity. The number of sets for each level was fixed in advance. For instance, For FDS task level 1 

corresponds to remember 20 sets of 2 digits. Level 2 is to retain 18 sets of three numbers, level 3 is to retain 12 sets of 5 

digits, level 4 corresponds to remember 10 sets of 7 digits, etc. In total, learners have to retain 60 sets of varying length 

of digits where the difficulty level is gradually incremented and the learner cannot move to a higher level if he did not 

finish the series of lower levels. 

3.2 Concentration 

This category has two different tasks: (1) Feature Match and (2) Rotation. Feature Match (FM) consists in identifying 

whether the two images appearing on the screen are identical or not according to their forms, numbers and colors. It has 

also six difficulty levels (ranging from 1 to 6) that vary in their geometrical number and forms. For example, level 1 

consists in identifying the identity of 20 sets of images containing each two forms; level 2 is to identify 20 sets of 4 

forms on each image, etc. At total, learners have to solve 80 sets. Whereas, Rotation task (RT) consists of identifying, 

if two images are identical or not and if any rotation was allowed (see figure 1). It has five difficulty levels. For instance, 

in level 1, the images (12 sets at total) are constructed by 2 different forms or colors; in level 2, the images (8 sets at 

total) contain five different forms or colors; in level 3 (8 sets at total), the images have 8 forms with two different colors 

(see figure 2), etc. At total, learners have to identify 44 sets. 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Example of Rotation task 

3.3 Reasoning 

This category has three different tasks: (1) Arithmetic Addition, (2) Odd One Out and (3) Intuitive Reasoning. In the 

Arithmetic Addition task (AA), we ask the learner to add two numbers, which are varying according to the numbers of 

digits to add. For instance, level 1 consists of adding twelve sets of two numbers with 2 digits; level 2 consists of adding 

ten sets of 3 digits’ numbers, etc. Following this rule, three main difficulty levels are implemented in ascending order by 

changing the number of digits each time. In Odd One Out (OO), the learner has to identify the odd image from a series 

of 9 images appearing on the screen and has four difficulty levels. The difficulty varies according to the number of the 

different forms and their corresponding colors. For instance, for level 1, the odd image has only a color or a form 

different from the eight other images (20 sets at total); in level 2, the odd image is a little bit more difficult to find (18 

sets at total) and finally in level 3, to find the odd image, the learner has to calculate and infer some rule (12 sets at 

total). For instance, in the presented example (figure 3), the odd one is the third (right side) one at the middle of the 

image because it does not have a corresponding image with three plus form and pink color. 
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Figure 3. Example of OO task: the odd image is number 6 counting from the left side of the top image 

Finally, for Intuitive Reasoning (IR), it has three levels of difficulty (varying according to a time constraint: unlimited, 

1 minute and 30 seconds) and 15 series in total; every level contains 5 series of exercises. Unlike other tasks, this task is 

based on intuitive or analogical reasoning (figure 4) where the learner has to read carefully the instructions, figure out 

the rule used in the presented example and apply it to resolve another example by selecting the most appropriate choice. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Example of Intuitive Reasoning task 

After each type of task, we asked the learner to report his most evident emotion during the task. He had to choose from 

a list of seven emotions (disgust, contempt, sadness, happiness, neutrality, surprise, anger) defined by Ekman (Ekman 

1999). The use of this set of emotions is based on works in education field as all researchers agree that this small list of 

emotions is sufficient enough to generate the basic emotions in learning process. 

According to the revised Bloom’s taxonomy, we think that our cognitive tasks could be classified according to his 

suggestion as follows: 
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Figure 5. Distribution of the tasks of Logic environment according to Bloom’s taxonomy 

4. Experimental Study 

4.1 Description of the Experiment 

In order to test different machine learning algorithms that aim mainly to classify and regress a learner’s performance 

according to different types of data collected from Logic environment described above, we conducted an experiment 

where the learner is wearing an EEG helmet (The B-Alert X10). In this study, we recruited 20 participants (each 

received a compensation of 20$ after the study) from the University of Montreal (9 women and 11 men, mean age=28, 

standard deviation=4.67). They are from different disciplines and in good mental health. Participants were invited to do 

the study in our research laboratory, where we explained the objectives of the study and asked them to sign a consent 

form (an ethics agreement) before starting the experiment. The study lasted about 2 hours, during which they performed 

the following three steps: (1) installation of the B-Alert X10 headset on the participant (mean duration ≈ 20 minutes), (2) 

the participant is invited to do 3 baseline tasks defined by the manufacturers of this headset to establish a classification 

of mental states of engagement, workload and distraction (mean duration ≈ 20 minutes) , (3) the participant is finally 

invited to use our cognitive environment Logic, which includes different sets of cognitive tasks (mean duration  ≈ 80 

minutes). After gathering data from all the participants, the fourth step (4) consists of training and testing different 

Machine Learning (ML) algorithms in order to early classify or predict learner’s performance. Finally, step (5) allows 

us to select the most suitable algorithm for the classification and regression of learners’ performances in our cognitive 

environment, Logic. Figure 6 illustrates the whole process. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Experimental process and adopted approach 

The electroencephalogram (EEG) was recorded by the B-Alert X10 from 9 sensors (F3, Fz, F4, C3,Cz, C4, P3, Poz and 

P4) integrated into a cap covering the upper half of the head, with 2 reference signals attached to the mastoid bones 

(behind the ears). The location of each sensor was determined by the international 10-20 system. This cap was equipped 

with a small USB dongle, which received the wireless transmissions to a PC computer. The EEG was sampled at a rate 

of 256 Hz, transmitted and converted to Power spectral densities (Alpha, Beta, Theta and Sigma). This process is 
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performed with the B-Alert software that is the proprietary of Advanced Brain Monitoring Company (ABM). This 

software allows us to obtain a real time classification of certain mental states (sleep Onset, Distraction, Low 

engagement, High Engagement and High workload). It also uses some techniques in order to remove noise and artefacts. 

In this study, from 20 participants only 18 data subjects were considered in the data analysis due to technical problems. 

Log files were also used in order to synchronize our cognitive tasks with the EEG mental metrics. 

4.2 Data Pre-processing for Classification and Regression 

For each task type, a feature vector was built with the following data sources: sequential data collected by the EEG 

helmet, a self-report questionnaire inquiring about the emotion felt most strongly for the given task, the gender of the 

participant, and task information. The EEG features (the Distraction, Workload, and Engagement indices reported by the 

B-Alert software) were calculated as the means of each index for the duration of each task. Task information included 

the duration of the task, its difficulty level (from 1 to 6), as well as its category (3 categories) and its type (7 types). The 

self-report questionnaire asked if the participant felt one of these seven emotions while completing the task: disgust, 

contempt, sadness, happiness, neutrality, surprise, anger. Four participants omitted to report an emotion for a few tasks, 

and we filled the missing data with Expectation Maximization (EM) algorithm (Dempster et al. 1977). 

Categorical features were transformed into a N number of binary features, where N represented the number of 

categories, and numerical features were individually scaled by removing the mean and dividing by the standard 

deviation assuming that the data is Gaussian distributed. The total dimensionality of the samples was then 25, 

accounting for 3 task categories, 7 task types, 1 number for the task’s difficulty, 1 for the time taken by the participant 

(or duration), 7 self-reported emotions, 3 EEG-derived measures, 1 for the age of the participant, and 2 for the gender of 

participant. 

The target feature was the task score, given as a percentage. For regression, the score was directly used, whereas for 

classification, the scores were divided in four classes of approximately equal sizes (about 110 samples each): a very 

strong score above 92% (126 samples), a good score above 80% but below 92% (103 samples), a weak score above 60% 

but below 80% (123 samples), and a very weak score below 60% (107 samples). The intervals were selected to 

produce classes of equal sizes. This is done in order to avoid classification issues related to an unbalanced dataset. 

5. Algorithms, Results and Discussion 

In this section, we provide in the beginning a brief description of the machine learning algorithms used in this work. For 

more details, the reader could refer to (Hastie et al. 2012). Then, we will describe the results that we obtained from this 

study. 

5.1 A brief Description of the Algorithms 

5.1.1 Support Vector Machine (SVM) 

Support vector machine is a generalization of linear decision boundaries where optimal hyperplanes are introduced. The 

algorithm learns a linear discriminant function by choosing a particular hyperplane that has a maximum marge (the 

distance between the hyperplane and the closest trained example known as support vectors). It produces then nonlinear 

boundaries by constructing a linear one in a large and transformed version of feature space. The algorithm can be used 

with the kernel method, which allows it to change the feature space of the data in a problem to find more adequate 

representations for the task. A hyper parameter used across all SVMs is the cost parameter C that controls tolerance to 

errors. Both regression and classification can be done with SVMs. 

5.1.2 Random Forest (RF) 

Random forest is an ensemble of classifiers that uses many decision trees. It combines the bagging idea (use of different 

models to create a model with a low variance) and the random selection of features to construct different decision trees. 

It could be used for classification or regression problem. To classify a new point, the algorithm selects the class that has 

the majority votes from all the decision trees. Whereas, to predict a new point the algorithm calculates the average of 

the outputs of all the decision trees. 

5.1.3 Gradient Boosting with Decision Trees (GB) 

Gradient boosting is a technique for combining the outputs of different basic models (models could be similar as in our 

case decision trees or different) called ‘weak learners’. It could be used for classification or regression. The main idea of 

this algorithm is to add new models to the ensemble sequentially. At each iteration, a new weak learner is trained on 

data that is weighted with respect to the residual error function of the whole ensemble learnt previously. 

5.1.4 Linear Regression (LR) 

Linear regression is an elementary model used to predict a dependent variable Y by using a linear function of an 
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observable variable X (an independent vector). From the existing examples of training set, it established a link between 

these both variables (fit a linear straight) in order to estimate the value of Y of new observable value of X. The 

estimation procedure was done by the popular Least Square method, which consists of minimizing the residual (error 

term). This algorithm is to use only on the case of the regression problems. 

5.2 Results and Discussion 

As we mentioned before, four main machine-learning algorithms are reported in this section: support vector machine, 

random forest, gradient boosting with decision trees (the three highest performance ones), and linear regression (the 

basic regression model). Tests for other algorithms (k-nearest neighbors, logistic regression, multiple regression, naïve 

Bayes, etc.) were also done but yielded poor initial accuracies and will therefore not be discussed further. All algorithms 

discussed in this section are implemented through the python library Scikit-learn (Pedregosa et al. 1984). The evaluation 

was done with a “leave-one-participant-out” scheme, where 17 participants were used to train the model, which was 

then tested on the remaining participant. The scores reported in Table 1 below are therefore the mean and the standard 

deviation of 18 tests. Classification scores are reported in term of accuracy which is defined as the number of correctly 

classified samples divided by the number of total samples, while the regression models were scored according to the 

coefficient of determination defined as: 

R
2
=1-SSres/SStot                                     (1) 

Where SSres is the residual sum of squares and SStot is the total sum of squares. R
2
 indicates how well the outcomes data 

fit the statistical model, with 1 being a perfect fit.  

Table 1. Classification and regression for different models and features 

Algorithm    Regression  

M(SD)  

    Classification   

M(SD)  

Regression 

without TI* 

M(SD) 

Classification 

without TI* 

M(SD) 

Random Forest 0.444(0.26) 0.528(0.1) 0.197(0.32) 0.427(0.07) 

SupportVector 

Machine 

0.350(0.30) 0.471(0.1) 0.124(0.26) 0.343(0.07) 

Gradient Boosting 0.423(0.21) 0.503(0.1) 0.208(0.17) 0.431(0.09) 

Linear Regression 0.30(0.21) x 0.200(0.18) x 

* Where TI indicates task information 

Table 1 shows clearly that random forest is the most suitable algorithm for both classification and regression tasks when 

we consider all features (EEG, self-reported emotion, gender, age and task information features). We remember that task 

information features include the duration of the task, its difficulty level, its category and its type. Taking into 

consideration all these features, random forest models provide twice as good compared to a random baseline for 

classification (accuracy equal to 0.528 against 0.25). We can see that this algorithm performance is also high if we don’t 

consider the task information for classification (0.427) but becomes very low for regression (coefficient of 

determination equal to 0.197). We can explain these results by the fact that task information has an important influence 

when calculating a new case for regression model for random forest algorithm, but it is not too important for the 

problem of classification. We will confirm this hypothesis by studying further the feature importance for this model (see 

last section). Moreover, we can notice that gradient boosting combined with decision trees performs also as well as 

random forest (the results are closed to random forest in the two cases (regression or classification). It also allows a 

higher value of classification without including task information (0.431) and a little higher value for prediction (0.208). 

Linear regression has whereas a lower performance (coefficient of determination of 0.3 and 0.2) compared to random 

forest and gradient boosting. We conclude that our first choice for regression and classification in this study would be 

random forest models followed by gradient boosting models. 

For this study, grid searches were also done in order to find good values for the hyper-parameters (mainly for the 

number of trees as well as their depth for both RFs and GB, and for the C value for the SVMs). SVM models used a 

radial-basis function kernel, as other kernels were also experimented with but did not perform as well. SVMs performed 

best with a C between 0.1 and 0.5, Random Forests with about 100 estimators and a maximum depth of 6 to 11, and 

Gradient Boosting with 50 estimators and a maximum depth of 2 to 5. 

In the case of classification into four main classes (very strong scores, strong scores, weak scores and very weak scores), 

we also calculated a confusion matrix for the random forest algorithm (the best algorithm fitting our data), where true 

labels are on the vertical axis and predicted labels on the horizontal axis (see Table 2). From this table, we can notice 

that very weak scores are easiest to classify (accuracy equal to 0.794). However, strong and very strong scores are more 
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difficult to classify (0.563 and 0.429 respectively). 

Table 2. Confusion matrix for a Random Forest classifier 

True\Predicted Very strong 

scores  

  Strong     

scores  

Weak 

scores 

Very weak 

scores 

Very strong scores (>92%) 0.429 0.286 0.056 0.080 

Strong scores (>80% and <92%) 0.252 0.563 0.214 0.165 

Weak scores (>60% and < 80%) 0.065 0.195 0.309 0.269 

Very weak scores (<60%) 0.047 0.103 0.234 0.794 

As we mentioned before, in order to study the difference between the accuracy and the coefficient of determination for 

the Random forests model, we assumed that this result depend mainly on the relative importance of model’s features. So, 

to verify this hypothesis, we calculated feature importance for the two best models (RF and GB). Feature importance is 

mainly calculated through the Gini importance (i.e. the mean decrease in impurity with the Gini index), as defined by 

Breiman and Friedman (Breiman & Freidman 1984), averaged over all trees in the model (equation 2). 

                                      𝐺 = ∑ 𝑝𝑖
𝑛𝑐
𝑖=1  (1 − 𝑝𝑖)                                                                                  (2) 

Where G is the Gini Impurity index, nc is the number of classes in the target variable and pi is the ratio of this class at 

the current node. G needs to be calculated for each node of the trees. 

The importance for a feature at a node is then calculated with the following equation: 

                                      𝐼 = 𝐺𝑝𝑎𝑟𝑒𝑛𝑡 − ∑ 𝐺𝑖
𝑛
𝑖=1                                                                                (3) 

Where I is the importance for a node, Gparent is the Gini Impurity index of the current node, Gi are the Gini Impurity 

indices for the children of the current node and n is the number of children nodes. The importance of a feature is then 

the average of I across all nodes that split (i.e. make a decision) based on the feature, and the value of I at each node is 

weighted by the number of samples that reach that node during training. Intuitively, a feature that is used to make a 

decision earlier in a tree is more important. 

The most important features for classification are (in order of decreasing importance): the difficulty level of the task, the 

duration of the task, and the indices for engagement, distraction, and workload, as shown in Figure 7. This result could 

be explained by the fact that not only the difficulty and the type of a task have an impact on learner’s scores but also his 

mental states of engagement and workload during the tasks. These mental states are eventually extracted from the EEG 

bands (more precisely alpha and beta bands calculated by the B-alert software and that reflect more attention and mental 

alertness). These metrics are mainly used for calculating the engagement and workload indices, whereas the theta band 

was more used to reflect distraction. Therefore, we can deduce that EEG is a very important measure to introduce for 

classifying learners’ performance in cognitive tasks in real time applications. We can also see that task type, 

self-reported emotion, age and task category are about of the similar importance. However the gender is the least one. 

As a conclusion, for classification of learners we think that their performance depend mainly on the difficulty of the task 

followed by the time spent to complete the task (duration) and his EEG mental indices. These EEG metrics reflect in 

such a way the intellectual differences of individual differences. This result can explain why task information doesn’t 

have much importance in decreasing accuracy in Random Forest model. 

 

 

 

 

 

 

 

 

 

 

 
 



Journal of Education and Training Studies                                                          Vol. 3, No. 5; 2015 

251 

 

Figure 7. Feature Importance for a Random Forest classifier 

Concerning the regression with random forest model, features are considered differently. We noticed more importance is 

attributed to the task's difficulty level and task category (see figure 8). This result is very surprising for us as we noticed 

in the inverse of classification, the prediction of learners’ scores didn’t depend on his intellectual differences (EEG 

metrics) neither the task duration to complete it. We see also that task information doesn’t have a direct influence on 

learners’ scores as we observed in table 1 before. The Gini’s index calculation for feature importance showed only that 

two attributes from task information have higher values (the difficulty level and the task category) but the other 

attributes (type of task and duration) are insignificant. As a conclusion, we retained that for regression cognitive tasks 

using random forest models, two significant attributes contributes significantly in calculating a new predicted score in 

this study: the difficulty level and the task category of the cognitive task. This is could be explained by the small 

number of our sample (only 18 subjects) which is the major limitation of this study. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Feature importance for a Random Forest regressor 

Finally, we reported that feature importance are not discussed for a Gradient Boosting model as it does not fit the data 

as well as Random Forest model, but the ranking of top features is similar. We also mentioned that descriptive results 

issued from Logic environment are described in detail in (Ghali et al. 2015). 

6. Conclusions  

In this paper, we studied the possibility of combining different types of a learner’s data (EEG indices, self-reported 

emotions, task duration, task category, task type, age and gender) in order to build real time statistical models of 

learners’ classification and regression. From this study, we have shown that is possible to classify and regress learners’ 

scores before completing a cognitive task. More precisely, we find that a random forest machine learning algorithm is 

the most suitable to fit our data with a moderate value both for the classification and regression. Using this algorithm, 

we obtained a classifier that performs twice as well as the random baseline (0.25) and a regressor with a coefficient of 

determination of 0.444. We also calculated the weights of the features in order to find the most important features to 

take into consideration in both of cases. For classification, the most relevant features are the following: the level of 

difficulty of a task, the task duration and the EEG indices (engagement, distraction and workload). Concerning 

regression, the two most relevant features are the difficulty level of a task and the task category.  This result 

encourages us to integrate EEG measures into real time applications because it reflects in somewhere learners’ 

intellectual differences and to combine it with different data extracted from log files (task information, self-reported 

emotion, age and sex). Moreover, we think that is essential in our case to increase the number of participants in order to 

get more accurate models with higher values. 

Future work will focus first on validating the random forest model for classifying and regressing a larger number of 

learners. Second, we will include this model in real time integration for our cognitive environment in order to enhance 

learning and adapt it according to learners’ individual differences. We will finally try to integrate an automatic detection 

of emotions instead of using self-reported questionnaires in order to avoid subjective measures. 
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