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Abstract 

Purpose: The study intends to model an interest rate index option using a heavy-tailed distribution. The goal is to 

calculate the interest rate path-dependent option prices that are consistent with market data and to develop a 

reinforcement learning strategy to discretely hedge the position considering transaction costs. Methodology: This paper 

presents a mathematical framework to calculate the price of interest rate path-dependent options. The research adapted a 

Fourier cosine series formula to employ the characteristic function of the present value of the forward index, which is 

modeled as a variance-gamma process and uses deep Q-learning to hedge such options. Findings: There is market 

evidence that the implied volatility curve is not flat. The study demonstrated that the variance-gamma process generates 

an increasing volatility smile, which is consistent with market observations. Additionally, hedging results show that the 

path-dependent options generated from the variance-gamma process can be efficiently hedged with advanced 

Q-learning techniques. Research limitations/implications: The study comprised only the variance-gamma process. Other 

probability distributions, such as the Normal Inverse Gaussian model, should be investigated. Practical implications: 

This study reveals which type of probability distribution should be present in a pricing engine to be consistent with 

implied volatilities. The approach provided here can assist managers in evaluating and comprehending market pricing 

behavior as well as achieving discrete hedging with costs. Originality: The paper addressed the merging of a fast pricing 

method for the interest rate options with a heavy-tailed distribution and the discrete interest rate derivatives hedging 

with reinforcement learning. 

Keywords: interest rate options, COS method, reinforcement learning, heavy-tail probability distributions, discrete 

hedging. 

1. Introduction 

The derivatives market plays an important role in the global financial landscape, enabling a wide range of financial 

operations and risk management measures. Derivatives are financial products that derive their values from underlying 

assets or variables such as commodities, currencies, interest rates, or stock indexes (see Smithson (1998), Fabozzi (2000) 

and Martellini et. al (2003)). This class of financial contract allows participants to hedge against price fluctuations, 

speculate on market movements and gain exposure to various asset classes without directly owning the underlying 

assets (Hull (2009)). Derivatives are characterized by their flexibility, diversity and potential for both profit and risk 

(Marshall and Bansal (1991)). Derivatives contracts offer opportunities for investors to optimize their portfolios, 

manage uncertainties and tailor financial strategies to their specific needs. 

According to Marshall and Bansal (1991), financial derivative contracts can be divided into the following categories: 

- Futures: Agreement to buy or sell an underlying asset at a future date at an agreed-upon price. Used for 

speculation or hedging price risks. Standardized and traded on exchanges. 

- Options: Gives the buyer the right, but not the obligation, to buy (call) or sell (put) an asset at a predetermined 

price. Premium is paid by the buyer to the option seller. Used for speculation, hedging, or income strategies. 

- Swaps: Exchange of cash flows between parties based on underlying assets like interest rates or currencies. 

Used to manage interest rate, foreign exchange, or other risks. 
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- Forwards: Similar to futures but traded over-the-counter (OTC). Can be customized to particular needs. Credit 

risks are more significant compared to futures. 

- Exotic Options Contracts: Variations of standard options with customized features. Examples include barrier 

options, lookback options, etc. Used in specific situations to meet complex hedging or investment needs. 

The above list provides insight into the multifaceted derivatives market, highlighting its role as a catalyst for financial 

innovation, risk mitigation and portfolio diversification. As we continue to explore this topic, this paper will delve 

deeper into an exotic type of derivative contract: a Asian interest rate option commonly traded in the Brazilian interest 

rate market (see Wilmott (2006) for a mathematical definition of Asian options). 

The existing singularities in the Brazilian market stirred the development of particular derivatives contracts. Among 

them, we have a singular kind of interest rate option, namely the Interbank Deposit rate Index (IDI) option. The IDI 

option is the main interest rate option offered by B3 (the Brazilian stock, futures and derivatives exchange). It is of 

European type with cash settled at maturity (see Hull (2009) for types of option exercising). The underlying variable of 

the option, the IDI, is an index that accumulates from an initial value according to the daily Interbank Deposit rate (DI 

rate). The IDI option is an Asian option since its payoff depends on the path of the DI rate (or the interest rate) during 

the life of the option. Among other advantages, Asian options reduce the risk of market manipulation of the underlying 

instrument at maturity. Moreover, according to Hull (2009), the average feature makes Asian options typically cheaper 

than vanilla options. Detailed discussions about the IDI options can be found in da Silva et. al (2016) and Carreira and 

Brostowicz (2016). 

Similar path-dependent products, in a mathematical sense, are commonly found in commodities and currency markets, 

as an average rate contract. An example of the usage of IDI option is an institutional investor or a bank with a floating 

rate debt seeking to protect itself against an unexpected rise in interest rates. 

In the domain of the mathematical modeling, the Gaussian distribution, also known as the normal distribution, is 

essential in option pricing models and quantitative finance (see Neftci (2000)). This symmetrical bell-shaped curve is a 

fundamental assumption in various pricing models, including the popular Black-Scholes model (Black and Scholes 

(1973)). Its importance lies in its ability to simplify the complex nature of financial markets by capturing the behavior 

of asset returns under certain assumptions, as the one that asset returns follow a log-normal distribution, which results in 

normally distributed changes in asset prices over time. The Black-Scholes model is adapted to the futures market 

through the Black-76 model (Black (1976)). According to Carreira and Brostowicz (2016), the Black-76 model is the 

standard model used to price IDI option and quote implied volatilities. 

In the interest rate market, the Vasicek model assumes that the terminal distribution of interest rates is normally 

distributed (Vasicek (1977)). As can be seen in Brigo and Mercurio (2006) and Fabozzi (2000), under the normality 

assumption, the Vasicek model generates closed formula for the price of a wide range of fixed income derivatives. This 

includes the IDI option pricing (see Vieira and Pereira (2000)). As can be seen, the normal distribution serves as a 

cornerstone in option pricing models by simplifying the complex behavior of asset returns. 

However, heavy-tailed distributions, a fascinating phenomenon within the realm of probability and statistics, have 

garnered significant attention in the field of finance due to their profound implications for risk assessment, asset pricing, 

and portfolio management (see e.g. Vellekoop and Nieuwenhuis (2007), De Domenico et. al (2023) and Jondeau et. al 

(2007)). Heavy-tailed distributions display a deviation from the conventional Gaussian distribution as they exhibit a 

higher frequency of extreme events compared to what traditional models would predict. This atypical trait in 

heavy-tailed distributions challenges conventional assumptions and underscores the need for a deeper understanding of 

risk in financial markets. A gentle introduction to the financial modeling of non-Gaussian distributions can be found in 

Zhu (2009). A more technical treatment can be found in Tankov and Cont (2003). 

In Madan et. al (1998) is proposed the variance-gamma process, a three parameter stochastic process that generalizes 

Brownian motion. It was applied for modeling the dynamics of log stock prices by assessing Brownian motion with 

drift at a random time determined by a gamma process. The authors established a closed form formula for the vanilla 

option price and demonstrated that the risk neutral density for a database of historical prices is negatively skewed with a 

larger kurtosis. 

In finance, the presence of heavy tails has far-reaching consequences that extend beyond theoretical considerations: 

- Tail Risks: Heavy-tailed distributions emphasize the importance of tail risks - extremely rare but impactful 

events that can lead to substantial market disruptions (see e.g. Tankov and Cont (2003)). 

- Implied Volatility: Heavy-tailed distributions contribute to observed patterns of market volatility. The increased 

likelihood of extreme market moves is reflected in options pricing, volatility smiles, and skewness in market 

data (see Gatheral (2006) and Brigo and Mercurio (2006)). 
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- Risk Management: Understanding and quantifying the risks associated with heavy-tailed distributions is 

crucial for effective risk management. The potential for rare but severe events can impact the stability and 

performance of investment portfolios (see Khalaf et. al (2021)). 

- Derivatives pricing: The recognition of heavy tails prompts a reevaluation of these models and the 

development of more robust frameworks that accurately capture the tail behavior of asset returns (see e.g. 

Bouziane (2008)). 

Heavy-tailed distributions also hold significant importance in the IDI option pricing due to their ability to provide 

valuable insights into extreme market events - a suddenly hike in the interbank interest rate target - that can significantly 

impact portfolios and investment strategies. These distributions exhibit a tendency to generate larger-than-anticipated 

observations in their tails, thereby challenging the traditional assumptions in various mathematical models commonly 

employed in the financial domain. According to Ornelas and Takami (2011), the risk-neutral densities implied on IDI 

options exhibited that, the Brazilian interest rates also presents non-Gaussian distribution. Under the Vasicek model, an 

IDI option price formula can be found in Vieira and Pereira (2000). In Barbachan and Ornelas (2003), the IDI option is 

calculated under the CIR model (Cox et al. (1986)). Junior et. al (2003) and Almeida et. al (2003) assumed that the 

short-term rate follows the Hull and White (1993) model and obtained analytical solutions for the price of IDI options. 

The HJM model is implemented in Barbedo et. al (2010) to price IDI options. The problem was also numerically solved 

via a finite difference method in da Silva et. al (2016). Genaro and Avellaneda (2018) showed that the price of the IDI 

option is sensitive to changes in monetary policy and da Silva et. al (2019) enhanced the Vasicek model with 

exponential, gamma and normal jumps. 

Although the vast existing literature cited theretofore and others not mentioned, to the best of our knowledge there is no 

analytical or numerical model used to calculate the prices of IDI Options with Lévy process (Tankov and Cont (2003)). 

In order to capture the heavy-tail behavior observed in the IDI option market prices, this study aims to address the gap 

of computational methods enhancing the standard Black-76 model to price IDI options. The numerical method 

employed in this study has emerged recently in the literature. The adaptation of the COS method (Fang and Oosterlee 

(2008)) to interest rate models can be seen in the works da Silva et. al (2019), da Silva et. al (2020) and da Silva et. al 

(2023). 

We also face the problem of discretely hedging financial options. While the Black-Scholes and the Black-76 models 

provide a robust framework for option pricing in idealized conditions, it does not account for real-world constraints and 

frictions (Hull (2009)). In practice, financial markets are characterized by discrete trading, transaction costs, and 

limitations on the frequency of hedging adjustments. This leads to a significant gap between the idealized continuous 

hedging strategy implied by the Black-Scholes formula and the practical challenges faced by traders and investors 

(Smithson (1998)). As such, a crucial hypothesis underlying this model is its smooth, continuous, and costless hedging 

approach, which does not align with the complexities of real markets. Addressing these issues is essential for improving 

the accuracy and effectiveness of option pricing and hedging strategies in the dynamic and imperfect world of financial 

markets. 

In this work, we will harness the power of artificial intelligence in the domain of financial instrument hedging, with a 

particular focus on fixed-income derivatives. Our objective is to explore how AI-driven techniques can enhance hedging 

strategies in the realm of fixed-income financial instruments. By leveraging machine learning models, we aim to 

optimize risk mitigation and portfolio performance, ultimately contributing to more effective and precise hedging 

practices in the complex world of fixed-income derivatives. 

Artificial intelligence (AI) is undeniably reshaping the landscape of finance and investment management. From 

leveraging genetic algorithms for investment strategy optimization (Núñez‐Letamendia (2002)) to harnessing neural 

networks for customer deposit predictions (Gafrej (2023)), AI is not only improving predictive accuracy but also 

introducing new dimensions of efficiency, convenience, and security. It is fostering innovation in pricing models, risk 

management, and even redefining traditional roles in wealth management (Nain and Rajan (2023)). The findings of 

Dandapani (2017) consistently emphasize the potential for AI to revolutionize the field, encouraging a more 

sophisticated, data-driven approach, and fostering a deeper understanding of financial markets. As AI technology 

continues to evolve, it is poised to play an increasingly vital role in the future of finance and investment management. 

This paper is organized as follows: in the Section 2 we present the mathematics of IDI options, its payoff function and 

the standard pricing formula used by market participants to quote the implied volatility. We also present the Fourier 

cosine series method (COS), which is used to calculate the probability density function numerically and the 

reinforcement learning subject. In Section 3, we present the variance-gamma process and show how the COS method is 

adapted to the IDI option pricing. We also show how the Q-learning method is used to develop a hedging strategy for 

the IDI options. In Section 4, we show the common shape of the implied probability distribution from IDI option prices. 
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Later, we compare the prices given by the Black-75 formula and that calculated via the COS method. We also present 

the variance-gamma process, the statistical model proposed in this paper to capture the heavy tail observed in the IDI 

option prices. Finally, we present the dynamic hedging performed with reinforcement learning. Section 5 concludes the 

paper. 

2. Literature Review 

2.1 The mathematics of IDI options 

We assume an interest rate market with underlying probability space (Ω, 𝔽, ℚ) equipped with a filtration 𝔽 =
(ℱ𝑡)𝑡∈[0,𝑇] where ℚ is the risk neutral measure. According to the B3 protocols, the DI rate is the average of the 

interbank rate of a one-day-period, calculated daily and expressed as the effective rate per annum.  

 So, the ID index (IDI) accumulates discretely, according to 

𝑦(𝑇) = 𝑦(𝑡)∏  𝑡−1
𝑗=1 (1 + 𝐷𝐼𝑗)

1

252                                       (1) 

where j denotes the end of day and 𝐷𝐼𝑗  assigns the corresponding DI rate. 

If we approximate the continuously DI rate by the instantaneous continuously compounding interest rate, i.e. 𝑟(𝑡) =
ln(1 + 𝐷𝐼(𝑡)), the index can be represented by the following continuous compounding expression 

𝑦(𝑇) = 𝑦(𝑡)𝑒∫  
𝑇
𝑡
 𝑟(𝑠)𝑑𝑠.                                                (2) 

Given non-negative interest rates, the index is a non-decreasing function of r(s). 

A European call option is a contract that gives the owner the right, but not the obligation, to buy a specified amount of 

an underlying security at a specified price and at a specified time. The payoff of the IDI call option maturing at T is 

max(𝑦(𝑇) − 𝐾, 0),                                                   (3) 

where K is the strike price. Therefore, the price at time t of this option is 

𝐶(𝑡, 𝑇) = 𝔼 [𝑒−∫  
𝑇
𝑡
 𝑟(𝑠)𝑑𝑠max(𝑦(𝑇) − 𝐾, 0) ∣ ℱ𝑡].                              (4) 

The forward ID index is given by 

𝐹(𝑡) = 𝔼 [𝑦(𝑡)𝑒∫  
𝑇
𝑡
 𝑟(𝑠)𝑑𝑠 ∣ 𝑟(𝑡)].                                           (5) 

Note that F(T)=y(T). Then the price at time t of the IDI option with strike K and maturity T is 

𝐶(𝑡, 𝑇) = 𝔼 [𝑒−∫  
𝑇
𝑡
 𝑟(𝑠)𝑑𝑠max(𝐹(𝑇) − 𝐾, 0) ∣ 𝑦‾(𝑡)]

= 𝔼 [max (𝑒−∫  
𝑇
𝑡
 𝑟(𝑠)𝑑𝑠𝐹(𝑇) − 𝐾‾ , 0) ∣ 𝑦‾(𝑡)]

= 𝔼[max(𝑦‾(𝑇) − 𝐾‾ , 0) ∣ 𝑦‾(𝑡)],

                               (6) 

where the term 𝑦‾(𝑇) = 𝑒−∫𝑡
𝑇
 𝑟(𝑠)𝑑𝑠𝐹(𝑇) is called the present value of the forward ID index and 𝐾‾ = 𝐾𝑒−∫𝑡

𝑇
 𝑟(𝑠)𝑑𝑠 is 

the discounted strike price. Conversely, European put options give holders of the option the right, but not the obligation, 

to sell a specified amount of an underlying security at a specified price and at a specified time. The payoff of the IDI put 

option maturing in T is 

max(𝐾 − 𝑦(𝑇),0).                                              (7) 

By put-call parity, the price at time t of the IDI put option is 

𝐺(𝑡, 𝑇) = 𝐶(𝑡, 𝑇) + 𝐾𝐷(𝑡, 𝑇) − 𝑦(𝑡),                                  (8) 

where D(t,T) is the zero-coupon bond price with maturity in T. 

2.2 Analytical results 

In this section we present some analytical results found in the literature for IDI option prices built upon classical models. 
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For some probability distributions, it is possible to solve the risk neutral expectation (4) without resorting to numerical 

methods. 

Closed-form formulas are popular among practitioners despite their distance to realistic assumptions. The main 

attraction for analytical solutions is that the outcomes of the model are widely known and the formula can be easily 

implemented in a simple spreadsheet. 

Let us assume that the present value of the forward IDI follows the geometric Brownian motion as below 

𝑑𝑦‾(𝑡) = 𝜎𝑦‾(𝑡)𝑑𝑊(𝑡),                                           (9) 

where σ is the volatility and W(t) is the standard Wiener processes. The above process is known as the Black-76 model, 

due to Black (1976). The call price formula is given by 

𝐶(𝑡, 𝑇) = 𝐷(𝑡, 𝑇)[𝑦(𝑡)𝑁(𝑑1) − 𝐾𝑁(𝑑2)],

𝑑1 =
ln

𝑦(𝑡)

𝐾
+
𝜎𝑦
2𝑇

2

𝜎𝑦√𝑇
,

𝑑2 =
ln

𝑦(𝑡)

𝐾
−
𝜎𝑦
2𝑇

2

𝜎𝑦√𝑇

                         (10) 

where D(t,T) is the discount factor, y(t) is the spot index and N(⋅) denotes the cumulative standard normal distribution 

function. The resulting probability density function of the forward index is the lognormal distribution. The model shown 

above assumes that the index is independent of the interest rate, which is considered to be constant, and that volatility is 

similarly constant over time. Despite these implausible assumptions, the market chose the Black-76 model to estimate 

option pricing due to its simplicity. Carreira and Brostowicz (2016) contains technical details and debate. 

Additional analytical models for the IDI call option problem can be found in the literature. Under the Vasicek model 

(Vasicek (1977)) hypothesis for the short rate, Vieira and Pereira (2000) developed a closed-form solution for this 

pricing problem. Barbachan and Ornelas (2003) assumed that the interest rate follows the one-factor square-root process, 

known as CIR due to Cox et al. (1986). Junior et. al (2003) and Almeida et. al (2003) assumed that the short-term rate 

follows the Hull and White (1993) process, which is an one-factor process too. In order to model the instantaneous 

forward rates, Barbedo et. al (2010) implemented a three-factor HJM model (Heath et. al (1992)) to price IDI options. 

Almeida and Vicente (2012) implemented a Gaussian model to study the movements of the term structure of the interest 

rates. Finally, Genaro and Avellaneda (2018) extend a Gaussian model with jumps at deterministic times. 

Realistic models often suffer from the lack of analytical tractability. In order to improve the model capabilities with 

random jumps, stochastic volatilities and correlation between stochastic variables, we need to resort to numerical 

methods. Among the numerical methods, Finite-difference, Monte Carlo simulation and Fourier-transform are the most 

common techniques used to find the price of a contingent claim. 

The Finite-difference method aims to solve the partial differential equation resulted from the application of the 

Feynman-Kac theorem in the payoff formula. da Silva et. al (2016) solves the IDI option pricing problem via a modified 

full implicit finite difference method using the Vasicek model. 

Monte Carlo methods aims to simulate thousands of paths of the underlying source of risk in order to estimate the mean 

value of the discounted payoff. A nice reference for this approach is Glasserman (2004). It is well known that this 

technique suffers of the curse of dimensionality. 

Fourier-transform based approaches seeks to find - at least numerically, the characteristic function of the random 

variable that underlies the financial derivative. Applications of this approach in interest rate markets can be found in 

Duffie (2008), Zhu (2009) and Bouziane (2008). In the next sections we will apply the Fourier-cosine series approach 

presented in Fang and Oosterlee (2008) in order to find the probability density function under concern. 

2.3 Recovering probability functions with Fourier series: the COS method 

In some cases, the probability density or mass function is not available in closed form. Classical distributions (e.g., 

normal and lognormal densities) that lead to closed form equations for option pricing cannot recreate the behavior 

observed in financial market data. This flaw in classical models leads to incorrect derivative pricing. Fang and Oosterlee 

(2008) introduced a method intended to recover the probability density functions in a quasi-analytical way. The authors 

demonstrated that, given the characteristic function of a continuously distributed random variable, it is feasible to 

estimate the probability density function pointwise using the Euler's identity and the Fourier-cosine series. The 

approach is effective and simple to adopt. The Fourier-cosine series is the central numerical method used along, 
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throughout the paper. 

Let 𝑓: [0, 𝜋] ⟶ ℝ be an integrable function. Then the Fourier-cosine series of f is given by 

𝑓(𝜉) =
𝑎0

2
+∑  ∞

𝑗=1 𝑎𝑗cos(𝑗𝜉), 𝜉 ∈ [0, 𝜋]                                   (11) 

where 

𝑎𝑗 =
2

𝜋
∫  
𝜋

0
𝑓(𝜉)cos(𝑗𝜉)𝑑𝜉, 𝑗 = 0,1,2,…                                 (12) 

For functions supported in any arbitrary interval [a,b], a change of variable ξ=π (x-a)/(b-a) is considered. Then, the 

Fourier-cosine series expansion of f in the interval [a,b] is 

𝑓(𝑥) =
𝑎0

2
+ ∑  ∞

𝑗=1 𝑎𝑗cos (𝑗𝜋
𝑥−𝑎

𝑏−𝑎
)                                  (13) 

where  

𝑎𝑗 =
2

𝑏−𝑎
∫  
𝑏

𝑎
𝑓(𝑥)cos (𝑗𝜋

𝑥−𝑎

𝑏−𝑎
) 𝑑𝑥, 𝑗 = 0,1,2,…                          (14) 

Let us assume that 𝑓 ∈ 𝐿1(ℝ). By the Euler's identity, the coefficients of the Fourier-cosine expansion of f are 

𝑎𝑗 =
2

𝑏−𝑎
∫  
𝑏

𝑎
 𝑓(𝑥)ℜ [exp (𝑖𝑗𝜋

𝑥−𝑎

𝑏−𝑎
)] 𝑑𝑥

=
2

𝑏−𝑎
ℜ(exp (−𝑖𝑗𝜋

𝑎

𝑏−𝑎
) ∫  

𝑏

𝑎
 𝑓(𝑥)exp (𝑖𝑗𝜋

𝑥

𝑏−𝑎
) 𝑑𝑥) .

                      (15) 

Let X be a continuous random variable. If f, with domain in ℝ, is a probability density function of X, then 

𝑎𝑗 ≈
2

𝑏−𝑎
ℜ(exp (−𝑖𝑗𝜋

𝑎

𝑏−𝑎
) 𝑓 (

𝑗𝜋

𝑏−𝑎
)) ≜ 𝐴𝑗                                  (16) 

where 𝑓 is the characteristic function of X, that is 

𝑓(𝑢) = ∫  
ℝ
exp(𝑖𝑥𝑢)𝑓(𝑥)𝑑𝑥                                       (17) 

which approximates 

∫  
𝑏

𝑎
exp(𝑖𝑥𝑢)𝑓(𝑥)𝑑𝑥                                             (18) 

Therefore, the approximation of f is given by the following Fourier-cosine series 

𝑓(𝑥) ≈
𝐴0

2
+∑  𝑛

𝑗=1 𝐴𝑗cos (𝑗𝜋
𝑥−𝑎

𝑏−𝑎
) , 𝑥 ∈ [𝑎, 𝑏]                           (19) 

for a given n. In terms of acuity, the greater the n the better it is. Actually, as we shall see ahead, convergence is very 

fast and small numbers n will cope well with the aproximation. 

The choices of the integration limits for the approximation be good were proposed in Fang and Oosterlee (2008) as 

follows: 

𝑎 = 𝑐1 − 𝐿√𝑐2 + √𝑐4𝑏 = 𝑐1 + 𝐿√𝑐2 + √𝑐4                                (20) 

with L=10. The coefficients 𝑐𝑘 are the k-th cumulant of x given by 

𝑐𝑘 =
1

𝑖𝑘
𝑑𝑘

𝑑𝑢𝑘
ℎ(𝑢)|

𝑢=0
                                              (21) 

where the cumulant generating function is given by 

ℎ(𝑢) = ln 𝔼[𝑒𝑖𝑢𝑋].                                               (22) 

Remind that the domain of f, typically, is not [a,b]. This interval is now chosen in order to capture as much probability 

as possible from f.  
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Example 1. (Normal distribution) The normal distribution is a symmetric probability density function with mean μ and 

variance 𝜎2. Its characteristic function is given by 

𝑓(𝑢; 𝜇, 𝜎) = 𝑒𝑖𝑢𝜇−
1

2
𝜎2𝑢2

                                          (23) 

According to Equation (22), we have 

ℎ(𝑢) = 𝑖𝑢𝜇 −
1

2
𝜎2𝑢2                                             (24) 

and 𝑐1 = 𝜇, 𝑐2 = 𝜎2 and 𝑐4 = 0. In Figure 1 we show the approximation of the normal probability density function 

with parameters μ=10 and σ=2 as a function of n in the Fourier Series. We can note that the sum given by (19) 

converges fastly with few terms to the analytical probability density function given by 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒
−
(𝑥−𝜇)2

2𝜎2                                                (25) 

 

 

 

Figure 1. Convergence as a function of 𝑛. 

2.4 The variance-gamma process 

Following Madan et. al (1998), the variance-gamma process is obtained by evaluating Brownian motion with drift at a 

random time given by a gamma process. Let 

𝑏(𝑡; 𝜃; 𝜎) = 𝜃𝑡 + 𝜎𝑊(𝑡),                                         (26) 

where W(t) is a standard Brownian motion. The process 𝑏(𝑡; 𝜃, 𝜎) is a Brownian motion with drift θ and volatility σ. 

The gamma process 𝛾(𝑡;𝑚, 𝛽) with mean rate m and variance rate β is the process of independent gamma increments 

over non-overlapping intervals of time (t,t+h). The density function of the increment 𝑔 = 𝛾(𝑡 + ℎ;𝑚, 𝛽) − 𝛾(𝑡;𝑚, 𝛽) 
is given by the gamma density function with mean mh and variance βh. Such process was first considered for stock 

prices by Clark (1973). 

The variance-gamma process 𝑋(𝑡; 𝜎, 𝛽, 𝜇), is defined in terms of the Brownian motion with drift b(t;μ,σ) and the 

gamma process with unit mean rate, 𝛾(𝑡; 1, 𝛽) as 

𝑋(𝑡; 𝜎, 𝛽, 𝜇) = 𝑏(𝛾(𝑡; 1, 𝛽); 𝜇; 𝜎).                                    (27) 

The variance-gamma process is obtained on evaluating Brownian motion at a time given by the gamma process. We can 

observe above that μ and β provide control over skew and kurtosis. More details can be found in the seminal paper 

Madan et. al (1998), in Zhu (2009) and in Tankov and Cont (2003). 
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2.5 Reinforcement learning 

Reinforcement learning (RL) is a subfield of machine learning that focuses on training agents to make sequential 

decisions in an environment to maximize a reward signal (Kaelbling et al., 1996) or a cumulative reward. It has gained 

significant attention in recent years due to its ability to solve complex decision-making problems in various domains, 

such as autonomous driving (Sallab et al., 2017), lane-tracking control (Kalapos et al., 2021), and traffic signal control 

(Chu et al., 2020).  

These applications leverage reinforcement learning algorithms to learn optimal policies for navigating complex 

environments and making real-time decisions. Similarly, in industrial autonomy, reinforcement learning has been used 

for part flow management in gas turbine maintenance (Compare et al. (2018)) and adaptive dispatching in 

semiconductor manufacturing systems (Sakr et al., 2021). These applications demonstrate the ability of reinforcement 

learning to optimize processes and improve efficiency in industrial settings.  

Reinforcement learning has also found applications in finance and trading. It has been used for portfolio optimization 

(Joshi, 2022), where the goal is to allocate investments to maximize returns while managing risk. Additionally, 

reinforcement learning has been applied to algorithmic trading, where agents learn to make buy and sell decisions based 

on market conditions (Abdulhameed & Lupenko, 2022). These applications highlight the potential of reinforcement 

learning in the financial sector for making informed and profitable decisions. 

This work employs Q-learning in order to hedge a call option in which the underlying asset path does not follow the 

Black-Scholes assumptions. Several research have been conducted to investigate the application of RL in option pricing. 

Du et al. (2020) offered a deep RL technique for option replication and hedging, for example. They developed a deep 

reinforcement learning agent to mimic option payoffs by dynamically modifying a portfolio of underlying assets. By 

maximizing the cumulative payoff, which was characterized as replication accuracy, the agent learned optimal trading 

strategies. Cao et al. (2019) proposed a deep hedging framework for dynamically hedging stock options in the 

Black-Scholes world using RL. They modeled the hedging problem as a Markov decision process and trained a deep RL 

agent to discover the best hedging strategy. Based on market conditions, the agent changed the hedge portfolio to reduce 

hedging costs and variation. Their research found that RL-based hedging techniques outperformed traditional 

approaches, especially when market frictions such as transaction costs were present. 

The following is a step-by-step explanation of the Q-learning algorithm: 

 

Figure 2. Q-learning algorithm. (Adapted from Sutton and Barto (2018)) 

3. Methodology 

Following da Silva et. al (2019) and da Silva et. al (2020), with the focus on the interest rate derivatives market, let the 

continuous real valued random variable Z(t,T) be a function of the underlying source of risk - the interest rate process 

{𝑟(𝑠), 𝑠 ∈ [𝑡, 𝑇]}- experienced by an European call option maturing at time T. So, we may write Z(t,T)≡Z(t,{𝑟(𝑠), 𝑠 ∈
[𝑡, 𝑇]} ). Let 𝑓(⋅∣ 𝑟(𝑡)) be the risk-neutral probability density function of Z(t,T) conditional to r(t) and g(Z(t,T)) be 

the discounted payoff function of the option. Then the price of this option at time t is 
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𝐶(𝑡, 𝑇)= 𝔼[𝑔(𝑍(𝑡, 𝑇)) ∣ 𝑟(𝑡)]

= ∫  
ℝ
 𝑔(𝑤)𝑓(𝑤 ∣ 𝑟(𝑡))𝑑𝑤

                                (28) 

where 𝔼 is the risk-neutral expected value. Truncating f in the interval [a,b] we have: 

𝐶(𝑡, 𝑇) ≈ ∫  
𝑏

𝑎
𝑔(𝑤)𝑓(𝑤 ∣ 𝑟(𝑡))𝑑𝑤                             (29) 

The integral in (29) can be calculated by the COS method proposed by Fang and Oosterlee (2008). The COS method is 

an interesting, fast and accurate derivatives pricing method based on Fourier-cosine series. In what follows, we present 

the COS method and show how to use it to price options. Therefore, using f(x) as in (19) we have 

𝐶(𝑡, 𝑇) ≈
𝐴0

2
∫  
𝑏

𝑎
𝑔(𝑥)d𝑥 + ∑  𝑛

𝑗=1 𝐴𝑗 ∫  
𝑏

𝑎
𝑔(𝑥)cos (𝑗𝜋

𝑥−𝑎

𝑏−𝑎
) d𝑥.                  (30) 

Hence, the series approximation of the option price is given by 

𝐶(𝑡, 𝑇) ≈
𝐴0𝐵0

2
+∑  𝑛

𝑗=1 𝐴𝑗𝐵𝑗,                                        (31) 

where the 𝐴𝑘 coefficients are given by (16) with the characteristic function (17) associated to the model and 

𝐵𝑗 = ∫  
𝑏

𝑎
𝑔(𝑥)cos (𝑗𝜋

𝑥−𝑎

𝑏−𝑎
) d𝑥,  for 𝑗 = 0,1, … , 𝑛,                            (32) 

associated to the payoff function. 

3.1 The COS coefficients for the IDI call option 

In order to employ the COS method to calculate the price of the IDI call option, it is necessary to find the B_j 

coefficients associated to the payoff of the IDI call option. 

Theorem 3.1. The B_j coefficients for IDI call options are given by 

𝐵0 = ∫  
𝑏

ln(𝑘)
(𝑒𝑥 − 𝑘)𝑑𝑥 = 𝑘ln(𝑘) + (−𝑏 − 1)𝑘 + e𝑏,                           (33) 

and 

𝐵𝑗 = ∫  
𝑏

ln(𝑘)
  (𝑒𝑥 − 𝑘)cos (

𝜋𝑗(𝑥−𝑎)

𝑏−𝑎
) 𝑑𝑥

= (𝑏 − 𝑎)
((𝑏2−2𝑎𝑏+𝑎2)𝑘sin(

𝜋𝑗ln(𝑘)−𝜋𝑎𝑗

𝑏−𝑎
)+(𝜋𝑎−𝜋𝑏)𝑗𝑘cos(

𝜋𝑗ln(𝑘)−𝜋𝑎𝑗

𝑏−𝑎
))

𝜋𝑗(𝜋2𝑗2+𝑏2−2𝑎𝑏+𝑎2)
+⋯

+(𝑏 − 𝑎)
((−𝜋2𝑗2−𝑏2+2𝑎𝑏−𝑎2)sin(𝜋𝑗)𝑘+𝜋2e𝑏𝑗2sin(𝜋𝑗)+(𝜋𝑏−𝜋𝑎)e𝑏𝑗cos(𝜋𝑗))

𝜋𝑗(𝜋2𝑗2+𝑏2−2𝑎𝑏+𝑎2)

             (34) 

Note that the 𝐵𝑗 coefficients (33) and (34) are given by the Equation (32) using g(𝑥) = 𝑒𝑥 − 𝑘, where x stands for the 

variable that representes the random variable of the model, i.e. the logarithm of the present value of the forward ID 

index, and k the strike price of the contract. 

3.2 Q-learning 

Q-learning is a versatile algorithm that is frequently utilized in a variety of applications. According to Cao (2021), the 

policy update phase of the Q-learning approach incorporates a global optimization at each time step. Nonetheless, when 

the action space is continuous, as in the case of option hedging, this maximization becomes impractical. 

Cao (2021) used a method called Deep Deterministic Policy Gradient (DDPG) to leverage Q-learning in conjunction 

with artificial neural networks. The Deep Deterministic Policy Gradient (DDPG) is a sophisticated reinforcement 

learning system that incorporates ideas from both Q-learning and policy gradient methods. It is specifically intended for 

handling high-dimensional, continuous action space issues, such as dynamic hedging. A complete explanation of the 

algorithm can be found in Cao (2021) and in Openai (2018). 

The agent’s goal is to choose actions to maximize the expected cumulative reward: 

𝔼[𝐺𝑡] = 𝔼[𝑅𝑡+1 + γ𝑅𝑡+2 + 𝛾2𝑅𝑡+3 +⋯+ 𝛾𝑇−1𝑅𝑇],                    (35) 

where the constant γ ∈ (0,1) is referred to as the discount fator and T is the maturity of the option. The reward is 
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given by the profit and loss formulation of Cao (2021): 

𝑅𝑖+1 =𝐻𝑖(𝑆𝑖+1 − 𝑆𝑖) + 𝑉𝑖+1 − 𝑉𝑖 − 𝜅|𝐻𝑖+1 −𝐻𝑖|𝑆𝑖+1],               (36) 

where S_i is the asset price, at time i, H_i is the holding quantity, κ the trading cost and V_i is the value of the option. 

We benefited from DDPG agent implemented in the reinforcement learning toolbox of matlab. The following algorithm 

was proposed in Lillicrap et al. (2015): 

 

 

Figure 3. DDPG algorithm. (Lillicrap et al. (2015)) 

4. Results 

Interest rate options behave in the opposite way to equities. Typically, investors want insurance against an increase in 

interest rates. As a result, the higher the strike, the greater the demand for options, implying higher costs. 

When interest rates rise, the value of fixed-income products like bonds falls. This occurs as newer bonds with higher 

coupon rates enter the market, making older bonds with lower coupon rates less appealing. Investors who hold these 

bonds may suffer losses if bond prices fall. Investors use interest rate options to offset this risk (Goodman and Fabozzi 

(2002)). 

Investors who purchase interest rate call options gain the right to purchase an underlying instrument (such as a bond) at 

a preset strike price even if interest rates climb. This provides some insurance since the option increases in value when 

the underlying security's price decreases owing to rising interest rates. Thus, the higher the strike price specified in the 

option contract, the greater the amount of protection provided, resulting in more demand and, as a result, higher option 

pricing. 

The volatility smile of IDI options, unlike stock options, has a forward skew structure. Deep out-of-the-money calls and 

deep in-the-money puts are richer than which is precluded by the Black-76 model (Black (1976)), the standard model 

used by the Brazilian exchange. 

Figure 2 shows a typically risk-neutral probability density function implied from a 6-month IDI call option. We use the 

numerical second derivative of the option price with respect to the strike as an approximation of the density function, as 

proposed by Breeden and Litzenberger (1978). In the particular case of IDI option, from equation (4) we have 

𝑒𝑥
∂2𝐶(𝑡,𝑇)

∂𝐾2 = 𝑓(𝑥),                                           (37) 
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where 𝑥 = ∫𝑡
𝑇
 𝑟(𝑠)𝑑𝑠. Note that we chose to recover the density of the integral of the interest rate along the remaining 

time of the option. We could work with the density of the index y(t) itself, which would result in 

∂2𝐶(𝑡,𝑇)

∂𝐾2 = 𝑓(𝑦).                                             (38) 

 

 

Figure 4. Implied probability distribution from IDI option prices. 

We note in this example that the implied distribution is leptokurtic and positively skewed. Right long-tailed implied 

distributions are often found in market prices of IDI options of various maturities. 

The models presented up to now are poor concerning the ability to recover the market prices features. In this paper we 

seek a model capable to reproduce the behavior of the empirical distribution in conjunction with an efficient numerical 

method. 

4.1 The Black model 

In order to calculate the IDI option price with the COS method, according to Fang and Oosterlee (2008), it is necessary 

to express the characteristic function of the underlying model as a closed form expression. 

We assume a geometric Brownian motion with zero drift to modeling the present value of the forward ID index 𝑦‾(𝑡) 
as follows: 

𝑑𝑦‾(𝑡) = 𝜎𝑦‾(𝑡)𝑑𝑊(𝑡).                                           (39) 

The Black-76 model is the reference formula for the market. The model implies a lognormal probability density 

function for 𝑦‾(𝑡), which is not able to capture the stylized facts of the market data. 

We analyze the IDI option prices given by the COS method. Firstly, we assume that the present value of the forward ID 

index evolves according to the Black-76 model. In this simple case, Carreira and Brostowicz, (2016).  provided a 

closed-form solution to the IDI call price shown in (9), which allows us to investigate the error of the COS method. To 

employ the COS method, we need to insert into the equation (16) the conditional characteristic function of 𝑦‾(𝑇), which 

is given by 

𝑓(𝑦‾(𝑡), 𝑡, 𝑢) = 𝑒
𝑖𝑢[log(𝑦‾(𝑡))−

𝜎2(𝑇−𝑡)

2
]−

𝑢2𝜎2(𝑇−𝑡)

2 .                             (40) 

Cumulant functions (21) for the Black-76 model can be found in Kienitz and Wetterau (2012) and Fang and Oosterlee 

(2008). Characteristic functions of financial models are broadly discussed and implemented in Kienitz and Wetterau 

(2012). 

In this exercise, we work with σ=0.06%. The time to maturity of the option is 54 business days and its strike price is 

262500. The IDI spot y(t) is 260321.410. Figure 3 shows the prices of this option as a function of the strike calculated 

by the COS method and by the closed-form formula. Note that the prices are visually indistinguishable. 

The COS method produces 25 prices for N=32 terms in the summation (30) in less than a half of a second in a standard 
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personal computer. 

4.2 Black model with Lévy jumps case: the variance-gamma process 

In order to embody the stylized facts of the real world on the implied distribution of the IDI option, we use a version of 

the Black-76 model enhanced with a Lévy process as 

𝑑𝑦‾(𝑡) = 𝑦‾(𝑡)𝑑𝐿(𝑡)                                              (41) 

where the variance-gamma process L is a pure jump Lévy process defined in terms of the Brownian motion with drift 

𝜃𝑡 + 𝜎𝑊(𝑡), subordinated by a Gamma process γ(t,α,β), as described in Subsection 2.4. The latter therefore is an 

increasing Lévy process. The so called VG process is discussed in Tankov and Cont (2003), Zhu (2009) and Kienitz and 

Wetterau (2012). 

 

 

Figure 5. Black-76 prices 

We have that α=1 is the mean rate and β is the variance rate of the Gamma process. Hence, substituting t by 𝛾(𝑡, 𝛼, 𝛽) 
in θt+σW(t) gives us the Variance-Gamma process 

𝐿(𝑡) = 𝜇 ⋅ 𝛾(𝑡, 𝛼, 𝛽) + 𝜎𝑊(𝛾(𝑡, 𝛼, 𝛽))                                  (42) 

The corresponding conditional characteristic function of the variance-gamma model for time T to be inserted in (16) is 

𝑓(𝑢; 𝜇, 𝛽, 𝜎) = 𝑒𝑖𝑢ln(𝑦‾(𝑡)) (1 − 𝑖𝑢𝜇𝛽 +
1

2
𝜎2𝑢2𝛽)

−
(𝑇−𝑡)

𝛽
                      (43) 

Details about Lévy process and its characteristic function can be found in Tankov and Cont (2003) and Zhu (2019). 

Cumulant functions (21) for the variance-gamma model can be found in Kienitz and Wetterau (2012) and Fang and 

Oosterlee (2008). 

In Figure 4 we show a range of the IDI option prices given by (39), where L(t) is the variance-gamma process with 

parameters μ, β, σ. We compare the call option prices of the Black-76 model with those of the enhanced Black-76 with 

variancegamma process. We replicate the parameters of the above example and use β=2.5. 
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Figure 6. Comparison of IDI Call prices with Black-76 and Black-variance-gamma processes 

By varying the parameter μ betwenn -0.02 and 0.02, we can observe the power of the VG process. We note that for 

negatives values of μ, the in-the-money IDI options prices are much richer than those of the Black-76 model. 

Conversely, for positive values of μ, out-of-the-money IDI options prices are much richer than those given by the 

Black-76 model. All four cases produce higher prices than those of the Black-76 model for at-the-money options. Note 

that, for μ=0, the VG and the Black-76 model prices match for this set of parameters. 

The preceding experiment demonstrated that the VG process can create excess kurtosis and a right fat-tail - for positive 

μ as we seek - as shown in IDI option market data. For example, the potential of positive leaps implies significantly 

higher-priced options, implying that the likelihood of the option expiring in-the-money was increased. Figure 7 depicts 

typical volatility smiles formed in the IDI option market produced variance-gamma process. It is important to recover 

that, the market practice is to find the implied volatility by numerically inverting the Black-76 and finding σ, which is 

constant. It is worth noting that the model is capable of capturing the properties of options found in market data, such as 

a growing volatility curve. 

Through a comparison of the Black-76 model and the upgraded Black-76 model utilizing the variance-gamma process, 

the results reported in this section provide useful insights into the behavior of IDI option pricing. The empirical 

investigation provides light on the impact of altering the parameter μ inside the VG process, providing a thorough grasp 

of its impact on volatility curve, and consequently on option pricing, at various moneyness levels. We observe that for 

this set of parameters, negative μ produces the classic volatility smile seen in stock markets. For instance, negative μ it 

is what was found for stock options data in the seminal paper of Madan et. al (1998). 

The previous experiment demonstrates the VG process's ability to reproduce the heavy-tail features reported in IDI 

option market data. The model's capacity to represent real-world phenomena is highlighted by the development of 

excess kurtosis and a right fat-tail, controled with β and μ, which are hallmarks of interest rate market behaviors 

characterised by severe occurrences. The appearance of the volatility smile in Figure 5, created with positives μ values, 

reflects the typical phenomenon found in option markets, confirming the VG process's practical use. 
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Figure 7. VG model implied volatility smile 

In addition, does the computational technique described here confirm the VG process's effectiveness in catching 

heavy-tail activity, but it also provides a more comprehensive understanding of enhancing option pricing accuracy using 

the COS method. This work adds significantly to our understanding of financial market dynamics and expands the 

toolset accessible to practitioners in their quest of better risk management and pricing precision. 

Considering that the preceding experiments provide empirical evidence of the VG model's ability to replicate market 

index behavior, it becomes feasible to employ this model for investigating the impact of reinforcement learning-based 

hedging. 

4.3 Hedging 

The set of experiments detailed in what follows delves into the dynamic world of financial options hedging. In an 

environment where market conditions are far from idealized, transaction costs play a significant role, and index 

movements follow complex patterns like the variance-gamma process, it becomes essential to explore innovative and 

adaptive hedging strategies. These experiments compare the traditional Black-76 delta hedging method with a 

reinforcement learning (RL) approach, trained using the Q-learning algorithm. The primary aim is to assess how RL can 

impact the effectiveness and cost-efficiency of hedging under varying scenarios, ultimately shedding light on its 

potential to revolutionize hedging strategies in the real-world context of, at least, interest rate derivatives.  

We consider first that the index evolves as the Black-76 model. We consider the spot price = 100 and at-the-money call 

option. The maturity is equal to 0.25 years and σ = 0.2. The annual interest rate equals 0.1. From now on we consider 

discretely daily hedging. The Q-learning algorithm was trained by using 5000 trials. Using the Black-76 formula, the 

hedging quantity is given by 

Δ = 𝑒−𝑟𝑇𝑁(𝑑1).                                              (44) 

- By considering no costs of transaction, the hedging results are as follows: 

The Black-76 delta hedging performed with Equation (44) resulted in an average hedge cost of 1.2% of the option 

price. The RL hedging resulted in an average hedge cost of -1% of the option price. The standard deviations are 39% 

and 58%, respectively. Figure 8 illustrates the results. 

 

 

 

 

 



Business and Management Studies                                                                Vol. 9, No. 2; 2023 

28 

 

 

 

Figure 8. Hedging costs (RL vs Black-76 with no transaction cost) 

 

 

Figure 9. Hedging costs (RL vs Black-76 with 1% transaction cost) 

- By considering the costs of the transaction of 1%, the hedging results are as follows: 

The Black-76 delta hedging performed with Equation (44) resulted in an average hedge cost of 141% of the option 

price. The RL hedging resulted in an average hedge cost of 82% of the option price. The standard deviations are 76% 

and 81%, respectively. The RL hedging reduces the hedging cost by 31%.  Figure 9 illustrates the results. 

- By considering the costs of the transaction of 1% and that the index evolves as a variance-gamma process, the 

hedging results are as follows: 

The Black-76 delta hedging performed with Equation (44) resulted in an average hedge cost of 112% of the option 

price. The RL hedging resulted in an average hedge cost of 79% of the option price. The standard deviations are 93% 

and 106%, respectively. The RL hedging reduces the hedging cost by 30%. Figure 10 illustrates the results: 
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Figure 10. Hedging costs (RL vs Black-76 with 1% transaction cost and VG paths) 

- In Figures 11, 12 and 13 we show the variance-gamma process sample path for y(t) given by the Equation (41), the 

corresponding option prices and the implied volatilities dynamics, respectively. Note that the implied volatility, as 

expected, is not constant over time. The variance-gamma process can indeed mimic market conditions. 

The presented results offer valuable insights into the effectiveness of RL hedging in different scenarios. When 

transaction costs are introduced, the advantages of RL hedging become even more evident. These findings underscore 

the cost-saving capabilities of RL in realistic trading scenarios. 

 

Figure 11. Variance-gamma process index simulated path 
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Figure 12. Variance-gamma option prices simulated path 

 

 

Figure 13. Black-76 implied volatilities simulated path generated from VG option prices 

5. Conclusion 

This study proposed a thorough statistical model targeted at capturing the peculiar heavy-tail behavior visible in option 

pricing in the Interbank Deposit Rate Index (IDI) market. The paper begins by outlining the mathematical foundations 

of IDI options as well as the traditional pricing methodology used by market participants to infer implied volatility. 

Following that, the Fourier cosine series approach (COS) is described in detail, with numerical computations of the 

probability density function conducted. The inquiry highlights the potential benefits of the COS technique in dealing 

with heavy-tail behaviors through a comparative examination of option prices obtained from both the Black-76 formula 

and the COS method. 

The introduction of the variance-gamma (VG) process, a unique statistical model intended to adequately capture the 
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observed heavy tail features, is important to the research. The empirical results confirm the VG process's potential to 

create excess kurtosis and a right fat-tail, both of which are characteristics of IDI option market data. The article 

explains the subtle impact of multiple factors within the VG process using illustrative data, emphasizing the influence of 

μ on option prices at different moneyness levels. The VG approach exhibits its ability to generate much richer 

in-the-money or out-of-the-money option prices, providing a viable path for improved pricing precision. 

Furthermore, the study underscores the VG process's practical usefulness by demonstrating the creation of the 

well-known volatility smile - a hallmark of financial markets - in the IDI option market environment. Notably, the 

market practice of assessing implied volatility by numerical inversion of the Black-76 model is highlighted, 

emphasizing the research findings' practical importance for market players. 

Finally, by considering transaction costs, alternative index dynamics, and the dynamic nature of implied volatilities, this 

research uncovers the transformative power of reinforcement learning in the realm of financial option hedging. The 

study introduced reinforcement learning hedging and extended its investigation to a scenario where the index follows a 

variance-gamma process, showcasing that reinforcement learning hedging remains more cost-effective compared to the 

Black-76 model, even under these alternative market conditions. These results illustrate RL's adaptability to different 

market dynamics, opening up a wide range of possibilities for conducting further experiments with new financial 

models and products. 
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