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conditional heteroscedasticity (ARCH) model by Engle (1982, 2004) and Bollerslev, Chou, and Kroner (1992) and its 
generalized version is the generalized autoregressive conditional heteroscedasticity (GARCH) model (Bollerslev, 1986; 
Engle, 2004).  

Remittance is the better instrument to remove poverty (Matin, 1994; Murshid, Iqbal, & Ahmed, 2001). In recent years, 
worldwide remittances transfers have increased (Jha, Sugiyarto & Vargas-Silva, 2009). In developing countries average 
annual growth rate of remittance flows was 15%, from 1997 to 2007 (Jha, Sugiyarto & Vargas-Silva, 2009). In 
Bangladesh the remittance flow is 10% of GDP (Jha, Sugiyarto & Vargas-Silva, 2009). According to recent literature, in 
Bangladesh, remittance is showing potential contribution to the economic development (Bruyn, 2006). So, it is 
necessary to pay attention on the future conditions of remittance by using several forecasting models. But all the models 
do not perform in same way. Therefore, in this paper we compared the forecasting performance of ARIMA and GARCH 
models in the remittance context of Bangladesh in order to fit the appropriate model. 

2. Method 

2.1 Data Sources 

The data were collected from the Monthly Economic Trends of Bangladesh Bank (BB) during January, 1998 to 
December, 2003. This period was selected because the figures against each month were available from the source and 
there was an opportunity for validation. The forecasting models needed reliable and equally spaced long series of data. 
Therefore, the monthly remittances were chosen as the variable not only for its availability but also for its originality. 
Our data set contained 72 observations. The observations were separated into training segment and test segment. The 
first segment contained first 60 observations and the latter contained the remaining 12. 

2.2 Model Selection 

The Box-Jenkins (BJ) methodology used to fit an appropriate model for the remittances data (Box & Jenkins, 1976). 
This methodology consists of three phases (1) identification, (2) estimation and diagnostic checking and (3) application. 
It requires at least 40 to 50 equally spaced periods of data. In addition to BJ methodology, Portmanteau tests such as 
Box-Pierce test (Box & Pierce, 1970; Grigonytė & Butkevičiūtė, 2016) and Ljung-Box test (Ljung & Box, 1978) were 
also used for identifying the stationarity of the data set. These test statistics are asymptotically distributed as chi-square 
with “h-m” degrees of freedom, where “h” is the maximum lag and “m” is the number of parameters in the model 
which has been fitted to the data. The autocorrelation function (ACF) and partial autocorrelations function (PACF) 
(Makridakis, Wheelwright, and Hyndman, 1998) of the stationary series were observed to see if any pattern remains. 
The akaike’s information criterion (AIC) (Akaike, 1974) was used to select the best model among the plausible models. 
After identifying a tentative model, we applied the method of maximum likelihood to get preliminary estimates. “R” 
program was used to refine the estimate. A test of significance of the estimated parameters was done to identify the 
insignificant estimates (values may have been larger than 0.05). A revised model was considered after omitting the 
insignificant terms.   

Diagnostic checking was done by studying the residuals to verify the model. For a good forecasting model, the residuals 
left over after fitting the model should be simply white noise. Therefore, we would hope to find no significant 
autocorrelations and partial autocorrelations in the ACF and PACF of the residuals. 

In this study, we considered some well-known measures of forecasting error such as, mean error (ME), mean absolute 
error (MAE), mean square error (MSE), mean prediction error (MPE), mean absolute percentage error (MAPE), and 
adjusted mean absolute percentage error (AMAPE) to compare ARIMA and GARCH models. The model that gave the 
minimum measures of forecast error was our expected model for further forecasting. The ME, MAE and MSE dealt 
with measures of accuracy and the MPE, MAPE and AMAPE gave the relative comparison. 

3. Results 

The results obtained under the methods mentioned above to find out the suitable model for the considered data set are 
presented below. 

3.1 Choosing an ARIMA Model  

The time plot of the data showed that, these data had increasing trend (Figure 1). A mathematical transformation is 
convenient for accounting the increasing variations. Therefore, log transformation was used to stabilize the variation 
(Figure 2). To recognize the seasonality we obtained the ACF of the remittances (Figure 3). The pattern was consistent, 
because the ACF indicated the existence of seasonality. The Box-Pierce and the Ljung-Box test statistics illustrated that 
the set of correlation values were not significantly different from a null set compared to a chi-square distribution with 
24 degrees of freedom. This also indicated that the data set did not follow a white noise series. The obtained data were 
also non-stationary in mean (Figure 2). So, after log transformation of the data of the training segment the first 
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3.3 Comparison between ARIMA Model and GARCH Model 

The forecasting performance of selected ARIMA model was compared with GARCH model. The forecast errors for each 
model were obtained by subtracting the forecasted series from the original data series. From these errors different 
measures of errors were calculated.     

Table 4 represented that the GARCH (2,1) model gave the better result over ARIMA (0,1,1) (0,2,1)12. Thus it was wise to 
use the GARCH (2,1) model to forecast the future values of remittances of Bangladesh than that of ARIMA (0,1,1) 
(0,2,1)12  model. 

Table 4. Comparison between ARIMA model and GARCH model 

Measures of error ARIMA GARCH 
Mean error (ME) 2.19 0.013 
Mean Absolute Error (MAE) 64.56 0.509 
Mean Square Error (MSE) 12135.27 0.948 
Mean percentage Error (MPE)      100.04 94.998 
Mean Absolute percentage Error (MAPE) 100.04 94.998 
Adjusted Mean Absolute percentage Error (AMAPE) 1.02 0.949 

3.4 Out-of Sample Forecasting During the Period January, 2004 to December, 2004 

To see the performance of these two models out-of sample forecasting, we derived the forecasted values of remittances 
using these two models for the period January, 2004 to December, 2004. The following table gives two forecasted series 
obtained by the two models as well as the actual data set.    

From the Table 5, we could see that the forecasted value for each month in the time period could be obtained by ARIMA 
(0,1,1) (0,2,1)12  and GARCH (2,1) model.  

Table 5. The forecasted and actual value of monthly Remittances during the period January, 2004 to December, 2004 

Period Remittances  
(Taka in crores)

Forecasted value by 
ARIMA model

Forecasted value by 
GARCH model 

January 2103.44 2627.363 1635.801 
February 1509.21 2176.577 1999.833 
March 1837.51 2382.577 1535.449 
April 1672.54 2369.956 1763.682 
May  2239.239
June  2168.978
July  2464.418
August  2333.626
September  2394.123
October  2397.330
November  2505.000
December  2150.362

4. Conclusion 

In this paper an appropriate model was selected for forecasting remittances of Bangladesh. The ARIMA (0,1,1) (0,2,1)12 

and the GARCH (2,1) model were fitted firstly and then the forecasting performances of these two approaches were 
compared. Forecasting errors for both the models were obtained and the various measures of forecast errors were 
calculated. It was found that the GARCH (2,1) gave less average forecasting errors than that of the ARIMA (0,1,1) 
(0,2,1)12 model. This indicated that, in the ARIMA model, the long run variance was considered as constant though for 
some time period the variance increased significantly. The ARIMA model failed to identify this activity and as a result, 
over fit by the data in sample tests. However, the GARCH model fitted the data better than the ARIMA model. 
Evidence for this was that the GARCH model performed better in out-of-sample tests. 

It can be concluded that the GARCH modal can be used to forecast the monthly remittances of Bangladesh. Though a 
good forecasting technique for a situation may not always be a good technique for different a situation. The validation 
of a particular model must be examined with time changes. 
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