ESG Investments: Filtering versus Machine Learning Approaches

Vincent Margot, Christophe Geissler, Carmine de Franco, Bruno Monnier

Abstract


We designed a machine learning algorithm that identifies patterns between ESG profiles and financial performances for companies in a large investment universe. The algorithm consists of regularly updated sets of rules that map regions into the high-dimensional space of ESG features to excess return predictions. The final aggregated predictions are transformed into scores which allow us to design simple strategies that screen the investment universe for stocks with positive scores. By linking the ESG features with financial performances in a non-linear way, our strategy based upon our machine learning algorithm turns out to be an efficient stock picking tool, which outperforms classic strategies that screen stocks according to their ESG ratings, as the popular best-in-class approach. Our paper brings new ideas in the growing field of financial literature that investigates the links between ESG behavior and the economy. We show indeed that there is clearly some form of alpha in the ESG profile of a company, but that this alpha can be accessed only with powerful, non-linear techniques such as machine learning.


Full Text:

PDF


DOI: https://doi.org/10.11114/aef.v8i2.5097

Refbacks

  • There are currently no refbacks.


Paper Submission E-mail: aef@redfame.com

Applied Economics and Finance    ISSN 2332-7294 (Print)   ISSN 2332-7308 (Online)

Copyright © Redfame Publishing Inc.

To make sure that you can receive messages from us, please add the 'redfame.com' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders. If you have any questions, please contact: aef@redfame.com

 

-------------------------------------------------------------------------------------------------------------------------------------------------------------