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pertaining to investment securities, securities offerings, and foreign bank capital equivalency deposits.1 Amid this 
backdrop, the development of accurate models for assessing bank credit risk appears critical both for managing 
exposure to financial firms and for compliance with Federal regulations. 

 
Figure 1. Paths into Default for Financial and Non-Financial Firms from Vazza and Kraemer (2012) 

Source: Standard & Poor’s 

For the development of the time-adaptive statistical model that predicts PDs of banks, I used information contained in 
banks’ financial statements as published by the U.S. Federal Deposit Insurance Corporation (FDIC). As of March 2013, 
there were 7,019 depository institutions in the US reporting to the FDIC with total liabilities of $12.8 trillion.2 Potential 
inputs to the models are financial ratios found, in preliminary analyses, to be effective in forecasting future bank failures. 
A series of models predicting default at one- to five-year horizons are computed annually, and the outputs are 
predictions of annual marginal default probabilities for each bank from one to 30 years. I back-tested the model’s ability 
to predict defaults of US depository institutions between 2000 and 2012 using bank data since 1992. For those studies, I 
evaluated model performance using a walk-forward procedure. That is, to estimate default risk in any test year, I use 
only information before that year to select model variables and calibrate the model coefficients. 

The bank default model is represented in Figure 2. The left panel shows the functional form of the model, a logistic 
regression, and the most recent coefficients for the one-year model, last updated in 2013 using data up to the end of 
2012. As described further below, the variables for each model are chosen based on their relative Bayesian Information 
Coefficients (BIC), the measure of information contribution, and criterion for inclusion in the model.3 The middle panel 
shows how the individual variables are fit to linear regressions and summed prior to input into the non-linear function, 
Ø(z). I built models to predict defaults over yearly horizons from one to five years, each assuming survival (i.e., 

                                                        
1 Section 939A of the Dodd–Frank Act requires federal agencies to review regulations that require the use of an 
assessment of creditworthiness of a security or money market instrument and any references to, or requirements in, 
those regulations regarding credit ratings. Section 939A then requires the agencies to modify the regulations identified 
during the review to substitute any references to, or requirements of, reliance on credit ratings with such standards of 
creditworthiness that each agency determines to be appropriate. 
2 Information about aggregate bank sector size obtained from the FDIC “Statistics on Banking”, which is accessible 
online at http://www2.fdic.gov/sdi/sob/. 
3 That is, as described below, I used the BIC as a criterion for variable selection, with those variables with the highest 
individual BIC chosen first. 
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  (8) 

Note that because I fit a separate model for each year, the variables selected and the coefficients  j ,t  will, in general, 

be different for each year. Let, CPDt , j  be the cumulative probability of default for bank j from time t=0 to t years. 

Then, the cumulative probabilities for bank j over horizons from t=1 to T years can be determined from their annual PDs 

as: 

 

CPD1, j  P1, j

CPD2, j  CPD1, j  (1CPDi ,1 ) P2, j

....

CPDT , j  CPDT 1, j  (1CPDT 1, j ) PT , j

  (9) 

The procedure for calculating marginal PDs beyond five years is illustrated in Figure 6. First, I construct a map between 
one-year PDs and Standard & Poor’s rating categories. This is made possible using a map that I derived between 
average probabilities of default for commercial and industrial firms from HPD model (Sobehart and Keenan, 2003) and 
their corresponding agency ratings.7 For example, the left panel of Figure 6 illustrates a mapping between one-year 
PDs from the HPD model to rating categories calibrated using data of all U.S. banks between 1982 and 2012. Using this 
map, I can assign an implied rating to each bank that corresponds to its current one-year PD from the logistic regression 
model. Then, for a given bank, I combine its term structure of cumulative default rates from one to five years with the 
marginal annual default rates reported by Moody’s from its imputed credit rating from six to thirty years. That is, I 
assume each bank’s conditional PD beyond five years follows the long-term historical values for its implied rating 
category. A resulting set of stylized bank annual cumulative default rates by implied whole letter rating categories 
appear in the right panels of Figure 6. The top panel shows cumulative default rates on a linear PD scale, whereas the 
lower plot shows those same data in logarithmic PD units. Notice that, as expected, average cumulative default rates for 
any given tenor increase with decreasing rating categories. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        
7 That rating map is constructed using PDs from the HPD model for non-bank corporate firms. Then firms are ranked 
with respect to their model PDs and assigned to rating categories that replicate the number of firms in each rating 
category in the sample. Finally, implied ratings for U.S. banks are assigned based on their inclusion within PD 
boundaries determined for each rating category. 
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Figure 6. Left: Mapping From One-Year PD to Imputed Risk Category; Right: Term Structure of Average Cumulative 
Bank PD For Each Implied-Rating Category on Linear (Top) and Logarithmic (Bottom) Scales 

3. Walk-Forward Backtesting 

I back-tested the model by constructing an annual series of models of the bank models using all available US bank data 
from 1992 to 2012. The number of non-defaulting banks and defaulting banks in the sample by year is given by the 
green bars (left axis) and red bars (right axis) in Figure 7. Notice that there were roughly 14,000 banks in the sample in 
1993, but that number declined to around 7,000 by 2012. Also, there are three apparent waves of defaults: one in the 
early 90s, a small one around the year 2000, and a surge of bank failures during the recent financial crisis. 

 

Figure 7. Number of Non-Defaulting Banks (Green Bars, Left Axis) and Defaulting Banks (Red Bards, Right Axis) 
Banks by Year in the Development Dataset 

In order to determine out-of-sample performance of the model, I used a walk-forward procedure as illustrated in Figure 
8 for the one-year model. The test set is sufficiently large, with a total of 499 defaulters out of 11,114 distinct banks, to 
provide a strong test of model performance. Because the model needs a minimum number of years of data for 
development, data from the years 1992 through 1999 were used to construct the first annual model (select variables and 
calibrate the weights) for each horizon for one to five years. The one-year model for 1999 was then used to score all 
non-defaulting banks at the beginning of 2000 and its ability to predict defaults in 2000 was determined. Models for 
year two through five used only banks that had survived to the model year to score for prediction. Thus for the two-year 
model, firms surviving until 2001 were scored with its 1999 model, and so forth for the longer horizons. To generate the 
set of models for year 2000 (i.e., used to predict defaults in 2001 to 2005 for one- to five-year models), I added the data 
from year 2000 to the set from 1992 to 1999. Variables were selected and coefficients determined and the model was 
tested on the corresponding test sample for the given horizon. That procedure was repeated annually until 2012. Of 
course, from models at horizons longer than one year, testing could only be done to year 2012 minus the horizon year. I 
adopted the walk forward procedure because it most realistically estimates the performance of the model as it will be 
deployed in practice. 

Figure 8. Illustration of the Walk-Forward Development and Testing Procedure for the One-Year Models: A New Model 
is Developed Each Year from 1999 to 2011 Using Data From All Previous Years and Tested on Defaulted and 
Non-Defaulted Bank in Each Subsequent Year from 2000 to 2012. For Models with Two- to Five-Year Horizons, Test 
Samples Consisted of Firms Surviving Until Year X+2 to X+5, Respectively. 

 
To evaluate model performance at separating banks that will default from non-defaulters, I generated Cumulative 
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Accuracy Profile (CAP) Curves for the one- to five-year model horizons. The cumulative resulting CAP curves for test 
years 1999-2012 are displayed in Figure 9. For example, to generate the one year-curve (blue line), I first rank all banks 
over the entire 13-year test period from highest to lowest by their one-year PDs from the models. Then, for successive 
intervals in the ranked population I calculate the cumulative fraction of defaulting banks contained within that interval. 
The interpretation of CAP curves is straightforward; for any criterion, the fraction of defaulters caught above the 
population percentile is measures the discriminatory power of the model. For example, the CAP curve for the one-year 
model at the 10% population criterion caught 94% of the banks that defaulted within the following year over the period 
from 1999-2012. The higher and steeper the CAP curve over the diagonal chance line, the better the model is at 
discriminating defaulters from non-defaulters. The table at the right in Figure 9 displays values of the CAP curves for 
each of the model horizons for various values of the population cut-off. The left-most values in the table show that the 
10% of banks ranked riskiest by the one- to five-year models capture 94%, 80%, 68%, 55%, and 40% of the defaulting 
banks, respectively. Not surprisingly, those data reveal that the power of the models decline as the horizon extends 
beyond one year, but even the five-year model is performing well above chance, capturing 40% of the banks that default 
in the fifth year after model development and scoring. Finally, it is important to note that even though the models are 
only regenerated on an annual basis, the financial data from the banks is available to update bank default scores on a 
quarterly basis and that is how the model will be used in practice. 

 

Figure 9. Left: CAP Curves for Predictions of Bank Defaults for One- to Five-Year Models using Walk-Forward Testing 
from 1999 Through 2012; Right: Values of the One- to Five-Year CAP Curves at Critical Thresholds, with 

Corresponding Values from the Chance Line Also Shown 

From a risk management perspective, the most relevant horizon for prediction is at one year. Thus, if a bank survives for 
that one year, the next year’s model can be used to assess its subsequent risk. Still, there are applications for which 
multi-year estimates of losses and portfolio relative value are of interest. These include buy-and-hold portfolios of bank 
obligations, such as structured products. For example, if one holds a portfolio of bank TRUPS (trust preferred securities) 
with five years of remaining maturity, they may wish to estimate-five year portfolio losses. For this type of application, 
it is important that the absolute PD levels be accurate. The CAP curves, because they rank PDs, assess only the relative 
accuracy of the models.8 Indeed, the models do specify absolute PD levels and I can assess their accuracy using the 
reliability plots in Figure 10. To construct the plots in Figure 10 I separated all banks into bins by 5% PD increments, 
and plot each bin’s average predicted PDs on the horizontal axis and the realized rate of defaults on the vertical axis. 
The interpretation of reliability plots is as follows. For example, the one-year plot includes the point (27% predicted, 31% 
obtained), which means for all the banks assigned one-year PDs between 25% and 30%, 31% of them actually defaulted 
within the following year. A perfect model would have all points falling on the diagonal line for which predicted PD and 
realized default rates match exactly. Error bars at two standard deviations for the realized default rates are also shown in 
each plot. 

 

                                                        
8 For example, if one multiplies all PDs by 10 the CAP curves will not change, but the absolute PD levels implied by 
the models will be too large. 
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Figure 10. Plots of Predicted and Obtained Bank Annual Default Rates from Models for One to Five Years Out. Error 
Bars are Two Standard Deviation Bands 

The plots in Figure 10 indicate that the default probabilities generated by the model are reasonably accurate at 
predicting default rates for banks over multi-year horizons. With respect to the two standard deviation bars, most data 
predictions do not differ significantly from the diagonal “perfect model” line. However, a notable exception is that the 
bank model typically underestimates the default rates for the second- and third-highest bins (i.e., the high default 
60%-70% bins). Further analysis revealed that the model under-predicted the sudden surge of defaults during the 
financial crisis of 2008 and 2009. Consider the left panel Figure 11 which displays the historical annual high yield 
corporate default rates (left axis) and U.S. bank default rates (right axis) from 1993 through 2012. Notice that the high 
yield default rates varied substantially over the period, with high rates early in the century. The banks had been 
relatively safe before 2008, with an average annual default rate of only 0.06% and even the maximum during that period 
is only 0.34%. The right panel of Figure 11 plots average predicted and realized annual default rates from the one-year 
bank model. The bank default models that are constructed annually did not predict well the overall bank default rate in 
2008 and 2009, the years of high bank defaults. More generally, the plot reveals that PD levels from the bank model 
tend to trail observed annual PD rates by one year. Note that the financial data for U.S. banks are published quarterly by 
the U.S. Federal Deposit Insurance Corporation (FDIC). Thus, in practice, I plan to update the model quarterly, 
potentially minimizing the lag in accurately predicting annual default rates. 

 
Figure 11. Left: Historical Annual High Yield Default Rate and Bank Default Rates From 1993 to 2012. Right: Model 
Predicted Annual Bank Default Rate and Realized Bank Default Rates, 2001–2012 with Two Standard Deviation Error 
Bars 

3.1 Converting Model Scores to Default Probabilities 

I previously showed that values of Ø(z) from the model are highly correlated with default probability (see right panel of 
Figure 12). That is, the model appears to perform well at ranking the relative default risk of U.S. banks. Although I 
attempted to link outputs of the model (i.e., values of Ø(z)) to actual physical default probabilities, the resulting values 
proved less than satisfactory. Accordingly, in this section, I link values of Ø(z) from the bank model to default 
probabilities from Hybrid Probability of Default (HPD).  

My approach to transforming values of Ø(z), for i  1,...,5,  ��� where i  indicates model for a given default year 
contingent upon survival to year i  1, is straightforward. For those banks that have PDs from HPD model, I plot HPD 
PDs versus values of �� ln(z)i  from the bank model as shown in the left panel of Figure 12 for the one-year model 
(i.e., i  1). Then I fit the points with a second- order polynomial of the form 
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Savings and Loans (SNL), and Banks (not identified). I obtained Kroll ratings for as many financial institutions as 
possible over the period from 2000-2012. The number of banks having Kroll ratings and my model scores appear in 
Figure 13, broken out by bank holding companies and savings and loans. Clearly, it appears that Kroll rates significantly 
less financial firms than are scored by my bank model. Part of this is because Kroll does not rate new banks within the 
first three years of their existence. It is also possible that I received only partial data on Kroll bank ratings. Nevertheless, 
as shown in Figure 13, there are roughly 1,000 firms each year having both Kroll ratings and my model scores, and 
these are typically the lower rated portion of the financial services firms. Importantly, as shown in Figure 14, there are 
at least a reasonable number of defaults for testing model, at least when results are aggregated over the 13-year test 
period.9 

 

Figure 14. Number of Defaults for Testing One- to Five-Year Models 

To test the predictive power of my bank PD model versus agency ratings, I first determined those financial firms that 
have both model scores and agency ratings. The left panel of Figure 15 shows the Kroll rating scale, where ratings range 
from single-A-plus to default (D). The middle and right panels of Figure 15 display the distributions of bank holding 
companies and savings and loans by Kroll credit ratings, respectively, for financial firms having both Kroll credit 
ratings and my bank model scores. Notice that Kroll does not rate many banks or savings and loans at A+ or A-. Of 
course, there are relatively few very low rated (single-C-plus to single-C-minus) financial institutions as it is very 
difficult for low-rated financial institutions to survive for long. Notice also that there are fewer savings and loans than 
bank holding companies in the sample. 

 

Figure 15. Kroll Rating Scale for Financial Firms (Left) and Distributions of Bank Holding Companies (Middle) and 
Savings and Loans (Right) with Both My Bank Model Scores and Kroll Credit Ratings 

Source: Kroll Rating Agency 

Default is necessarily a probabilistic event. That is, one is rarely certain that an obligor will default until its actual 
occurrence. A useful method for evaluating models’ predictive accuracy of probabilistic events is by constructing 
cumulative accuracy profile (CAP) curves such as that shown in the upper panel of Figure 2. Construction of 
cumulative accuracy profiles are described in detail in many places (Sobehart and Stein, 2000) and a short description 
appears in Appendix A. Briefly, to construct a CAP curve for a bank default model, values of estimated risk are first 
ranked from largest to smallest, with information whether each score is associated with a subsequently defaulted bank 

                                                        
9 Notice in Figure 14 that numbers of defaults increase with model horizon. This is because I use overlapping windows 
in counting multi-year defaults. 

Figure 4. Number of Defaults for Testing 
One- to Five-Year Models 
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BIC occurred. A list of the candidate variable set used for model construction appears in Figure 21 and a more detailed 
description of each candidate variable appears in Appendix B. 

Figure 21. Candidate Variables for My Bank Default Models for One- to Five-Year Horizon 

 
Figure 22. Left: Potential Model Variables and Their Order of Selection for the One-Year Model for 2000 to 2012; Right: Summary 

of Variable Selection, Displaying Probability of Selection and Average Order if Selected for the One-Year Model 

 
Consider first variables selected for the one-year model. The left panel of Figure 22 lists the variables selected each year 
from 2000 to 2012 for the one-year model using my walk-forward development and testing procedure. The number 
associated with each variable is the order in which the variable was chosen based on its BIC. Those variables having no 
value associated with them in a given year were not selected for that year’s model. The table shows that the most 
important variable for predicting one-year default is firms’ return on equity (ROE). The ROE was the first variable 
chosen for one-year models in every year. The ratio of liabilities to assets is also important for short-term default 
predictions, being chosen second for all years except 2010. Contributions from other variables are less consistent over 
time. For example, prior to 2009, earning assets to total assets is the third variable selected for all models, but was not 
even selected in 2010 or 2011, being selected last in 2012. Conversely, the ratio of non-current loans to loans was not 
selected at all in 2000, gradually increasing in its importance, such that from 2009 onward, it was either the second or 
third most important predictor of default. Other variables having contributions to one-year default prediction are the 
yield on earning assets over the period from 2004 to 2009, and in recent years, the return on assets (ROA), the total 
assets, and the ratio of non-current loans to allowance for loan losses. Finally, notice that there is a tendency for the 
number of important variables to increase over the testing period, with early models having only four or five variables, 
expanding to seven variables by 2011 (see last row of Figure 22). 

The right panel of Figure 22 summarizes the consistency of variable contributions to the one-year models over time, 
both in terms of what percentage of the 13 yearly models each variable was included, but also its average place in the 
hierarchy of contributions if selected. As mentioned above, ROE was selected as the first variable using the BIC 100% 
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of the time, with the ratio of Liabilities to Assets, also chosen in all models, but having an average in the order of 2.1 
owing to its third position in the 2010 model. The percentage of non-current loans and net operating income to assets 
are in 92% of the annual models at roughly fourth and fifth rank, whereas the fraction of earning assets is in 85% of the 
models, but when included has an average rank of 3.5. After those variables, contributions drop off rapidly, with the 
yield on earning assets in 46% of the models, but only at a rank of 5.8, followed by ROA and total assets at 28%. 
Finally, non-current loans to loan loss allowance is in 15% of the annual one-year models at a rank of fifth. Variables 
never included in any of the annual one-year models are: net loans to bank equity capital, annual default rate, ratio of 
assets 90 days past due to those 30-60 days past due, net interest income to earning assets, and net interest margin. 

 
 

Figure 23. Summary of Variable Selection, Displaying Probability of Selection and Average Order if Selected for  

Annual Two-, Three-, Four- and Five-Year Bank Default Models 

Figure 23 presents summaries of the consistency of variable contributions to the two-, three-, four- and five-year models 
over time, analogous to that shown for the one-year model at the right in Figure 22. (The lists of variables selected and 
their orders for the two- to five-year models analogous to that shown for the one-year model at the left in Figure 22 
appear in Figure 24.) The figures reveal shifts in the importance of various predictive variables over time. For example, 
the ROE, most important for the one-year model, becomes successively unimportant for predicting default in later years, 
not even being included on any of the annual four- or five-year models. Liabilities to assets, also important at one year, 
declines immediately to around 30% at two-years and remains at about that frequency, but never of greater importance 
than a rank of third. Conversely, net loans to bank equity capital, not included in any one-year models, is in every model 
at two and three years, maintaining its contribution, albeit in lesser amounts, out to five years. Meanwhile, the yield on 
earning assets, only marginally important at one year, becomes more important at longer horizons, being one of the 
most important at three to four years. 

 

 

 

 

 



Applied Economics and Finance                                          Vol. 2, No. 2; 2015 

48 
 

 

Figure 24. Left: Potential Model Variables and Their Order of Selection for the Two Through Five-Year Models for 
2000 to 2012 

A more detailed summary of the changes in variables as the annual prediction horizon increases from one to five years 
appears in Figure 25. The most important variables for each annual prediction horizon are listed followed by a 
description of the changes that occurred from the previous years’ model. For example, in predicting default from one to 
two years, ROE has become less important and the ratio of liabilities to assets is no longer in the model, whereas the 
fraction of non-current loans has become important along with the ratio of net loans to bank equity capital. In moving 
from the two- to three-year horizon, ROE is no longer in the model, whereas net loans to bank equity capital, which 
entered the model in at two years, is now most important. When predicting default between three and four years, the 
value of non-current loans is no longer in the model, whereas the current yield on earning assets has become most 
important. Finally, at five years, the current yield on earning assets remains most important along with net interest 
margin, with the fraction of current loans and operating income to assets no longer included. In general, quality of assets 
is most important in near-term default predictions, giving way to operating income and the yield on earning assets as the 
important determinants of default at longer horizons. It is important to remember that our models are for marginal 
annual defaults. Thus, variables important for modeling defaults in early years remain important for cumulative default 
prediction, just not for predicting marginal defaults pending survival to later years. 

 
Figure 25. Description and Comparison of Important Variables for Bank Defaults at One- to Five-Year Horizons 

A quantitative analysis of the variable contributions over time is presented in Figure 26. The left table in the figure 
shows the likelihood of each variable being selected for the default models by horizon in each year over the period from 
2000 to 2012. The table at the right displays the average order of selection if the variable was included in the model at 
the listed horizons. Consider first, the probabilities of variable selection. Those probabilities have been color coded for 
convenience, with variables included in 76% to 100% of the annual models for a given horizon coded in red, those 
included between 11% and 75% in green, and those in 10% or less in blue. Although ROE and the ratio of liabilities to 
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assets are included in all one-year models, their contributions drop off rapidly at two to five years. Also, performance on 
earning assets (earning assets to assets) is important at one- and two-year horizons, but is not included in three- and 
four-year models, with only moderate contributions to five-year models. The color coding in Figure 26 helps to reveal 
some features not easily distinguished in the data. For example, the most consistently important variable is the 
percentage of non-current loans, included in all annual models from one to three years and dropping off to 69% at four 
years and 15% at five years. Also, asset size, while not in all annual models is in 15% and 46% of models in all years. 
For two- to four-year horizons, the yield on earning assets and net loans to bank equity capital become important, while 
having less influence in one- and five-year models. Notably, the five-year models appear to have the most diversity of 
variable contributions with no model in more than 54% of annual models. Finally, net interest margin appears relatively 
unimportant, except at the five-year horizon, with the ratio of non-current loans to loan loss allowance only included in 
a small fraction of models at one- and three-year horizons. 

 
Figure 26. Probabilities of Variable Selection by Model Horizon (Left) and Average Order of Inclusion If Selected at 

Given Horizon (Right) For Annual Models Over the Period from 2000-2012 

The average order of selection of each variable for each model horizon appears at the right in Figure 26. Variables 
selected early in the process (averaging from 1 to 2.5) are coded in red, those in the middle set, averaging between 2.5 
and 5.0 are in green, and those selected above fifth on average in blue. The table shows the importance of ROE in early 
year models; ROE was selected first in all one-year models from 2000 to 2012, with non-current liabilities second in all 
but one year. Again, for mid-year horizons, net operating income becomes selected in most models, averaging between 
1.1 and 2.4 in selection order. Although the annual default rate is never included in more than 31% of models at any 
horizon, when selected at four- and five-year horizons, its average order is second. The table also confirms the relative 
unimportance of net interest income to earning assets and net interest margin. 

The data at the right in Figure 26 seem to suggest that a variable's probability of being selected is related to the order in 
which is it selected. This is confirmed, at least in general, by Figure 27, which demonstrates that the average order of 
selection (first to last) increases with the probability of selection. That is, frequently selected variables tend to be 
selected earliest and vice versa. Examples of frequently selected variables with early selection include ROE, the ratio of 
liabilities to assets, and percentage of non-current loans. Conversely, rarely selected variables such as net interest 
income to earning assets and net interest margin are typically near the last ones to be selected in the few models in 
which they are present. 

 

 

 

 

 

 

 

Figure 27. Relationship between Variables’ Probability of Selection and Order of Importance 
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I conclude my analysis of variable contributions with an analysis of the consistency of the signs of the variables input 
into each model. That is, I measure the extent to which a variable, if selected maintains the same sign in different years 
and tenors. For example, variables having positive signs are indicative of higher default risk, whereas negative inputs 
signal lower risk of default. Figure 28 shows for each variable the likelihood that it is positive if selected. Again, color 
coding is used to highlight variables; variables having 67% or greater likelihood of being positive highlighted in red (for 
higher risk), those between 0% and 33% positive in green (for lower risk), and gray for those in between. If a variable is 
not included in a model (e.g., for ROE in year four and year five models) the corresponding cell is blank. Clearly, 
almost all variables, when selected for a model in a given year are of the same sign. That is, nearly all cells with values 
are either 0% or 100%. Exceptions to this include assets at the five-year horizon and net operating income to assets at 
one year. Although some variables are of the same sign when included in models at all horizons (e.g., ROE, annual 
default rate, and net interest income to earning assets), most variables change sign when included at different horizons. 
However, excluding their inputs to the five-year model, all variables except percent of non-current loans are of the same 
sign if included in models at shorter horizons. 

 
Figure 28. Analysis of Variable Consistency by Model Tenor: Left: Probabilities of Variables Having Positive Signs 

(Higher Default Risk; Red) If Selected and Right: Average Values of Variable Contributions If Selected 

A clue to the changes in signs of variables at five years is the large average coefficients, both positive and negative 
assigned to variables in the five-year models. Many of those values (e.g., fraction of earning assets, assets 90 days past 
due, net interest margin, yield on earning assets are four to eight times the average values of variables in models at 
shorter tenors. The results in Figure 26 show that the consistency of variables selected for the models decrease with 
tenor and these instabilities likely underlie the large values selected for input variables when chosen for fifth-year 
default predictions. 

7. Conclusion 

In this study, I develop a dynamic measure to overcome limitations of the Merton-type structural models in predicting 
default probabilities for financial firms. I build and test adaptive statistical models to estimate default probabilities for 
U.S. banks. As described in detail, the models are logistic regression whose input variables are selected and calibrated 
based on their past effectiveness at predicting bank failures. Selection of variables in the model and their weights were 
updated yearly using a “walk-forward” procedure.  

I presented a detailed analysis of the contributions of financial variables to model outputs by year (2000-2012) and 
tenor (1-5 years ahead). For a given prediction horizon, I find great consistency among variables selected for each 
annual model over the period from 2000 to 2012. For predictions of marginal defaults in years one and two, return on 
equity and percentage of non-performing loans are major determinants of default. Those variables give way in 
importance at intermediate tenors (i.e., three- to four-years) to current yield on earning assets and net loans to bank 
equity capital. Finally, at the five-year horizon, yield on earning assets, asset size, and net interest margin become most 
important predictors of default.  

I also analyzed the consistency of the order of variable selection as well as the signs of the variables as they reflect 
increases and decreases in credit quality. I find a rough, but positive, relationship between the probability of a variable 
being selected in each annual model and its average importance in the predictive selection hierarchy. Also, I find that 
variables, when selected for a given predictive tenor, are nearly always of the same sign across the years of annual 
model development. However, I do find that many variables change sign as the year of marginal default prediction 
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