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Abstract

The unprecedented financial crisis of 2008-2009 has called attention to limitations of existing methods for estimating
the default risk of financial intuitions. Over the past decade, we have had considerable success at predicting default and
credit relative value using Merton-type structural models and Hybrid Probability of Default models. However,
generating accurate model-based estimates of default probabilities (PDs) for financial firms has proven difficult. To
address this need, I built and tested a time-adaptive statistical model that predicts the default probabilities of banks. The
model is a logistic regression whose input variables are selected based on their past effectiveness at predicting bank
failures and whose inclusion in the model and weights are to be updated quarterly. Model performance at discriminating
between defaults and non-defaults was evaluated for horizons of one to five years using a sequence of annual
walk-forward out-of-sample tests from 1992 to 2012. I tested the ability of the model to predict absolute default rates
out to five years and, except for underestimating the high bank default rates during the credit crisis, the models perform
well at estimating the annual bank default rates. Because most default models provide little benefit over agency ratings
for low-rated credits, I examined the performance of the model to Kroll agency ratings only for those banks rated above
single-B-minus or above single-C-minus. Although default predictions from agency ratings fall off rapidly for banks
rated at or above single-B and single-C, the time-adaptive statistical model predictions deteriorate far less. Accuracy at
predicting bank defaults using agency ratings decreases to near chance at a prediction horizon of five years, but the
time-adaptive statistical model continues to perform well above chance at all horizons. I also present a detailed analysis
of the contributions of financial variables to model outputs by year (2000-2012) and tenor (1-5 years) and evaluate the
consistency of variable contributions over time. The model performs favorably at predicting defaults, even relative to
the best non-financial corporate default models, with a 97% accuracy ratio (AR) at one year prior to default, and
decreasing, but still above-chance predictive power out to five years. I find that banks’ quality of assets and return on
equity are most important for predicting near term defaults, giving way at longer horizons to operating income and the
yield on earning assets.

Keywords: bank default, credit risk, default risk
1. Introduction: The Bank Default Model

Over the past decade, we have had considerable success at predicting default and credit relative value using
Merton-type structural models, such as Moody’s/KMV model (Vasicek, 1988; Kealhofer, 1999) and Citi’s Hybrid
Probability of Default (HPD) model (Sobehart and Keenan, 2002; 2003). However, generating accurate model-based
estimates of default probabilities (PDs) for financial firms has proven difficult. Some reasons for this are financials’
high levels of leverage, the relative opacity of their assets and liabilities, potential support from governments, extreme
risk of “tail events” and regulatory changes. The numerous bank failures amid the financial crisis of 2008-2009 and the
subsequent ratings downgrades of many financial firms have highlighted limitations of agency credit ratings and current
credit models to anticipate defaults for financial firms. During the crisis, many banks went from apparent solvency to
default in a very short period of time presumably reflecting the particular sensitivity of financial institutions and
insurance companies to sudden declines in investor confidence. Although the credit ratings of financial firms are
concentrated in the investment grade range, results from Vazza and Kraemer (2012) in Figure 1 demonstrate that despite
their higher credit ratings, financial firms have a faster and steeper path to default than their non-financial counterparts.
Investors are becoming increasingly interested in better assessing and managing their credit exposure to financial
institutions. Also, the U.S. Office of the Comptroller of the Currency (OCC), in accordance with the Dodd-Frank Act,
has published final rules (Department of the Treasury, 2012) that remove references to credit ratings from its regulations
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pertaining to investment securities, securities offerings, and foreign bank capital equivalency deposits.' Amid this
backdrop, the development of accurate models for assessing bank credit risk appears critical both for managing
exposure to financial firms and for compliance with Federal regulations.

BBB ‘ i i i
e i, oo Sa— Financial Firms

— B -

B3 SEE
BB Yoo VTN
S

— 13812011 average N ‘\' ‘:

Trailing 12-quarter average . V\\
B- [T — 19912011 median Y
CCCH— - -+ Trailing 12-quarter median

cce 1881-2011 —

on
-
L]
X
-
=

gge.——  Non-Financial Firms

B - B =3
—— 1981.2011 average "y
Trailing 12-quarter average W

O T Etmedn 19812011 —]

=+ Trailing 12-quarter median

5 4 3 2 1 0
Years Prior to Default

Figure 1. Paths into Default for Financial and Non-Financial Firms from Vazza and Kraemer (2012)
Source: Standard & Poor’s

For the development of the time-adaptive statistical model that predicts PDs of banks, I used information contained in
banks’ financial statements as published by the U.S. Federal Deposit Insurance Corporation (FDIC). As of March 2013,
there were 7,019 depository institutions in the US reporting to the FDIC with total liabilities of $12.8 trillion.” Potential
inputs to the models are financial ratios found, in preliminary analyses, to be effective in forecasting future bank failures.
A series of models predicting default at one- to five-year horizons are computed annually, and the outputs are
predictions of annual marginal default probabilities for each bank from one to 30 years. I back-tested the model’s ability
to predict defaults of US depository institutions between 2000 and 2012 using bank data since 1992. For those studies, |
evaluated model performance using a walk-forward procedure. That is, to estimate default risk in any test year, I use
only information before that year to select model variables and calibrate the model coefficients.

The bank default model is represented in Figure 2. The left panel shows the functional form of the model, a logistic
regression, and the most recent coefficients for the one-year model, last updated in 2013 using data up to the end of
2012. As described further below, the variables for each model are chosen based on their relative Bayesian Information
Coefficients (BIC), the measure of information contribution, and criterion for inclusion in the model.> The middle panel
shows how the individual variables are fit to linear regressions and summed prior to input into the non-linear function,
A(z). 1 built models to predict defaults over yearly horizons from one to five years, each assuming survival (i.e.,

' Section 939A of the Dodd—Frank Act requires federal agencies to review regulations that require the use of an
assessment of creditworthiness of a security or money market instrument and any references to, or requirements in,
those regulations regarding credit ratings. Section 939A then requires the agencies to modify the regulations identified
during the review to substitute any references to, or requirements of, reliance on credit ratings with such standards of
creditworthiness that each agency determines to be appropriate.

? Information about aggregate bank sector size obtained from the FDIC “Statistics on Banking”, which is accessible
online at http://www?2.fdic.gov/sdi/sob/.

* That is, as described below, I used the BIC as a criterion for variable selection, with those variables with the highest
individual BIC chosen first.
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non-default) up to the year of prediction. The panel at the right in Figure 2 shows Cumulative Accuracy Profile (CAP)
curves for the five annual prediction horizons. The CAP curves measure the extent to which the model scores serve to
separate defaulters (tendency to have high values of @(z)) from non-defaulters (likelihood of lower values of 9(z)).

Figure 2. Logistic Regression Model for Bank Defaults. Left: Functional form of Logistic Regression and Most Recent
Set of Input Variables; Middle: Illustration of How Individual Variables Feed the Non-Linear Regression; Right: CAP
Curves for Models to Predict 1- to 5-Year Defaults
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The model performs well at identifying the riskiest banks. For example, the right panel of Figure 2 demonstrates that the
10% of banks with the largest values of(] J(z) include 94% of the banks that defaulted within one year.4 Although
performance drops monotonically when predicting defaults for each subsequent year from years two to five (assuming
survival to the start of each year), the models perform significantly above chance for all years. That is, for models
predicting default in years two, three, four, and five, the10% of banks with the largest values of J(z) include 80%, 68%,

55%, and 40% of the defaulting banks in the sample.

In this report, I describe the construction of the model including the method of variable selection, walk-forward
validation, and a detailed discussion of model performance. I also describe further features of the model. In particular, I
show how values of J(z), output from the bank model, are mapped to historical default rates to estimate physical default
probabilities. I also describe further validation studies and compare model performance with estimations of bank risk
derived from agency credit ratings. Finally, I present detailed studies of the contributions of variables, highlighting
which variables are most highly predictive of bank defaults and the periods over which they are most effective.

2. Constructing the Bank PD Model
2.1 Financial Variables as Predictors of Default

Since the pioneering work of Beaver (1966) and Altman (1968), financial modelers have realized that certain financial
ratios are highly predictive of a firm’s future default. The same is true for banks. For instance, I found that banks with
low, especially negative, return on equity (ROE) are much more likely to default. Intuitively, banks with low or negative
profitability will likely struggle to pay their liabilities on time and will have difficulty finding additional funding. To

* If the model performed at chance, only 10% of the defaulters would be included in the 10% of the sample with the
highest values of @(z).
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illustrate this effect, each panel in Figure 3 displays normalized distributions of ROEs for defaulting and non-defaulting
banks. Distributions are shown for one-, two-, three-, and four-year horizons in successive panels.5 Inspection of Figure
3 reveals that banks with low ROE are much more likely to default than those with high ROEs. Also, the predictive
power of the ROE as regards default decreases with increases in the time horizon. That is, the distributions of ROEs
from defaulting and non-defaulting banks are clearly apart from each other at one- and two-year horizons, but those
differences narrow, becoming very small at four years out. I ran t-tests on the differences between the distributions of
ROE:s for defaulting and non-defaulting banks cease to be significant over four years out.
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Figure 3. Distributions of Normalized ROEs for Defaulting and Non-Defaulting Banks at One-, Two-, Three-, and
Four-Year Horizons

Source: FDIC

A similar testing procedure as illustrated in Figure 3 for ROE revealed other financial ratios that are useful for default
prediction. These include firms’ leverage ratios, ratios of non-performing to performing loans, and net loans to bank
capital, to name a few. A challenge in predicting default is to select an appropriate set of variables and combine them
appropriately in a multivariate model. To do this, I employed a walk-forward logistic regression technique. The logistic
regression function (described in the following section) is commonly used for predicting variables with binary cutcomes,
particularly when the inputs are non-linearly related to the desired output. The walk forward method constructs a new
model each year from the candidate variable set, while adding the data from the previous year to the development
sample. For variable selection in each new model, I use an automated procedure called forward stepwise selection,
which is explained in detail below.

2.2 Logistic Regression

For those unfamiliar with logistic regression, I describe that method briefly in this section. Logistic regression has
similarities to the more familiar multiple linear regression method, but involves an extra step, the logistic transform. I
illustrate this graphically for a set of hypothetical input variables in Figure 4. The application begins with selection of a
set of candidate financial variables, denoted x;, i=1,01..., n. The inputs, x;, could be financial ratios or other quantities.
The lower portion of Figure 3 depicts how values of hypothetical input variables (the circles in each plot) are fit by
functions, of the form

f(xi):ai+ﬂixi (D
to derive constants, ¢;, and coefficients, S, for each input variable.

Then, for a given set of inputs, each x; is put through its linear transform in Equation 1. For variable x, for the example
in Figure 3, the constant ;=0 and the coefficient f;=-3. Thus, if &=0.5 as shown in the figure, f(x,)=-1.5.
Hypothetical functions and outputs for X, and X, are also shown in Figure 4.

The resulting outputs of the first stage of the logistic regression, the values f (x[), are summed at an intermediate stage
whose output z can be represented as

z=B,+ ) Bx, @

where

> Because financial ratios such as ROEs can have very dispersed distributions, I converted firms’ ROEs into standard
normal distributions before plotting. This transformation does not change the ordering of firms on the ROE axis.
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f=2.2, 3)

For the example in Figure 3, the resulting value of z is assumed to be -1.2.° The value of z from Equation 2 is then put
through the logistic transform that serves to constrain the output of the regression to a value between 0 and 1. For
example, for the default model, the resulting PD is given as:

: 4)
1+¢e*

where the resulting value of PD for z=-1.2 is 0.26 or a 26% probability of default over the time frame in question.

PD =

Figure 4. Logistic Regression Function. Linear Transformations of Financial Variables (Lower Plots) are Summed at an
Intermediate Stage and Put Through the Logistic Transform (Top Graph) Which Converts the Output to a Value between
0 and 1 (0% and 100%)
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2.3 Automated Selection of Input Variables

Note that the overall plan is to derive a new model each year, incorporating into the learning sample the data from each
successive year’s defaulting and non-defaulting firms. Because the factors that influence defaults and their relative
contributions may change over time, I chose to use an adaptive procedure for selecting variables for each annual model.
I first assembled a set of 20 candidate financial ratios that have been shown to be predictive of subsequent default.
Because the distributions of different financial ratios can vary widely, I chose to standardize all input variables via
transformation into standard normal distributions before testing their usefulness as inputs to each annual model.

The process of model construction begins with only the logistic function and no variables chosen for inclusion. Then,
for each candidate input variable, I build a logistic default model by selecting values of [ ¢x; and [J ,Bl for each
variable that enables the best prediction of default on the development sample. That is for each input variable X, I
solve for ¢; and ﬂi in the following equation for PD:

1
FD= 4 ¢ “thx) ©)

% Note that this value of z cannot be deduced from the values shown in Figure 4 as it is assumed to have contributions
from variables x3 to xn-1that are not given in the figure.
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The variable with the greatest predictive power with respect to default is chosen as the first input variable. As described
in further detail below, I chose the Bayesian Information Criterion (BIC) developed by Schwartz (1978) as the measure
of predictive power. The BIC measures how well the model fits the data, but also imposes a penalty for having too
many variables, thereby guarding against overfitting the data. After selection of the first variable, the process repeated
to select a second variable, and so on, until model performance ceases to improve. Once all the variables for the model
are selected, the value of the constant f3, and coefficients f3,(i =1,...,n) for each of the variables are refit to
minimize the error in the logistic regression equation:

1
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Figure 5. Left: One-Year Bank PD Model Equation, Variables, and Corresponding Coefficients (Green: List Risky; Red:
More Risky), With Variables Listed in the Order Selected. Right: Bayesian In formation Criterion (BIC) for Each
Successive Variable Selected.

An illustration of the results of variable selection is presented in Figure 5. The top portion of the left panel displays the
logistic regression equation, with the table below it listing the input variables to the model in the order in which they are
selected. That is, variables are listed in descending order of their predictive power. The BIC values resulting from
inclusion of each variable are also displayed. The right portion of Figure 5 is a plot of the BIC values that result from
the inclusion of each variable. For instance, the model starts with only a constant term whose BIC value is 7,459. The
variable selection procedure determined that banks’ return on equity (ROE) provides the largest predictive power of all
candidate variables, and its inclusion in the model achieves a BIC of 4,092. After selection of the ROE, the procedure is
run again, picking the Liability/Asset ratio as the best of the remaining candidate variables, bringing the BIC down to
3,568. This procedure continued until the BIC could no longer be decreased. At that point, six variables had been
selected and their corresponding coefficients appear in the left table of Figure 5.

2.4 The Term Structure of Bank PDs

The method I have described can be used to predict defaults over one- to five-year horizons. However, some
applications (e.g., long-term investment portfolios) require estimation of the term structure of PDs over longer periods.
My approach to extending the term structure of bank PDs for terms beyond five years is to use long-term annual
average marginal default rates determined from historical data on bank defaults.

Construction of PD term structures begins by using the set of five logistic regression models, each developed for the
marginal default rate between successive years over a period from one to five years. That is, let PDt denotes the
model designed to predict bank defaults 7 years from now, conditional on the given banks surviving to year #-1. That is,
for years t=1,..., 5, PD, is the conditional logistic regression model where
1
PD =——F——= (7
[ﬁ DI j

l+e

Then, for each bank j, the probability of default in year # assuming survival to year ¢/ is given by
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_
(B0

1+e

PD

®)

Note that because I fit a separate model for each year, the variables selected and the coefficients ,B i will, in general,

be different for each year. Let, CPDt ; be the cumulative probability of default for bank j from time /=0 to ¢ years.

Then, the cumulative probabilities for bank j over horizons from =1 to 7T years can be determined from their annual PDy

as:

CPD, . =P

Lj Lj

CPD,, = CPD,, +(1-CPD,,)-P,,
’ ’ S (€)]

CPD, ,=CPD, , ,+(1-CPD, ) P,

The procedure for calculating marginal PD; beyond five years is illustrated in Figure 6. First, I construct a map between
one-year PD; and Standard & Poor’s rating categories. This is made possible using a map that I derived between
average probabilities of default for commercial and industrial firms from HPD model (Sobehart and Keenan, 2003) and
their corresponding agency ratings.7 For example, the left panel of Figure 6 illustrates a mapping between one-year
PDs from the HPD model to rating categories calibrated using data of all U.S. banks between 1982 and 2012. Using this
map, I can assign an implied rating to each bank that corresponds to its current one-year PD from the logistic regression
model. Then, for a given bank, I combine its term structure of cumulative default rates from one to five years with the
marginal annual default rates reported by Moody’s from its imputed credit rating from six to thirty years. That is, I
assume each bank’s conditional PD beyond five years follows the long-term historical values for its implied rating
category. A resulting set of stylized bank annual cumulative default rates by implied whole letter rating categories
appear in the right panels of Figure 6. The top panel shows cumulative default rates on a linear PD scale, whereas the
lower plot shows those same data in logarithmic PD units. Notice that, as expected, average cumulative default rates for

any given tenor increase with decreasing rating categories.
28%
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" That rating map is constructed using PDs from the HPD model for non-bank corporate firms. Then firms are ranked
with respect to their model PDs and assigned to rating categories that replicate the number of firms in each rating
category in the sample. Finally, implied ratings for U.S. banks are assigned based on their inclusion within PD
boundaries determined for each rating category.
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Figure 6. Left: Mapping From One-Year PD to Imputed Risk Category; Right: Term Structure of Average Cumulative
Bank PD For Each Implied-Rating Category on Linear (Top) and Logarithmic (Bottom) Scales

3. Walk-Forward Backtesting

I back-tested the model by constructing an annual series of models of the bank models using all available US bank data
from 1992 to 2012. The number of non-defaulting banks and defaulting banks in the sample by year is given by the
green bars (left axis) and red bars (right axis) in Figure 7. Notice that there were roughly 14,000 banks in the sample in
1993, but that number declined to around 7,000 by 2012. Also, there are three apparent waves of defaults: one in the
early 90s, a small one around the year 2000, and a surge of bank failures during the recent financial crisis.
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Figure 7. Number of Non-Defaulting Banks (Green Bars, Left Axis) and Defaulting Banks (Red Bards, Right Axis)
Banks by Year in the Development Dataset

In order to determine out-of-sample performance of the model, I used a walk-forward procedure as illustrated in Figure
8 for the one-year model. The test set is sufficiently large, with a total of 499 defaulters out of 11,114 distinct banks, to
provide a strong test of model performance. Because the model needs a minimum number of years of data for
development, data from the years 1992 through 1999 were used to construct the first annual model (select variables and
calibrate the weights) for each horizon for one to five years. The one-year model for 1999 was then used to score all
non-defaulting banks at the beginning of 2000 and its ability to predict defaults in 2000 was determined. Models for
year two through five used only banks that had survived to the model year to score for prediction. Thus for the two-year
model, firms surviving until 2001 were scored with its 1999 model, and so forth for the longer horizons. To generate the
set of models for year 2000 (i.e., used to predict defaults in 2001 to 2005 for one- to five-year models), I added the data
from year 2000 to the set from 1992 to 1999. Variables were selected and coefficients determined and the model was
tested on the corresponding test sample for the given horizon. That procedure was repeated annually until 2012. Of
course, from models at horizons longer than one year, testing could only be done to year 2012 minus the horizon year. I
adopted the walk forward procedure because it most realistically estimates the performance of the model as it will be
deployed in practice.

Figure 8. Illustration of the Walk-Forward Development and Testing Procedure for the One-Year Models: A New Model
is Developed Each Year from 1999 to 2011 Using Data From All Previous Years and Tested on Defaulted and
Non-Defaulted Bank in Each Subsequent Year from 2000 to 2012. For Models with Two- to Five-Year Horizons, Test
Samples Consisted of Firms Surviving Until Year X+2 to X+5, Respectively.
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To evaluate model performance at separating banks that will default from non-defaulters, I generated Cumulative
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Accuracy Profile (CAP) Curves for the one- to five-year model horizons. The cumulative resulting CAP curves for test
years 1999-2012 are displayed in Figure 9. For example, to generate the one year-curve (blue line), I first rank all banks
over the entire 13-year test period from highest to lowest by their one-year PDs from the models. Then, for successive
intervals in the ranked population I calculate the cumulative fraction of defaulting banks contained within that interval.
The interpretation of CAP curves is straightforward; for any criterion, the fraction of defaulters caught above the
population percentile is measures the discriminatory power of the model. For example, the CAP curve for the one-year
model at the 10% population criterion caught 94% of the banks that defaulted within the following year over the period
from 1999-2012. The higher and steeper the CAP curve over the diagonal chance line, the better the model is at
discriminating defaulters from non-defaulters. The table at the right in Figure 9 displays values of the CAP curves for
each of the model horizons for various values of the population cut-off. The left-most values in the table show that the
10% of banks ranked riskiest by the one- to five-year models capture 94%, 80%, 68%, 55%, and 40% of the defaulting
banks, respectively. Not surprisingly, those data reveal that the power of the models decline as the horizon extends
beyond one year, but even the five-year model is performing well above chance, capturing 40% of the banks that default
in the fifth year after model development and scoring. Finally, it is important to note that even though the models are
only regenerated on an annual basis, the financial data from the banks is available to update bank default scores on a
quarterly basis and that is how the model will be used in practice.

100+
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Figure 9. Left: CAP Curves for Predictions of Bank Defaults for One- to Five-Year Models using Walk-Forward Testing
from 1999 Through 2012; Right: Values of the One- to Five-Year CAP Curves at Critical Thresholds, with
Corresponding Values from the Chance Line Also Shown

From a risk management perspective, the most relevant horizon for prediction is at one year. Thus, if a bank survives for
that one year, the next year’s model can be used to assess its subsequent risk. Still, there are applications for which
multi-year estimates of losses and portfolio relative value are of interest. These include buy-and-hold portfolios of bank
obligations, such as structured products. For example, if one holds a portfolio of bank TRUPS (trust preferred securities)
with five years of remaining maturity, they may wish to estimate-five year portfolio losses. For this type of application,
it is important that the absolute PD levels be accurate. The CAP curves, because they rank PDs, assess only the relative
accuracy of the models.® Indeed, the models do specify absolute PD levels and I can assess their accuracy using the
reliability plots in Figure 10. To construct the plots in Figure 10 I separated all banks into bins by 5% PD increments,
and plot each bin’s average predicted PDs on the horizontal axis and the realized rate of defaults on the vertical axis.
The interpretation of reliability plots is as follows. For example, the one-year plot includes the point (27% predicted, 31%
obtained), which means for all the banks assigned one-year PDs between 25% and 30%, 31% of them actually defaulted
within the following year. A perfect model would have all points falling on the diagonal line for which predicted PD and
realized default rates match exactly. Error bars at two standard deviations for the realized default rates are also shown in
each plot.

¥ For example, if one multiplies all PDs by 10 the CAP curves will not change, but the absolute PD levels implied by
the models will be too large.
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Figure 10. Plots of Predicted and Obtained Bank Annual Default Rates from Models for One to Five Years Out. Error
Bars are Two Standard Deviation Bands

The plots in Figure 10 indicate that the default probabilities generated by the model are reasonably accurate at
predicting default rates for banks over multi-year horizons. With respect to the two standard deviation bars, most data
predictions do not differ significantly from the diagonal “perfect model” line. However, a notable exception is that the
bank model typically underestimates the default rates for the second- and third-highest bins (i.e., the high default
60%-70% bins). Further analysis revealed that the model under-predicted the sudden surge of defaults during the
financial crisis of 2008 and 2009. Consider the left panel Figure 11 which displays the historical annual high yield
corporate default rates (left axis) and U.S. bank default rates (right axis) from 1993 through 2012. Notice that the high
yield default rates varied substantially over the period, with high rates early in the century. The banks had been
relatively safe before 2008, with an average annual default rate of only 0.06% and even the maximum during that period
is only 0.34%. The right panel of Figure 11 plots average predicted and realized annual default rates from the one-year
bank model. The bank default models that are constructed annually did not predict well the overall bank default rate in
2008 and 2009, the years of high bank defaults. More generally, the plot reveals that PD levels from the bank model
tend to trail observed annual PD rates by one year. Note that the financial data for U.S. banks are published quarterly by
the U.S. Federal Deposit Insurance Corporation (FDIC). Thus, in practice, I plan to update the model quarterly,
potentially minimizing the lag in accurately predicting annual default rates.
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Figure 11. Left: Historical Annual High Yield Default Rate and Bank Default Rates From 1993 to 2012. Right: Model
Predicted Annual Bank Default Rate and Realized Bank Default Rates, 2001-2012 with Two Standard Deviation Error
Bars

3.1 Converting Model Scores to Default Probabilities

I previously showed that values of J(z) from the model are highly correlated with default probability (see right panel of
Figure 12). That is, the model appears to perform well at ranking the relative default risk of U.S. banks. Although I
attempted to link outputs of the model (i.e., values of J(z)) to actual physical default probabilities, the resulting values
proved less than satisfactory. Accordingly, in this section, I link values of @(z) from the bank model to default
probabilities from Hybrid Probability of Default (HPD).

My approach to transforming values of @(z), for i =1,...,5, [1010) where i indicates model for a given default year
contingent upon survival to year f = 1, is straightforward. For those banks that have PDs from HPD model, I plot HPD
PDs versus values of [17]In ¢(z)i from the bank model as shown in the left panel of Figure 12 for the one-year model
(i.e., 1=1). Then I fit the points with a second- order polynomial of the form
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PD,=a,+[b,-ng(z),]+[ c, - Ing(2)’ | (10)

as shown by the red line in the figure for which i=1 ,and00 g, =5.5 , 0b, =0.68, and ¢, =0.02. It is
important to note that I impose monotonicity on the function in Equation 10 to ensure that the conversion from
In ¢(Z) to PD[1[] does not change the ordering of banks as regards their default risk. Thus, the transformation in
Equation 10 merely serves to transform model outputs to physical PDs and does not alter the CAP curves shown in
Figure 2.

Figure 12. Mappings Between Bank Model Outputs, 7177 In¢,(z) and HPD PDs. Left: Best Fit Order 2 Polynomial of
HPD PDs to In @, (z); Right: Best Fit Order Polynomial 2 to Ing,(z)for i=1,...,5 Models
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The right panel of Figure 12 shows the mapping from In ¢(z) to PD function for the one-year model (i.e., i =1)
using the red line, along with the functions for years two to five. The coefficients of ai,bl.and ¢, for each of the
curves are inset in the graph. Finally, note that these mapping functions are only used for the current set of models.
Although the mapping in Figure 12 is for December Sth, 2013, this mapping can be updated daily to reflect changes in
banks’ PDs from the HPD model.

4. Performance of the Bank Model Relative to Agency Credit Ratings

In this section I performed a series of studies to address the extent to which my models offer any advantages over using
agency ratings for assessing bank risk. Investors are interested in the ability to predict defaults for credits not already
recognized by the agencies as risky. That is, “How well does the model do at predicting defaults for banks with credit
ratings above triple-C, single-B, and so on?”

Of particular interest to investors is the riskiness of smaller and/or lower-rated financial firms, particularly savings and
loans and bank holding companies. This is because debt from those financial firms is often placed in TRUPs (Trust
Preferred securities). Because returns and payouts from TRUPs are highly dependent on defaults and ratings
downgrades, those investors are particularly interested in accurate assessments of default probabilities and signals of
deteriorating credit quality. To test this, I examined the relative predictive power of ratings by Kroll, who are best
known in this space, and my bank default models for savings and loans and bank holding companies.

@ 6,000- m Kroll = Model 6,000 m Kroll m Model
g 5,000+ £ 5,000
G 4,000 S 4,000
(&) k-]
2 3,000- & 3,000
b 5
o 2,000 £ 20007
I s~
E 1,000 3 1,000-
m | o
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Figure 13. Financial Firms Having Both Kroll Ratings and My Bank Model Scores: Left: Bank Holding Companies;
Right: Savings and Loans

Source: Kroll Rating Agency

To test the predictive power of my model versus agency ratings, I first determined those financial firms that have both
model scores and Kroll agency ratings. Kroll has three categories of financial firms: bank holding companies (BHC),
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Savings and Loans (SNL), and Banks (not identified). I obtained Kroll ratings for as many financial institutions as
possible over the period from 2000-2012. The number of banks having Kroll ratings and my model scores appear in
Figure 13, broken out by bank holding companies and savings and loans. Clearly, it appears that Kroll rates significantly
less financial firms than are scored by my bank model. Part of this is because Kroll does not rate new banks within the
first three years of their existence. It is also possible that I received only partial data on Kroll bank ratings. Nevertheless,
as shown in Figure 13, there are roughly 1,000 firms each year having both Kroll ratings and my model scores, and
these are typically the lower rated portion of the financial services firms. Importantly, as shown in Figure 14, there are
at 1east9a reasonable number of defaults for testing model, at least when results are aggregated over the 13-year test
period.

Figure 4. Number of Defaults for Testing
One- to Five-Year Models

Number of Defaults
Horizon (Years)
1 2 3 4 5

EHC 61 121 172 2156 317
S&L 109 214 312 403 459

Figure 14. Number of Defaults for Testing One- to Five-Year Models

To test the predictive power of my bank PD model versus agency ratings, I first determined those financial firms that
have both model scores and agency ratings. The left panel of Figure 15 shows the Kroll rating scale, where ratings range
from single-A-plus to default (D). The middle and right panels of Figure 15 display the distributions of bank holding
companies and savings and loans by Kroll credit ratings, respectively, for financial firms having both Kroll credit
ratings and my bank model scores. Notice that Kroll does not rate many banks or savings and loans at A+ or A-. Of
course, there are relatively few very low rated (single-C-plus to single-C-minus) financial institutions as it is very
difficult for low-rated financial institutions to survive for long. Notice also that there are fewer savings and loans than
bank holding companies in the sample.

The Kroll 5,000 - - — 5,000 : : - :
Rating Scale 4,500 Bank Holding Companies 4,500
1. A+ 4,000 2000-2012 | 4,000 Savings and Loans _
- 2000-2012
2. A @ 3,500} | o 3,500 1
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4 B+ 83000 S 3,000 -
:— : S 2,500 - E 2,500/ _
N - L]
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8. ¢C o 1,500 0 1,500 | |
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Kroll Credit Rating

Figure 15. Kroll Rating Scale for Financial Firms (Left) and Distributions of Bank Holding Companies (Middle) and
Savings and Loans (Right) with Both My Bank Model Scores and Kroll Credit Ratings

Source: Kroll Rating Agency

Default is necessarily a probabilistic event. That is, one is rarely certain that an obligor will default until its actual
occurrence. A useful method for evaluating models’ predictive accuracy of probabilistic events is by constructing
cumulative accuracy profile (CAP) curves such as that shown in the upper panel of Figure 2. Construction of
cumulative accuracy profiles are described in detail in many places (Sobehart and Stein, 2000) and a short description
appears in Appendix A. Briefly, to construct a CAP curve for a bank default model, values of estimated risk are first
ranked from largest to smallest, with information whether each score is associated with a subsequently defaulted bank

? Notice in Figure 14 that numbers of defaults increase with model horizon. This is because I use overlapping windows
in counting multi-year defaults.
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or a solvent one. Then, I start from the banks with the riskiest scores, say the top 1%. In that top 1% of banks with the
largest estimates of default, I calculate the percentage of defaulters in that sample. For example, if a model were
assigning scores at random, one would observe only 1% of the defaulters in the top 1% of the population. Any percent
of defaulters above 1% would be indicative of the model’s predictive power.

I computed CAP curves for predicting bank defaults using Kroll agency ratings and my bank model. Figure 16 displays
CAP curves for bank holding companies (top) and savings and loans (bottom) for predicting default in year one to four.
The curves for Kroll ratings and my bank model are presented in each graph for comparison. A useful measure of
predictive power from CAP analysis is the Area under the Curve (AUC), which is the percentage of the area under each
CAP curve. The AUCs for Kroll ratings and my bank model are inset in each plot.

Several features of the data in Figure 16 are of interest. First, it is clear that both my bank default model and the Kroll
agency ratings order banks’ risk at better than chance levels, even out to four years. It is also evident that predictive
accuracy for both models decreases as the year of prediction gets farther out in time.'" Visual inspection of AUCs in the
top and bottom panels is sufficient to conclude that each model’s performance for bond holding companies and savings
and loans are similar. This is confirmed by values of AUCs listed in tabular form in Figure 17 for each model and year
(these same values are inset in each plot in Figure 16). That is, AUCs for BHCs and SNLs within each model vary at
most by 4% and often only by 1%.
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Figure 16. Comparison of Cumulative Accuracy Profile (CAP) Curves for Bank Holding Companies (Top) and Savings
and Loans Between Kroll Agency Ratings and My Bank Model from 2000-2012

Source: Kroll Rating Agency

Horizon (Years)

1 2 3 4
BHC SNL BHC SNL BHC SNL BHC SNL
Kroll 96 97 92 91 84 83 73 77 7
Model 98 99 96 99 91 89 85 83
M-K 22 48 76 86

Figure 17. Areas Under the CAP Curves for Kroll Agency Ratings and My Bank Model for Bank Holding Companies
and Savings and Loans

Source: Kroll Rating Agency

Figure 16 and Figure 17 also allow comparison of performance between Kroll ratings and my bank model at predicting
bank defaults. Again, visual inspection of the CAP curves in Figure 16 is sufficient to conclude that my bank model

1% Recall that for each model the prediction for each year is dependent on the firm surviving up to the year of prediction.
Thus, when predicting defaults for year two, all firms that defaulted in the first year after the date of prediction are
excluded from the sample.
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performs better than Kroll ratings, particularly as the time horizon increases. Notably, for one-year predictions, the
models are both quite good; AUCs for my bank model are 98% and 99% for BHCs and SNLs, respectively, with AUCs
for Kroll ratings are 96% and 97%. Still, as shown in the last row of Figure 17, my model edges out Kroll ratings even
at one-year, with that advantage tending to increase with prediction horizon. In fact, for all eight CAP curves in Figure
16. AUCs for my bank default model are greater than those for Kroll ratings.

Despite the success of my bank model in predicting defaults, both investors and traders have remarked the predicting
bank defaults at short horizons is not difficult. That is, they claim that bank failures tend to be rapid and fairly obvious.
Some suggest that deterioration of banks’ credit is reflected in high levels of non-performing loans and loss of investor
confidence as evidenced by rapid withdrawal of banks’ necessary short term funding. Furthermore, agency ratings are
sufficient to capture those aspects of bank performance. That the Kroll ratings and my bank model have extremely high
predictive power at the one-year horizon is consistent with that view. However, the predictive power of my bank model
at longer horizons relative to agency ratings suggests that my bank model is adding value. I evaluate these issues in the
remaining section of this study.

5. Predicting Default for Less Risky Banks

One way to assess the added value of bank default models, given that low-rated financials have already been recognized
by agencies and investors as risky, is to exclude the riskiest obligors from the analysis of performance. To that end, in
separate analyses, I eliminated all those obligors rated by Kroll’s below single single-C (i.e., single-C-minus and below)
and all those banks Kroll rates below single-B (single-B-minus and below)."" I then computed CAP curves and AUCs
on those sub-samples as in Figure 16 and Figure 17, respectively. The resulting CAP curves and table of AUCs for Bank
Holding Companies appear in Figure 18 and the left table in Figure 19, respectively.'> Consider first the CAP curves in
Figure 18. CAP curves excluding BHCs rated below single-C appear by horizon in the top panels and those excluding
BHCs rated below single-B appear in the lower panels. First, notice that only one firm rated below single-C and four
BHCs rated below single-B default within one year. This confirms the intuition, stated above, that the predicting bank
defaults at short horizons is not difficult given their low agency ratings. That is, the defaults that occur within one-year
of risk scoring occur almost exclusively for banks rated below single-C by the Kroll agency.

Figure 18. Cumulative Accuracy Profile (CAP) Curves for Predicting Defaults on Bank Holding Companies for Kroll
Ratings and My Bank Default Model. Top: CAP Curves Excluding Credits Rated by Kroll Below Single-C; and Bottom:
CAP Curves Excluding Firms Rated Below Single-B, 2002-2012
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" Tt is important to keep the distinction in mind between the Kroll rating scale in the left portion of Figure 5 and the
more familiar scales of Standard and Poor’s and Moody’s. As a rule of thumb, a Kroll rating of single-C is roughly
equivalent to a rating by Standard and Poor’s of triple-C.

'2 Because PD score can take any value between 0 and 1, while ratings can only take one of a small number of discrete
values, my scores also allow for finer discrimination between institutions than ratings do. This difference also explains
why the CAP curves for PD model is a step-function while the CAP curve for ratings is a piecewise linear function.
This is particularly evident as the default sample is small as for the one-year horizon model.
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Bank Holding Companies (BHC) Savings and Loans (SNL)
Horizon (Years) Horizon (Years)
1 2 3 4 1 2 3 4
Exclude Below cB CB CcB cB Exclude Below cCB CcB cB CB
N(Defaults) 41 36 22 71 45 20B 171 N(Defaults) 31 27 14 71 45 116 85
Kroll 84 52 75 70 66 66 55 53 Kroll 77 55 77 61 66 59 62 60
Model 85 48 87 85 79 80 77 77 Model 82 89 86 80 79 78 77 76
Model-Kroll 1-2 12 15 13 14 12 14 Model-Kroll 534 921 13 19 15 16

Figure 19. Areas Under the CAP Curves (AUCs) Excluding Firms Rated by Kroll as Single-C-Minus and Below and
Single-B-Minus and Below for Bank Holding Companies (Left) and Savings and Loans (Right)

The pattern of CAP curves in Figure 18 is similar for banks rated by Kroll at or below single-C-minus and
single-B-minus. First, for all horizons greater than one-year, my bank model outperforms Kroll agency ratings. Also,
performance appears to decrease as the time horizon increases from two to four years, but then decreases in
performance are greater for Kroll ratings than for my bank model. I note that for predicting defaults at the four-year
horizon, the CAP curves indicated that Kroll ratings are nearly at chance, whereas my bank model is performing well
above chance. Interestingly, performance of both my bank PD model and Kroll ratings do not appear to change
significantly between BHC samples that exclude firms below single-C or single-B.

The features of the CAP curves mentioned above for Bank Holding Companies are presented quantitatively as AUCs in
the left portion of Figure 19. That is, except for one-year, already discussed above, AUCs from my bank model are
greater than those for Kroll ratings at all tenors, by 8% to 14%. The pattern is similar when excluding either BHCs rated
below C or B. That is, performance appears to drop off for both models as prediction horizon increases, but that
performance drops off more dramatically for Kroll ratings, being close to chance at the four-year horizon. Also, AUCs
for cases where BHCs below B and C are excluded are remarkably similar; model performances do not drop off
appreciably when the criterion for inclusion in the sample is raised to B and above from C and above.

The right portion of Figure 19 lists similar measures for Savings and Loans. The pattern of results mimics well those for
the BHCs in the left panel:

= []My bank PD model outperforms Kroll ratings at all tenors when SNLs rated below C and B are excluded;

= AUCG:s tend to decrease with increases in year of default prediction, but those decreases, while slight for my
bank PD model, are greater for Kroll agency ratings;

= Performance of both my bank PD model and Kroll's ratings are similar when either SNLs below C and B are
excluded from the analysis.

The CAP curves for SNLs are remarkably similar to those for BHCs. The CAP curves for Savings and Loans that
correspond to those presented in for Bank Holding Companies in Figure 18 are presented for comparison in Figure 20.
Note that the pattern of CAP curves for SNLs in Figure 20 is highly similar to those for BHCs in Figure 18.
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Figure 20. Cumulative Accuracy Profile (CAP) Curves for Predicting Defaults on Savings and Loans for Kroll Ratings
and My Bank Default Model. Top: CAP Curves Excluding Credits Rated by Kroll Below Single-C; and Bottom: CAP
Curves Excluding Firms Rated Below Single-B, 2002-2012

6. Analysis of Variable Contributions

From the analysis of the CAP curves and AUCs above, it is clear that my bank PD model continues to perform well,
even as the year of default prediction moves out. One of the reasons for this is that the bank PD model uses different
sets of variables to predict default at each successive horizon. Accordingly, in this section, I detail the contributions of
the various candidate variables to the models, both over the time frame of testing from 2000-2012 and for tenors of one
to five years.

As described in detail previously, for each test year in the walk-forward model development procedure from 2000-2012,
I built models to predict defaults for one-, two-, three-, four- and five-year horizons. To construct each model in each
year, | began by selecting first the variable having the largest Bayesian Information Criterion (BIC) when predicting
default alone."” Then I iterated this procedure, adding variables one-by-one, until no further improvement in overall

" The Bayesian Information Criterion was developed by Schwartz (1978).

Appendix A: Cumulative Accuracy Profile (CAP) Curves and Receiver Operating Characteristics (ROCs)
The cumulative accuracy profile (CAP) curve and its close relative, the receiver operating characteristic (ROC)
Appendix A: Cumulative Accuracy Profile (CAP) Curves and Receiver Operating Characteristics (ROCs)

The cumulative accuracy profile (CAP) curve and its close relative, the receiver operating characteristic (ROC) are two-dimensional
plots where the variable of interest, say the likelihood that the bank defaulted in the following year is plotted against the predictive
variable, the ranked magnitude of the bank’s risk of default as estimated by a given model.

Figure 29: Top: CAP Curve with Points to Illustrate Various Features; Bottom: Descriptions of Points on the CAP curve
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The CAP curve at the top of Figure 29 illustrates some important features:

= The negative diagonal shown by dashes is the “chance line” where the likelihood of detecting a subsequent defaul: is
unrelated to the risk rating from the given model; the “hit” and “false positive” rates are the same;

= The “CAP curve”, the solid curved line in Figure 27, the plot of “hits” versus “false positives” as one goes through the
entire set of banks ranked by their predicted credit risk from largest to smallest; and

= The dashed area under the CAP curve, called the “area under the curve” or AUC, is an important measure of performance,
whose value is the area under the CAP curve.

The bottom portion of Figure 29 provides descriptions of the points labeled in the CAP curve. For example, the “star” in the plot at
(hit, false alarm) = (0.0, 1.0) is indicative of a perfect predictor; all target cases are ranked above the first “false positive” in the
sample. That is all defaulted banks larger risk ratings than those that did not default. A point along the chance line, “E,” is also shown.
The point “A” is said to plot at a “conservative” criterion, as the false positive rate is very low. Points “B” and “C” illustrate more
permissive criteria than “A.” Finally, the point “D” is on the ROC curve for a given level of discrimination. Note that points A, B,
and C could intersect the same ROC, which would indicate superior predictability to that shown through point “D.”

Appendix B: Description of Candidate Variables
For clarification, I present more detailed descriptions of some of the candidate variables.
ROA: Net income after taxes and extraordinary items (annualized) as a percent of average total assets.

Non-Current Loans / Loan Loss Allowance: Non-current loans are defined as assets past due 90 days or more, plus assets placed in
nonaccrual status. This quantity is divided by loan loss allowance. Loan loss allowance is the amount each bank must maintain in
reserve for loan and lease losses to absorb estimated credit losses associated with its loan and lease portfolio (which also includes
off-balance- sheet credit instruments).

Earning Assets / Assets: This is the ratio of all loans and other investments that earn interest or dividend income to the sum of all
assets owned by the institution including cash, loans, securities, bank premises, and other assets. This total does not include
off-balance-sheet accounts.

Net Interest Margin: Total interest income less total interest expense (annualized) as a percent of average earning assets.
Yield on Earning Assets: Total interest income (annualized) as a percent of average earning assets.

Net Operating Income to Assets: Net operating income (annualized) as a percent of average assets.
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BIC occurred. A list of the candidate variable set used for model construction appears in Figure 21 and a more detailed
description of each candidate variable appears in Appendix B.

Figure 21. Candidate Variables for My Bank Default Models for One- to Five-Year Horizon

Candidate Variables for Bank Models

ROE

Liabilities / Assets

Non-Current Loans / Loans

Net Operation Income / Assets

Earning Assets / Assets

Yield on Earning Asset

ROA

Assets

Non-Current Loans / Loan Loss Allowance
Net Loans / Bank Equity Capital

Annual Default Rate

Assets 90 days Past Due / 30 - 89 Days Past Due
Net Interest Income / Earning Assets

Net Interest Margin

Figure 22. Left: Potential Model Variables and Their Order of Selection for the One-Year Model for 2000 to 2012; Right: Summary
of Variable Selection, Displaying Probability of Selection and Average Order if Selected for the One-Year Model

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 1 Year Model
Variables Order in Which Selected (1,2,...) Probability Average
ROE i1 1 1 1 1 1 1 1 1 1 1 1 of  Orderif
Liabilities / Assets 2 2 2 2 2 H 2 2 2 2 32 2 Variables Selection Selected
Non-Current Loans / Loans 3 ] 5 ] 4 4 4 4 3 3 3 3 ROE 00% 10
Net Operation Income / Assets 4 4 4 4 4 5 5 5 5 & & 7 Liabilities / Assets 100% 24
Earning Assets / Assels i 3 3 31 3 3 31 3 131 1 T Hon-Cusrent Loans | Loans 92% 39
Yield on Earning Asset [ ] [ L3 & 3 Net Operation Income / Assets 9% 49
ROA 4 4 4 Earning Assets | Assets % 35
Assets 5 [ [ Yield on Earning Asset 4% 58
Non-Current Loans / Loan Loss Allowance 5 & 5;»:5 ii: ;J;
Het LTHH::“?aul':ail}:l:!tgaplm Non Current Loans / L_oan Lo.sleuwarlca 1% 5.0
Assets 90 days Past Due / 30 - 89 Days Past Due :::t:r;;:;airm:l: i Cantl g: :
Net Interest Income / Earning Assets Assets 90 days Past Due /30 - 89 Days Past Due 0%
Net Interest Margin MNet Interest Income / Earning Assats 0%
Hum of Vars Selected 4 5 & 5 [ [ [ 13 b [ b i 7 Het Interest Margin 0%

Consider first variables selected for the one-year model. The left panel of Figure 22 lists the variables selected each year
from 2000 to 2012 for the one-year model using my walk-forward development and testing procedure. The number
associated with each variable is the order in which the variable was chosen based on its BIC. Those variables having no
value associated with them in a given year were not selected for that year’s model. The table shows that the most
important variable for predicting one-year default is firms’ return on equity (ROE). The ROE was the first variable
chosen for one-year models in every year. The ratio of liabilities to assets is also important for short-term default
predictions, being chosen second for all years except 2010. Contributions from other variables are less consistent over
time. For example, prior to 2009, earning assets to total assets is the third variable selected for all models, but was not
even selected in 2010 or 2011, being selected last in 2012. Conversely, the ratio of non-current loans to loans was not
selected at all in 2000, gradually increasing in its importance, such that from 2009 onward, it was either the second or
third most important predictor of default. Other variables having contributions to one-year default prediction are the
yield on earning assets over the period from 2004 to 2009, and in recent years, the return on assets (ROA), the total
assets, and the ratio of non-current loans to allowance for loan losses. Finally, notice that there is a tendency for the
number of important variables to increase over the testing period, with early models having only four or five variables,
expanding to seven variables by 2011 (see last row of Figure 22).

The right panel of Figure 22 summarizes the consistency of variable contributions to the one-year models over time,
both in terms of what percentage of the 13 yearly models each variable was included, but also its average place in the
hierarchy of contributions if selected. As mentioned above, ROE was selected as the first variable using the BIC 100%
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of the time, with the ratio of Liabilities to Assets, also chosen in all models, but having an average in the order of 2.1
owing to its third position in the 2010 model. The percentage of non-current loans and net operating income to assets
are in 92% of the annual models at roughly fourth and fifth rank, whereas the fraction of earning assets is in 85% of the
models, but when included has an average rank of 3.5. After those variables, contributions drop off rapidly, with the
yield on earning assets in 46% of the models, but only at a rank of 5.8, followed by ROA and total assets at 28%.
Finally, non-current loans to loan loss allowance is in 15% of the annual one-year models at a rank of fifth. Variables
never included in any of the annual one-year models are: net loans to bank equity capital, annual default rate, ratio of
assets 90 days past due to those 30-60 days past due, net interest income to earning assets, and net interest margin.

2 Year Model 3 Year Model
Probability Awverage Probability Average
of Order if of Order if
Variables Selection Selected Variables Selection Selected
Non-Current Loans / Loans 100% 11 Net Loans / Bank Equity Capital 100% 18
Net Loans / Bank Equity Capital 100% 36 Non-Current Loans / Loans 100% 241
ROE 92% 27 Yield on Eaming Asset 92% 43
Yield on Earning Asset 85% 4.2 Net Operation Income / Assets 69% 39
Earning Assets / Assets 85% 43 Liabilities / Assets 3% 30
Assets 90 days Past Due / 30 -89 Days Past Due  31% 5.8 Annual Default Rate 23% 2.0
Annual Default Rate 23% 5.3 Assets 23% 5.7
Liabilities / Assets 23% 5.7 Assets 90 days Past Due / 30 - 89 Days Past Due 23% 6.0
Assets 23% 5.7 ROE 15% 4.5
Net Interest Income / Earning Assets 15% 8.0 Net Interest Income / Earning Assets 15% 9.0
Net Operation Income / Assets 0% - Net Interest Margin 8% 10.0
Net Interest Margin 0% - Non-Current Loans / Loan Loss Allowance 8% 1.0
ROA 0% - Earning Assets / Assets 0% -
Non-Current Loans / Loan Loss Allowance 0% - ROA 0% -
4 Year Model 5 Year Model
Probability Average Probability Average
of Order if of Order if
Variables Selection Selected  Variables Selection Selected
Yield on Earning Asset TT% 23 Yield on Eaming Asset 4% 26
Non-Current Loans / Loans 69% 24 Assets ) 46% 4.0
Net Operation Income / Assets 69% 27 Net Interest Margin 38% 36
Annual Default Rate 3% 20 Earning Assets / Assets 1% 1.0
Net Loans / Bank Equity Capital % 30 Annual Default Rate 3% 25
Liabilities / Assets MG 40 Net Loans / Bank Equity Capital 23% 2.7
Assets 90 days Past Due / 30 - 89 Days Past Due 23% 13 Assets 90 days Past Due /30 - 89 Days Past Due 23% 30
Assets 15% 40 Liabilities / Assets 23% 4.3
ROA 8% 6.0 Net Interest Income / Earning Assets 23% 6.7
Net Interest Margin 8% 7.0 Non-Current Loans / Loans 15% 8.0
Net Interest Income / Earning Assets 8% 8.0 Net Operation Income / Assets 8% 2.0
ROE 0% R ROA 8% 2.0
Earning Assets / Assets 0% - ROE 0% -
Non-Current Loans / Loan Loss Allowance 0% - Non-Current Loans / Loan Loss Allowance 0%

Figure 23. Summary of Variable Selection, Displaying Probability of Selection and Average Order if Selected for
Annual Two-, Three-, Four- and Five-Year Bank Default Models

Figure 23 presents summaries of the consistency of variable contributions to the two-, three-, four- and five-year models
over time, analogous to that shown for the one-year model at the right in Figure 22. (The lists of variables selected and
their orders for the two- to five-year models analogous to that shown for the one-year model at the left in Figure 22
appear in Figure 24.) The figures reveal shifts in the importance of various predictive variables over time. For example,
the ROE, most important for the one-year model, becomes successively unimportant for predicting default in later years,
not even being included on any of the annual four- or five-year models. Liabilities to assets, also important at one year,
declines immediately to around 30% at two-years and remains at about that frequency, but never of greater importance
than a rank of third. Conversely, net loans to bank equity capital, not included in any one-year models, is in every model
at two and three years, maintaining its contribution, albeit in lesser amounts, out to five years. Meanwhile, the yield on
earning assets, only marginally important at one year, becomes more important at longer horizons, being one of the
most important at three to four years.
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Figure 24. Left: Potential Model Variables and Their Order of Selection for the Two Through Five-Year Models for
2000 to 2012

A more detailed summary of the changes in variables as the annual prediction horizon increases from one to five years
appears in Figure 25. The most important variables for each annual prediction horizon are listed followed by a
description of the changes that occurred from the previous years’ model. For example, in predicting default from one to
two years, ROE has become less important and the ratio of liabilities to assets is no longer in the model, whereas the
fraction of non-current loans has become important along with the ratio of net loans to bank equity capital. In moving
from the two- to three-year horizon, ROE is no longer in the model, whereas net loans to bank equity capital, which
entered the model in at two years, is now most important. When predicting default between three and four years, the
value of non-current loans is no longer in the model, whereas the current yield on earning assets has become most
important. Finally, at five years, the current yield on earning assets remains most important along with net interest
margin, with the fraction of current loans and operating income to assets no longer included. In general, quality of assets
is most important in near-term default predictions, giving way to operating income and the yield on earning assets as the
important determinants of default at longer horizons. It is important to remember that our models are for marginal
annual defaults. Thus, variables important for modeling defaults in early years remain important for cumulative default
prediction, just not for predicting marginal defaults pending survival to later years.

1-Year Model 2-Year Model 3-Year Model 4-Year Model 5-Year Model
» Most Important Variables: * Most Important Variables:  « Most Important Variables: * Most Important Variables: . Most Important Variables:
- Return on Equity — FractionofNon-Current Loan  — Net Loans/Bank Equity — Yield on Earning Assets - Yield on Earning Assets
- Liabllities/Assets - NetLoans/Bank Equity Capital — NetCurrentLoans/Loans - Assets ]
— Percentof Non-Performing Capital - Non-CurrentLoans/Loans - NetOperatingincome/ - Netinterest Margin
Loans — Return on Equity - Net Operatingincome/ Assets — Earning Assets/Assets
Z Jeld on Barning Acects Assets + The consistency of
» Number of variables tends — EamningAssetsiAssets + Biggest Changes from 1-

variable selection tends to
decrease as prediction
horizon increases

» Biggest Changes from 1-
and 2-Year Models to 3-
Year Model

— Earning Assets/Assetsis
insignificantat 3 years

— ROE has continued to
decrease inimportance
between1 and 3 years

to increase with length of
training period
- Earlymodels have 4-5
variables; later models have
6-7 variables

through 3-Year Models to
4-Year model
— Non-CurrentLoans is
insignificant at 4 years
— Net InterestMargin has not
beenimportantfor years 1-
3

+ Biggest Changes from 1-to !
Year Models
— Net Operatinglncome/ Assets
has become relatively
unimportant at two years
— Liabilities / Assets has lost
importance

Figure 25. Description and Comparison of Important Variables for Bank Defaults at One- to Five-Year Horizons

A quantitative analysis of the variable contributions over time is presented in Figure 26. The left table in the figure
shows the likelihood of each variable being selected for the default models by horizon in each year over the period from
2000 to 2012. The table at the right displays the average order of selection if the variable was included in the model at
the listed horizons. Consider first, the probabilities of variable selection. Those probabilities have been color coded for
convenience, with variables included in 76% to 100% of the annual models for a given horizon coded in red, those
included between 11% and 75% in green, and those in 10% or less in blue. Although ROE and the ratio of liabilities to
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assets are included in all one-year models, their contributions drop off rapidly at two to five years. Also, performance on
earning assets (earning assets to assets) is important at one- and two-year horizons, but is not included in three- and
four-year models, with only moderate contributions to five-year models. The color coding in Figure 26 helps to reveal
some features not easily distinguished in the data. For example, the most consistently important variable is the
percentage of non-current loans, included in all annual models from one to three years and dropping off to 69% at four
years and 15% at five years. Also, asset size, while not in all annual models is in 15% and 46% of models in all years.
For two- to four-year horizons, the yield on earning assets and net loans to bank equity capital become important, while
having less influence in one- and five-year models. Notably, the five-year models appear to have the most diversity of
variable contributions with no model in more than 54% of annual models. Finally, net interest margin appears relatively
unimportant, except at the five-year horizon, with the ratio of non-current loans to loan loss allowance only included in
a small fraction of models at one- and three-year horizons.

Probability of Selection Average Order if Selected

Variables Iy 2y 3y 4y Jy ly 2y 3y 4y Jy

ROE 100% 92% 15% 0% 0% 1.0 27 445 - -
Liabilities / Assets 100% 23% 3% 3% 23% 24 AF 30 40 43
Non-Current Loans / Loans 92% 100% 100% 69% 15% 39 11 21 24 8.0
Net Operation Income / Assets 92% 0% 69% 69% 8% 4.9 - 39 27 2.0
Earning Assets / Assets 85% B85% 0% D%  31% 35 43 - - 1.0
Yield on Earning Asset 46% B5% 92% F7% 54% 58 42 43 23 26
ROA 23% 0% 0% 8% 8% 4.0 - - 6.0 2.0
Assets 23%  23%  23% 15% 46% 57 AF a7 40 40

Non-Current Loans / Loan Loss Allowance 19% 0% 8% 0% 0% 3.0 - 1Mo - -
Net Loans / Bank Equity Capital 0% 100% 100% 31% 23% - 36 18 30 27
Annual Default Rate 0% 23% 23% 31% 3% - 53 20 20 25
Assets 90 days Past Due /30 -89 Days PastDue 0% 31% 23% 23% 23% - 58 60 13 3.0
Net Interest Income / Earning Assets 0% 15% 159% 8% 23% - 80 90 80 6.7
Net Interest Margin 0% 0% 8% 8% 38% - - 100 7.0 3.6

Figure 26. Probabilities of Variable Selection by Model Horizon (Left) and Average Order of Inclusion If Selected at
Given Horizon (Right) For Annual Models Over the Period from 2000-2012

The average order of selection of each variable for each model horizon appears at the right in Figure 26. Variables
selected early in the process (averaging from 1 to 2.5) are coded in red, those in the middle set, averaging between 2.5
and 5.0 are in green, and those selected above fifth on average in blue. The table shows the importance of ROE in early
year models; ROE was selected first in all one-year models from 2000 to 2012, with non-current liabilities second in all
but one year. Again, for mid-year horizons, net operating income becomes selected in most models, averaging between
1.1 and 2.4 in selection order. Although the annual default rate is never included in more than 31% of models at any
horizon, when selected at four- and five-year horizons, its average order is second. The table also confirms the relative
unimportance of net interest income to earning assets and net interest margin.

The data at the right in Figure 26 seem to suggest that a variable's probability of being selected is related to the order in
which is it selected. This is confirmed, at least in general, by Figure 27, which demonstrates that the average order of
selection (first to last) increases with the probability of selection. That is, frequently selected variables tend to be
selected earliest and vice versa. Examples of frequently selected variables with early selection include ROE, the ratio of
liabilities to assets, and percentage of non-current loans. Conversely, rarely selected variables such as net interest
income to earning assets and net interest margin are typically near the last ones to be selected in the few models in
which they are present.

- -
e N & o © o N
Il Il Il Il Il ]

Average Order if Selected

0% 25% 50% 75% 100%
Probability of Selection
Figure 27. Relationship between Variables’ Probability of Selection and Order of Importance
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I conclude my analysis of variable contributions with an analysis of the consistency of the signs of the variables input
into each model. That is, I measure the extent to which a variable, if selected maintains the same sign in different years
and tenors. For example, variables having positive signs are indicative of higher default risk, whereas negative inputs
signal lower risk of default. Figure 28 shows for each variable the likelihood that it is positive if selected. Again, color
coding is used to highlight variables; variables having 67% or greater likelihood of being positive highlighted in red (for
higher risk), those between 0% and 33% positive in green (for lower risk), and gray for those in between. If a variable is
not included in a model (e.g., for ROE in year four and year five models) the corresponding cell is blank. Clearly,
almost all variables, when selected for a model in a given year are of the same sign. That is, nearly all cells with values
are either 0% or 100%. Exceptions to this include assets at the five-year horizon and net operating income to assets at
one year. Although some variables are of the same sign when included in models at all horizons (e.g., ROE, annual
default rate, and net interest income to earning assets), most variables change sign when included at different horizons.
However, excluding their inputs to the five-year model, all variables except percent of non-current loans are of the same
sign if included in models at shorter horizons.

Prob Positive if Selected Average Value if Selected
Variables 1y 2y 3y dy 3y Iy 2y 3y 4y 3y

ROE 0% 0% 0% 06 06 05
Liabilities / Assets 100% 0% 0% 0% 100% 1.0 40 1.2 14 17
Non-Current Loans / Loans 100% 100% 100% 100% 0% 0.6 1.1 09 06 09
Net Operation Income / Assets 1% 0% 0% 100% 0.6 07 07 14
Earning Assets / Assets 0% 0% 0% 05 407 8.1
Yield on Earning Asset 100% 100% 100%  90% 0% o4 07 07 07 37
ROA 0% - - 0% 100% 1.5 03 1.2
Assets 100% 100% 100% 100% 03 05 05 05 4

Non-Current Loans / Loan Loss Allowance 100% 0% 0.6 0.4
Net Loans / Bank Equity Capital 100% 100% 100% 0% 07 08 16 4035
Annual Default Rate 0% 0% 0% 29% £2 05 03 00
Assets 90 days Past Due /30 - 89 Days Past Due 0% 0% 0% 0% 06 06 05 44
Net Interest Income / Earning Assets 0% 0% 0% 67% 24 06 11 09
Net Interest Margin 100%  100% 0% 05 1.2 4.0

Figure 28. Analysis of Variable Consistency by Model Tenor: Left: Probabilities of Variables Having Positive Signs
(Higher Default Risk; Red) If Selected and Right: Average Values of Variable Contributions If Selected

A clue to the changes in signs of variables at five years is the large average coefficients, both positive and negative
assigned to variables in the five-year models. Many of those values (e.g., fraction of earning assets, assets 90 days past
due, net interest margin, yield on earning assets are four to eight times the average values of variables in models at
shorter tenors. The results in Figure 26 show that the consistency of variables selected for the models decrease with
tenor and these instabilities likely underlie the large values selected for input variables when chosen for fifth-year
default predictions.

7. Conclusion

In this study, I develop a dynamic measure to overcome limitations of the Merton-type structural models in predicting
default probabilities for financial firms. I build and test adaptive statistical models to estimate default probabilities for
U.S. banks. As described in detail, the models are logistic regression whose input variables are selected and calibrated
based on their past effectiveness at predicting bank failures. Selection of variables in the model and their weights were
updated yearly using a “walk-forward” procedure.

I presented a detailed analysis of the contributions of financial variables to model outputs by year (2000-2012) and
tenor (1-5 years ahead). For a given prediction horizon, I find great consistency among variables selected for each
annual model over the period from 2000 to 2012. For predictions of marginal defaults in years one and two, return on
equity and percentage of non-performing loans are major determinants of default. Those variables give way in
importance at intermediate tenors (i.e., three- to four-years) to current yield on earning assets and net loans to bank
equity capital. Finally, at the five-year horizon, yield on earning assets, asset size, and net interest margin become most
important predictors of default.

I also analyzed the consistency of the order of variable selection as well as the signs of the variables as they reflect
increases and decreases in credit quality. I find a rough, but positive, relationship between the probability of a variable
being selected in each annual model and its average importance in the predictive selection hierarchy. Also, I find that
variables, when selected for a given predictive tenor, are nearly always of the same sign across the years of annual
model development. However, I do find that many variables change sign as the year of marginal default prediction
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changes, but this mostly occurs for a single year; predicting defaults between years four and five.

I further derived estimates of physical default probabilities from risk scores from the bank PD model. These PDs can
then be used to estimate expected losses from default on bank portfolios. Because most models offer little benefit over
agency ratings for already low-rated credits, I examined the performance of the bank PD model relative to Kroll agency
ratings for credits rated above single-B-minus and for those rated above single-C-minus. I find that the predictive power
of agency ratings drops off dramatically as credit quality of the scoring sample increases, with much less deterioration
in default prediction using the bank PD model.

The model predicts defaults at annual horizons from one to five years. Performance of the models at discriminating
between defaults and non-defaults is evaluated for horizons of one to five years using a sequence of annual
walk-forward out-of-sample tests from 1992 to 2012. I also measure the ability of the models to predict absolute default
rates from one to five years and, except for underestimating the high bank default rates during the financial crisis, the
models performed well at estimating the annual bank default rates. In general, the models perform favorably at
predicting defaults, with a 97% accuracy ratio (AR) at one year prior to default, and decreasing, but still above-chance
predictive power out to five years. The models are designed to be updated on an annual basis, but updated financials for
inputs to the model are available from the FDIC on a quarterly basis. Not only do my results provide evidence of the
advantage of the adaptive statistical modeling approach over agency ratings, but also they provide insight to the short-
and long-term determinants of bank failure.
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