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Abstract 

The main aim of this article is to investigate the accuracy of the Multivariate Generalized Autoregressive Conditional 

Heteroskedasticity Model (M-GARCH) for the selection of the best investment portfolio. There is extended literature on 

M-GARCH in this field with a great number of studies using different sets of variables among them the returns of assets, 

the volatility of the assets in the investment portfolio, the maturity date of the asset etc. The origin of M-GARCH is 

associated with the elements of the Dynamic Conditional Correlations Model (DDCM) as proposed by Engle. An earlier 

version of DDCM with time variations in the correlation matrix has been developed by Bollerslev. DCCM offers 

flexibility by incorporating different levels of volatilities able to structure portfolios with a great number of assets. 

M-GARCH models take into account separate univariate GARCH models, associate with each asset in the portfolio, in 

order to form a complete M-GARCH model. The present article uses a multiple dimension classic M-GARCH volatility 

model on a data set consisting from three time series. The daily ASE index on stock returns (Athens), the DAX index 

(Germany) and the CAC index (France). For each national index, the continuously compounded return was estimated as 

rt=100[log(pt)-log(pt-1)], where pt is the price on day t. 

Keywords: commercial banks, m-garch models, portfolio selection, forecasting 

JEL Classification: F23, G21 

1. Introduction 

Stock returns are closely related to risk associated with each asset in a selected investment portfolio. Risk management, 

especially in unstable conditions, has been characterized as the core issue in market valuations and returns with a great 

number of studies both from researchers and practitioners (Thalassinos et al., 2010). In many cases the complexity of 

the set of assets on one hand and the different levels of uncertainty on the other have leaded to new methods and tools in 

risk management as has been pointed out by Thalassinos and Pociovalisteanu (2007) and Thalassinos et al. (2013). Risk 

management is associated with the acceptance or not of the level of uncertainty in the selection of any investment 

portfolio. It is a process going through the identification stage, the stage of risk analysis and the final decision stage 

where the analyst has to decide which portfolio is the most desirable by the investor. Risk management is an effective 

tool to be used for greater rewards and not only to control losses. Stop losses decisions are considered of equal 

importance as decisions maximizing gains. It is also an analytic procedure with multidisciplinary perspectives, methods 

and processes for the optimization of risk against gain, a field that together with its financial aspect has experienced a 

fast and advanced growth at an incredible speed (Thalassinos et al., 2009; Thalassinos et al., 2010).  

Ustun (2012) has described the traditional financial risk management approach on the mean–variance framework of 

portfolio theory through a selection and diversification process. Financial econometrics have been used as the most 

appropriate method to understand and predict the temporal dependence in the second-order moments of asset returns. 

Recent studies have shown that financial volatilities move together across assets and markets (Thalassinos et al., 2006; 

Thalassinos et al., 2012). By accepting this characteristic through a multivariate process such as the M-GARCH model 

leads to more relevant empirical models, more dynamic and more accurate than working with a set of different 
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univariate models. This is a very important result from both, a financial and a computational point of view, because it 

creates the appropriate procedure for a more effective prediction tool for various perspectives, such as asset pricing, 

portfolio selection, option pricing, hedging and risk management.   

Bauwens (2006) has applied M-GARCH models to analyze the relations between the volatilities and co-volatilities of 

several markets. In other studies M-GARCH models have been used for the computation of time-varying hedge ratios. 

Ordinary Least Squared (OLS) methodology has been also used for the estimation of hedge ratios. The coefficient of the 

slope of the regression equation is considered as the spot return on the futures return, because this is equivalent by 

estimating the ratio of the covariance between spot and futures over the variance of the futures. 

2. M-GARCH Model  

The present article considers an M-GARCH model to analyze the relationship between returns of governments bonds and 

volatilities of stock index prices in a dynamic way (Tastan, 2006). 

The level of volatility of a certain series (for example asset returns ) is generally measured by its conditional variance 

and is denoted by equation (1): 

                (1) 

The level of volatility of an asset depends on a set of factors. Such factors are the degree of over-reaction or under-reaction 

to news, some incomplete and non-updated information, parameter variations, possible changes in global financial 

institutions (e.g. International Monetary Fund, World Bank, European Monetary Union) and abrupt switches in policy 

regimes (Thalassinos, Maditinos and Paschalidis, 2012). The level of volatility in asset returns can be estimated with two 

different ways. Either by using the option prices or time series data as they are reported in real transactions. Most of the 

econometric methods which have been used to evaluate volatility are based on daily observations. Forecasts of the level of 

volatility are used in risk management procedures, in option pricing and in asset portfolio decisions. In most cases 

M-GARCH volatility models have been extensively used. Engle (1982) has proposed a GARCH model to capture 

volatility variation for the first time.   

2.1 DCC and t-DCC Multivariate Volatility Models 

The Dynamic Conditional Correlations (DCC) model is an estimation procedure which is reasonable flexible in modeling 

individual levels of volatilities for sets of assets that can be applied to portfolio with a large number of assets. To evaluate 

the fat-tailed nature of the distribution of asset returns, it is more appropriate if the DCC model is combined with a 

multivariate t-distribution, particularly for risk analysis where the tail properties of return distributions are of primary 

concern.  

Let  be a m 1 vector of asset returns at close day t assumed to have mean  and the non-singular 

variance-covariance matrix which decomposes as follows (Bollerslev, 1990; Engle, 2003): 

                 (2) 

 

Where, 

 

 

               (3) 
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 =               (4) 

 

In matrices (3) and (4)  is the conditional volatility defined by    

                (5) 

and  are the conditional pair-wise return correlations defined by  

 

                 (6) 

Where,  is the information set available at close of day t-1. 

Clearly, =1, for i=j. 

The estimation is by maximum likelihood, well known in the literature as DCC model: 

(1- 

           (7)  

     , i              (8) 

 

In equation (7)  is the unconditional variance of i
th
 asset return, and  for  are the 

unknown parameters.  

2.2 Forecasting Volatilities and Conditional Correlations  

Having obtained the recursive ML estimates, , given by , the following one step 

ahead forecast can be obtained. For volatilities we have: 

V ( ) = (1- - ) + +              (9) 

Where  is the estimate of the unconditional mean of  computes as: 

 

                  (10) 
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 and  are the ML estimates of the  computed using the observations over the 

estimation sample = (  and  is the ML estimate of  based on 

the estimates ,   .  

 

Similarly, the one-step ahead forecast of (using either exponentially weighted returns or devolatilized 

returns) is given by: 

 

) =            (11) 

Where = (1-  - ) +  +             (12) 

 

As before  and  are ML estimates of  computing using the estimation sample,  

 is the ML estimate , based on the estimates  and .  

3. Empirical Studies in Financial Instruments 

In this section we have chosen three 10-years government bonds issued in Greece (ASE), Germany (DAX) and France 

(CAC40), as well as equity indices of these three countries to demonstrate the application of M-GARCH model. The 

data series used are from January 07, 2008 to May 30, 2014. (Sources: Financial Times
1
 website, Yahoo

2
 Finance). We 

have used the daily expected returns as the dependent variable in all selected models. The data series gives 1602 

observations for each instrument. Based on the estimated model we have prepared forecasts for the period December 

2012 to May 2014 excluding no working days. 

The empirical evidence on the relationship between returns of government bonds and volatilities of stock indexes is 

mixed. In some cases there is positive correlation and in some others we can see significant time-varying correlation. 

We consider that large capital flows from global financial institutions (for example IMF) may lead to significant 

changes and volatilities. However, compared with other countries, e.g. Germany and France, we observe the opposite 

due to the fact that there is not significant foreign intervention (Tastan, 2006). 

3.1 Summary Statistics 

By using regression analysis it is possible to estimate the effects of information received on   volatilities and 

covariance. The regression coefficients of daily expected returns for the three countries under consideration are 

presented in the Appendix. 

In order to describe the proposed model we assume that the m 1 vector of returns  follows a multivariate 

Student’s t-distribution, though the same line of reasoning applies in the case of the Gaussian returns. By 

considering it as a portfolio based on m assets with returns , using a m 1 of predetermined weights,  

the return on this portfolio is given by equation (13) as follows:  

                  (13) 

We now suppose that we are interested in computing the capital Value at Risk (VaR) of this portfolio, expected at 

the close of business on day t-1 with probability 1-α, which we denote by VaR ( ). For this purpose we 

require that  

                                                        
1
http://markets.ft.com/research/Markets/Bonds 

2
http://finance.yahoo.com/ 
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              (14) 

Under our assumptions, conditional on  has a student t-distribution with mean  

variance  and degrees of freedom υ.  

 

Therefore, 

 

             (15) 

 

Conditional on , will also come out on  a student’s t-distribution with υ degrees of freedom. It is easy to 

verified that E (  and V ( ) = υ/(υ-2). Denoting the cumulative distribution 

function of a student’s t-distribution with υ degrees of freedom by  (z), VaR ( ) will be able to solve 

the function in equation (16) below as follows: 

 

             (16) 

 

But since   (z) is a continuous and monotonic function of z, we have equation (17) below as: 

  

= (α) = -         (17) 

 

where  is the α per cent critical value of a student’s t-distribution with υ degrees of freedom. 

 

Therefore the Value at Risk function is now presented as in equation (18) below as: 

 

VaR  =    -             (18) 

 

                (19) 

In Figure 1 the plots of the Value at Risk of the portfolio for α=0.01, over the period from December 2012 to May 

2014 is presented. It is clear from the Figure that VaR values were at the range of -135 to -50 in the whole study 

period. 
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Figure 1. Value at Risk (December 2012-May 2014) 

In Table 1 we present maximum likelihood estimates of  and  for the three bonds futures returns and , 

. It is obvious that asset specific estimates of the volatility decay parameters are all highly significant, with the 

estimates of  i=1, 2, 3…6 to be very close to unity. The lower panel of the same Table 1 reports the estimated 

unconditional volatilities and correlations of the vector of assets. It is important to notice the high correlation 

between GM4 and FR4 (.33094) and between FR4 and GR2 (.0112).  

Table 1. ML Estimates of the t-DCC Model on Futures Daily Returns 

 

 FR4 GM4 GR2 

 Estimate SE T-ratio Estimate SE T-ratio Estimate SE T-ratio 

Λ1 .403 .0657 6.1346[.000] .581 .0721 8.06[.000] 

 

 .533 .034 15.603[.000] 

Λ2 .485 .0487 9.99[.000]  .28 .04 6.978[000] .385 .027 14.191[.000] 

 Estimate SE T-ratio 

Δ1 .981 .00442 221.5972[.000] 

Δ2  .0172 .0034 4.9838 [.000] 

υ(df) 4.496  .245 18.3366[.000] 

 

MLL  3418.6 

Unconditional correlations 

 FR4 GM4 AES2 

FR4 .0973 .33094 .0112 

GМ4 .33094 .080 -.0746 

 

GR2 .0112 -.0746 .9693 

Notes: Based on 1221 observations from 25 to 1245.The underlying multivariate GARCH model is: CAC CAC(-1) 

CAC(-2) CAC(-3); DAX DAX(-1) DAX(-2) DAX(-3); GR ASE(-1) ASE(-2) ASE(-3); df is the degree of freedom; 

The maximum log-likelihood value-MLL (3418.6) is significantly higher than the obtained value under normal 
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assumption. The estimated degrees of freedom for the t-distribution are well below 30 suggesting that the t-distribution 

is more appropriate in capturing the fat tail nature of the distribution of asset returns. 

3.2 Plotting the Conditional Volatilities and Correlations 

Figure 2 presents the plot diagram of the conditional volatilities of bonds over the period January 2008 to May 

2014.There are significant picks, far above the value 0.4 during the period especially in the case of Germany (GM4). 

 

 

 

Figure 2. Conditional Volatilities of Bonds over the period January 07, 2008 to May 30, 2014 

3.3 Testing for Linear Restrictions 

In the previous sections we considered the estimated t-DCC model of stock indexes. Now we shall focus on the problem 

of testing the hypothesis that one of the assets returns has non-mean reverting volatility. That is let  and  

is the parameters of the conditional volatility equation of i
th

 asset, and thus we should test the hypothesis: 

H0:  +  =1 

Under H0, the process is non-mean reverting and unconditional variance of this asset does not exist. 

3.4 Testing of the Validity of the t-DCC Model 

The estimates of t-DCC model are presented in Table 2. Each asset has equal weight in the portfolio. The results 
of LM test are presented in Table 3. Under the null hypothesis of correct specification of the t-DCC model, the 

probability of transform estimates are serially uncorrelated and uniformly distributed over the range (0, 1).The 

LM test equals to .1481E-4 with p-value of 0.000, is statistically significant, thus not supporting the validity of 

t-DCC model. 
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Table 2. Test of Serial Correlation (OLS case)-Validity of t-DCC Model (1246-1602 Observations) 

 

Regressor Coefficient SE T-ratio 

OLS RES(-1) -.8899E-5 .053917 -.1651E-3[1.00] 

OLS RES(-2) -.1583E-4 .053917 -.2935E-3[1.00] 

OLS RES(-3) -.2415E-4 .053917 -.4478E-3[1.00] 

OLS RES(-4) -.3248E-4 .053917 -.6023E-3[1.00] 

OLS RES(-5) -.4022E-4 .053917 -.7459E-3[1.00] 

OLS RES(-6) -.4687E-4 .053918 -.8693E-3[1.00] 

OLS RES(-7) -.5580E-4 .053918 -.0010348[1.00] 

OLS RES(-8) -.6409E-4 .053918 -.0011886[1.00] 

OLS RES(-9) -.7218E-4 .053918 -.0013386[.999] 

OLS RES(-10) -.8003E-4 .053919 -.0014842[.999] 

OLS RES(-11) -.8806E-4 .053919 -.0016332[.999] 

OLS RES(-12) -.9559E-4 .053919 -.0017729[.999] 

LM-test CHSQ(12)=.1481E-4[.000] 

F-version F(12,344)= .1189E-5[1.00] 

357 observations 

Table 3. Mean VaR and the Associated Test Statistics 

 

Mean HiT rate(pihat statistic .0028011 With expected of .9900 

Standard normal test statistic -187.4654[.000]  

 

When we use the test of Kolmogorov-Smirnov, we have the results as shown in Figure 3. The figure compares the 

empirical cumulative distribution function of the probability integral transform variable with that of uniform 

schematic. The Kolmogorov-Smirnov test (0.988) is bigger than 5 per cent (critical value 0.0719) and hence, it 

rejects the null hypothesis of the probability that integral transforms are uniformly distributed. Histograms of the 

probability of integral transform variable is shown in Figure 4. 

We use 0.01 as a tolerance probability of the VaR. The plot of the portfolio for the forecasting period from 

December 2012 to May 2014 is shown in Figure 5. The mean hit rate N (equal to 0.0028) level, and  

(-187.465) under the tolerance 0.01 as shown in Table 2. Notice that N is not close to expected value 0.990, and 

that the test  is significant, both not supporting the validity of t-DCC model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Kolmogorov-Smirnov Test of Normality 
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Figure 4. Histograms 

Figure 5 presents the conditional correlations of the three countries in the sample (France, Germany and Greece) 

while in Figure 6 we present the forecasts of the volatilities over the period January 2008 to May 2014. 

 

 

Figure 5. Conditional correlations of GR2, GM4, FR4 over the period January 07, 2008 to May 30, 2014 
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Figure 6. Forecast volatilities of GR2, GM4, FR4 over the period January 07, 2008 to May 30, 2014 

4. Conclusions 

We have introduced a three-variate M-GARCH model with an application to measure the risk of a bank’s 

investment portfolio. By modeling the correlation structure, we have not only applied the Gaussian and t 

distribution, but also the multivariate conditional volatilities and correlations which were rarely used because of 

the complexity involved in programming. To ascertain the exact dynamic relationship between observed financial 

variables is a difficult endeavor. This paper attempted to show that the two important financial variables, bond 

returns and equity prices, are correlated in a complicated manner. Any changes in prices of equity indexes have 

important implications for the value of government bonds. A three variate GARCH framework was used to reveal 

the dynamic relationship between GR2 (bonds of Greece), FR4 (bonds of France), GM4 (bonds of Germany) and 

three stock market indexes in Greece, France and Germany: ASE, CAC40, and DAX, respectively. It is shown that, 

although the unconditional correlation coefficient between bonds and stock market indexes are quite low and 

negative in the sample, the conditional correlations vary significantly over time. Additionally, conditional 

covariance and conditional volatilities aspects were plotted.  
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Appendix A: Regression Coefficients 

 

Data for Regression Coefficients of Indexes (Greece, Germany and France) 

 

Table 1.1 Germany 

 

Regressor Coefficient SE Т-test 

GM4(-1) .99755 .0021514 463.6776[.000] 

DAX(-1) -.5944E-5 .8826E-5 -.67346[.501] 

DAX(-2) -.8338E-5 .9380E-5 -.88893[.374] 

DAX(-3) .1657E-5 .9381E-5 .17657[.860] 

DAX(-4) .1365E-4 .8834E-5 1.5453[.123] 

 

R-squared R-bared-squared DW-statistic Akaike info 

criterion 

Schwarz 

Bayesian 

F-statistic SE on the 

regression 

http://ideas.repec.org/s/ers/journl.html


Applied Economics and Finance                                          Vol. 2, No. 2; 2015 

12 

 

criterion 

.99010 .99007 2.3869 1370.0 1357.2 F(4,1236)   

30916.6[.000] 

.080065 

 

 LM-version F-version 

Test A 46.9553[.000] F(1,1235) = 48.5659[.000] 

Test B .39304[.531] F(1,1235) = .39126[.532] 

Test C 157132.9[.000] Not applicable 

Test D 3.2513[.071] F(1,1239) = 3.2546[.071] 

 

Table 1.2 France 

 

Regressor Coefficient SE Т-test 

FR4(-1) .98331 .0051473 191.0345[.000] 

CAC40(-1) .2182E-3 .4237E-4 5.1497[.000] 

CAC40(-2) -.2025E-3 .5771E-4 -3.5093[.000] 

CAC40(-3) -.1353E-3 .5767E-4 -2.3465[.019] 

CAC40(-4) .1369E-3 .4231E-4 3.2362[.001] 

 

R-squared R-bared-squared DW-statistic Akaike info 

criterion 

Schwarz 

Bayesian 

criterion 

F-statistic SE on the 

regression 

.96266 .96254 1.3161 1131.0 1118.2 F(4,1236)    

7966.5[.000] 

.097068 

 

 

 

 

 

 LM-version F-version 

Test A 150.1065[.000] F(1,1235) = 169.9355[.000] 

Test B 4.5851[.032] F(1,1235) = 4.5798[.033] 

Test C 52177.5[.000] Not applicable 

Test D 1.7366[.188] F(1,1239)  = 1.7362[.188] 

Table 1.3 Greece 

 

Regressor Coefficient SE Т-test 

GR2(-1) .99720 .0021143 471.6518[.000] 

ASE(-1) -.6920E-3 .6070E-3 -1.1400[.254] 

ASE(-2) .4170E-3 .8789E-3 .47451[.635] 

ASE(-3) .7865E-3 .8779E-3 .89593[.370] 

ASE(-4) -.4991E-3 .6047E-3 -.82525[.409] 
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R-squared R-bared-squared DW-statistic Akaike info 

criterion 

Schwarz 

Bayesian 

criterion 

F-statistic SE on the 

regression 

.98769 .98765 

 

1.9535 -1718.9 -1731.7 F(4,1236)   

24794.6[.000] 

.96480 

 

 

 LM-version F-version 

Test A .67438[.412] F(1,1235) = .67148[.413] 

Test B 22.8686[.000] F(1,1235) = 23.1853[.000] 

Test C 3234512[.000] Not applicable 

Test D 45.9565[.000] F(1,1239) = 47.6469[.000] 
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