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Abstract 

The primary distinguishing characteristics of various revenue management systems include fixed capacities, uniform 

products, and customers' sensitivity to pricing when making purchase decisions. Even with only two or three 

competitors, the competition remains intense. This study examines the sub-game perfect Nash equilibrium of price 

competition within an oligopoly market where goods are perishable assets. Each seller possesses a single unit of a 

non-replenishable good and competes by setting prices to sell their inventory over a finite sales period. Each period, 

buyers seek to purchase one unit of the good, and the number of buyers entering is random. All sellers' prices are visible 

to buyers, and there is no cost associated with searching for goods. Through stochastic dynamic programming methods, 

sellers' optimal responses can be determined by treating the competition as a one-time price-setting game, considering 

the remaining sales periods and the current demand pattern. Assuming a binary demand model, it is demonstrated that 

the duopoly model exhibits a unique Nash equilibrium. In addition, it is shown that the oligopoly model does not result 

in price dispersion based on a discussed metric. Moreover, when a generalized demand model is considered, the 

duopoly model features a unique Nash equilibrium with mixed strategies, whereas the oligopoly model exhibits a 

unique symmetric Nash equilibrium with mixed strategies. 

Keywords: price dispersion, mixed strategy, sub-game perfect, Nash equilibrium, dynamic programming, stochastic 

programming, duopoly, oligopoly 

1. Introduction 

The aim of revenue management is to effectively control the sale of a limited quantity of resources (like hotel rooms, 

airline seats, advertising slots, etc.) to potential customers (the market). Airlines represent one instance of businesses 

managing perishable capacity, where they competitively price fixed capacities for sale within a constrained sales 

timeframe. Online travel agencies like Expedia facilitate this competition by aggregating and displaying real-time flight 

prices from various airlines, enabling customers to compare product quality and pricing options. In today's rapidly 

evolving technological landscape, corporate managers are increasingly savvy, with revenue management playing a 

pivotal role in their decision-making processes. This is because, in a competitive market, having insight into 

competitors' potential actions is crucial for making informed decisions. For instance, companies might miss out on sales 

opportunities if they set prices too high, unaware of their competitors' likely pricing strategies. Consequently, there has 

been significant recent interest and research dedicated to understanding competition in revenue management. In this 

paper, we delve into an oligopoly stochastic model where sellers compete by adjusting prices over multiple periods. 

Building upon the Bertrand-Edgworth competition framework, this advanced model seeks to elucidate managers' 

considerations and pricing behaviors under uncertainty. 

The paper's organization is as follows: Section 2 provides a review of relevant literature. In section 3, we define the 

problem and provide equilibrium properties for different demand scenarios. Section 4 details the results obtained from 

numerical experiments. Lastly, section 5 concludes the study by discussing findings and suggesting directions for future 

research. The theoretical underpinnings for these properties are provided in the appendix. 

2. Related Literature 

In this section, we've organized the related works into two distinct categories. We begin with a discussion of static 

competition models, followed by a concise introduction to dynamic competition models. 

 



http://aef.redfame.com                   Applied Economics and Finance                        Vol. 11, No. 2; 2024 

15 

 

2.1 Static Models 

The two main models of oligopoly are the Cournot model, where companies compete on how much they produce 

(Cournot, 1838), and the Bertrand model, where they compete on prices (Bertrand, 1988). In the Cournot model, 

companies decide how much to produce, and then the market decides the prices. In the Bertrand model, at the start of 

each period, companies set their prices, assuming they can meet all the demand for their product. In this model, each 

company sets its price based on its production costs. (Edgeworth, 1925) demonstrated that when considering capacity 

constraints, the Bertrand model lacks a pure strategy Nash equilibrium. This study delves into the Bertrand-Edgeworth 

model, which incorporates capacity limitations into Bertrand's competition. In this situation, customers typically select 

the company with the lowest price, and if two companies offer similar prices, customers randomly decide between them. 

The random order of customer arrivals introduces demand uncertainty. Although a pure-strategy equilibrium may not be 

guaranteed in this context, mixed-strategy equilibria are observed. See (Allen & Hellwig, 1986), (Dasgupta & Maskin, 

1986), (Levitan & Shubik, 1972). Exploring the Bertrand-Edgeworth model provides valuable insights into revenue 

management competition. However, the lack of a pure-strategy equilibrium complicates the analysis and prediction of 

market dynamics. While the model offers simplicity, it may not provide precise insights into market conditions, 

especially for more complex scenarios involving multiple customer segments. Consequently, other relevant studies have 

explored mixed-strategy Nash equilibrium alongside the development of these fundamental models. 

2.2 Dynamic Models 

After the emergence of several static models, many researchers have turned their attention to dynamic models of 

competition. One of the pioneers in this domain was (Chamberlin, 1933), who was among the earliest to emphasize that 

repeated interactions among rivals in an oligopoly market could enable collusion. With frequent interaction, businesses 

can use the threat of price wars to dissuade rivals from engaging in collusive pricing strategies. Another noteworthy 

contribution is Dudy's paper, which explores dynamic competitions with capacity constraints (Dudey, 1992). Although 

not present in the Bertrand-Edgeworth competition, Dudy demonstrated that the subgame perfect equilibrium is unique 

in dynamic competition. Establishing this equilibrium's uniqueness was a significant achievement because the lack of 

uniqueness can pose challenges in economic applications. Without a unique solution, it becomes difficult to ascertain 

which equilibrium each competitor considers, impeding legitimate comparative static exercises (Osborne & Pitchik, 

1986). Dudy's model involves companies setting prices in each period to maximize their undiscounted profits within a 

duopoly variant of Bertrand-Edgeworth competition with capacity constraints. They assume a deterministic demand 

structure in their model. (Biglaiser & Vettas, 2004) investigate a dynamic price game where businesses face limited 

capacities and customers are strategic. They find that there is no pure-strategy subgame perfect equilibrium and that the 

seller's market shares are likely to be asymmetric. (Anderson & Schneider, 2007) examine the impact of search costs on 

equilibrium in a dynamic price model. The study shows that when search costs are not zero, duopolistic prices exceed 

those of monopolists. (Mantin, 2008) analyzes a multiperiod duopoly pricing game involving a homogeneous perishable 

good sold to consumers who visit one of the retailers in each period. (Perakis & Sood, 2004) study an open-loop 

equilibrium, where prices are set at the start of the horizon and remain unchanged until the end. Therefore, they do not 

require subgame perfection. They utilize variational inequality tools and conduct comparative statics on equilibrium 

prices as a function of demand-capacity ratios. (Deneckere & Peck, 2012) derive dynamic price dispersion in perfect 

competition by developing a dynamic version of Prescott's hotel model. Their model integrates price variation across 

periods, adjusting the demand function based on past revealed demand. Companies have the option to set a low price for 

guaranteed sales or a higher price for sales only in high-demand periods. Future decisions are made based on updated 

demand, without considering discount factors. (Martínez-de Albéniz & Talluri, 2011) investigated perfect competition 

of a homogeneous product when the demand function follows a Bernoulli random variable. They derived a 

mathematical solution for equilibrium price paths and demonstrated a structural property of the equilibrium policy, 

where the seller with the lower equilibrium reservation value sells a unit at a price equal to the competitor's equilibrium 

reservation value. In (Gallego & Hu, 2014), the analysis initially focuses on a deterministic demand function and later 

demonstrates that, under certain conditions, the results can approximate scenarios where the demand function is random. 

(Sun, 2017) examined oligopolistic competition where each firm has one unit to sell, and products are non-perishable. 

They identified equilibrium price dispersion, particularly proving its uniqueness when demand follows a Bernoulli 

distribution.  

2.3 Contributions 

In recent years, there has been a surge of research aimed at understanding and improving customer behavior. However, 

comparatively less attention has been given to modeling competition dynamics. This discrepancy can be attributed to 

the inherent challenge of establishing the existence of subgame perfect equilibrium in stochastic revenue management 

games, even in relatively straightforward models such as the Bertrand-Edgeworth model, which lacks a single pure 

Nash equilibrium. Furthermore, much of the existing research has focused on static models and infinite games, often 
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overlooking the presence of mixed strategies or resorting to special cases to find pure Nash equilibrium. Our research 

seeks to fill this gap by addressing equilibrium dynamics within a finite long-run horizon. We specifically focus on 

establishing the existence of a unique mixed strategy Nash equilibrium in a duopoly model with generalized demand. 

Additionally, we demonstrate the uniqueness of symmetric mixed strategy Nash equilibrium in an oligopoly model. Our 

objective is to conduct a comprehensive mathematical analysis to understand how various factors influence market 

dynamics and sellers' behaviors in equilibrium. While meeting all model assumptions may pose challenges, our model 

serves as a valuable benchmark for exploring the effects of different parameters on market behavior and price dispersion 

characteristics. To accomplish this, we build upon the mathematical framework introduced by Sun (2017). 

3. Methodology 

In this section, we delve into the dynamics of the Bertrand-Edgeworth competition, starting with a focus on the 

Bernoulli demand distribution and then expanding our analysis to cover general demand distributions. In each demand 

scenario, we explore the conditions for equilibrium in both duopoly and oligopoly competitions. Before delving into the 

intricacies of equilibrium analysis, let's establish the basics of Nash equilibrium. Imagine a strategic game involving 𝑁 

players, where each player has a set of pure strategies. A mixed strategy in this context involves randomization over this 

set. It's assumed that the mixed strategies adopted by the competitors are independent. This leads us to a new version of 

the game where mixed strategies replace the simpler pure strategies, known as the mixed extension of the original game. 

According to (Osborne & Rubinstein, 1994), we define a mixed strategy Nash equilibrium of a strategic game as a Nash 

equilibrium of its mixed extension. Another important concept is the subgame perfect Nash equilibrium (SPNE), which 

applies to dynamic games. A set of strategies exhibits an SPNE if, at every point of the dynamic game, which 

constitutes a subgame, the outcome corresponds to a Nash equilibrium. See (Baye & Morgan,  2004) for more details.  

3.1 Mathematical Model 

We're examining a market with 𝑁 competing firms, each offering a single unit of a uniform, perishable product. Time 

is divided into discrete intervals labeled from 1 to 𝑇, representing a finite time period. Prior to knowing the demand 

for each period, firms must determine their prices. Customers will only make a purchase if the price is lower than their 

predetermined reservation price, which remains consistent across all customers. Upon arriving at the market each period, 

customers seek to buy one unit and leave if they cannot make a purchase. In instances where two firms price their 

products the same, they have an equal probability of making a sale. The objective for each firm is to maximize the 

present value of its profits, taking into account any discounts. Let's introduce some key terms for further exploration: 

 𝑇: Represents the remaining number of time units until the product expires. 

   ̅: Denotes the reservation price. 

  𝑉( ̅ 𝑁 𝑇): Represents the anticipated option-value for a firm when there are 𝑁 competitors in the market 

and 𝑇 periods remain. 

     
 : Indicates the minimum price each firm tends to consider when there are 𝑁 competitors in the market 

and 𝑇 periods remain.  

 δ: Represents the discount factor. 

Determining option-values plays a pivotal role in crafting a company's pricing strategy. This value represents the 

expected profit a company would earn by maintaining the price at the reservation level until the planning horizon ends. 

By possessing this option, companies establish a minimum level for the profit achievable through their chosen pricing 

strategy. Hence, according to the definition of option-value, we arrive at the following equation: 

V( ̅, T, N) = 0, (1) 

for 𝑁 >  𝑇 . In the next sections, we explore Nash equilibrium for the duopoly model, then create and find the 

equilibrium for the oligopoly market. 

3.2 Binary Demand 

In this section, we delve into the market dynamics when the demand distribution follows a Bernoulli distribution. 

Initially, we discuss certain properties of option-value applicable to both duopoly and oligopoly markets. Subsequently, 

we explore the equilibrium for each scenario individually. Let's introduce additional notations: 

  𝑞 : The probability of zero demand. 

 Γ(𝑁 𝑞 𝑇) : Represents a scenario where N firms operate within a market over a planning period of T, with the 

demand parameter set as q. 

We can perform the computations for our case using the same reasoning as (Sun, 2017). For this market, the 

closed-form of the option-value can be calculated. Based on Bayes' Theorem, we have: 

 ( ‾      )  𝑞 𝑉( ‾ 𝑁 𝑇  1)  (1  𝑞) 𝑉( ‾ 𝑁  1 𝑇  1)   (2) 
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Similarly,  ( ‾ 1   ) can be computed as follows:  

𝑉( ‾ 1   )  𝑞 𝑉( ‾ 1 𝑇  1)  (1  𝑞) ‾  (1  𝑞) ‾  𝑞 (1  𝑞) ‾    (𝑞 )   (1  𝑞) ‾
 (1  𝑞) ‾(1  (𝑞 ) ) (1  𝑞 )  

(3) 

According to (2) and (3), we can calculate  ( ‾      ) according to the following equation: 

 ( ‾      )  ∑       
    ,(𝑞 )   (1  𝑞) 𝑉( ‾ 𝑁  1 𝑇   )-    (4) 

when 𝑁 ≤ 𝑇. Due to the presence of an option-value, firms set a minimum threshold for the price they're willing to 

accept, within a specific period. To determine this threshold, we seek a price denoted as     
 , where the anticipated 

profit from setting this price aligns with the current option-value. This results in the following equation being satisfied: 

 ( ‾    )  𝑞  ( ‾     1)  (1  𝑞)    
 

, (5) 

for 𝑁 ≤ 𝑇. In conclusion, having 𝑉( ‾ 𝑁 𝑇), we can calculate     
  as: 

    
  

 ( ‾      )  𝑞  ( ‾       1)

1  𝑞
   ( ‾    1    1)  

(6) 

for 𝑁 ≤ 𝑇 . Equation (6) retains a straightforward interpretation. As highlighted in (Sun, 2017) concerning 

non-perishable assets, this concept remains relevant in our context. With a Bernoulli demand distribution, at most, only 

one buyer enters the market in each period. Thus,     
  is the price at which a seller is indifferent between selling or 

letting others sell when there is a one-unit demand. The profit in the former case is     
 , while the profit in the latter 

case is   ( ‾   1   1). Consequently,     
    ( ‾   1   1). 

3.3 Duopoly Competition with Binary Demand 

In this section, we examine the equilibrium for duopoly markets. To examine the mixed-strategy equilibrium, we model 

the sellers' strategy as a random variable. Here, we introduce some notations: 

 𝐹  ( ) : the probability that the seller   sets a price less than or equal to   in period 𝑇, 

 𝐹   ( ) : the joint probability that all sellers except   set prices less than or equal to   in period 𝑇, 

 𝐹  (  )  lim𝑝→𝑝−  𝐹  ( ), 

 𝐼   sup* ∣ 𝐹  ( )  0+, 

 𝑈   inf* ∣ 𝐹  ( )  1+. 

Lemma 3.1 and 3.2 demonstrate the relationship between the minimum acceptable price     
  and the bounds 

associated with the adopted random pricing strategy. These two together help to attain the equilibrium properties in 

Proposition 3.3. 

Lemma 3.1. The following equation holds in equilibrium: 

𝐼   𝐼       
 

, (7) 

Lemma 3.2. The following equation holds in equilibrium: 

𝑈   𝑈       
   (8) 

Proposition 3.3. In the selling game, Γ(2 𝑞 𝑇), each seller adopts the pricing strategy as p      
  for all 𝑇  2, and 

the expected profit for each seller is exactly  𝑉( ‾ 1 𝑇). 

The proof is presented in the appendix. As a result, when there are two firms competing on price to sell their product, 

they both offer an identical price equal to     
  . This equilibrium arises because neither party intends to sell below their 

option-value. Letting the other firm sell results in an equal expected profit for both due to equation (6). 

3.4 Oligopoly Competition with Binary Demand 

In this section, we examine the equilibrium when there are more than two firms in the market. First, we introduce some 

notations for this part: 

 FiNT(p) : the probability that seller i sets a price less than or equal to p in period   in a market containing 

  sellers, 

 F iNT(p) : the probability at least one seller except the seller i set a price less than or equal to p in period   

in a market containing   sellers, 

 FiNT(p )  limp→p−  FiNT(p), 
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 γNT(p) : the number of firms offering a price equal to p, 

 IiNT  sup*p ∣ FiNT(p)  0+, 

 UiNT  inf*p ∣ FiNT(p)  1+. 

Now, we discuss the equilibrium properties of this oligopoly market in the following Proposition. 

Proposition 3.4. When there are   firms in the market and the demand structure is binary, the three following 

conditions hold in equilibrium: 

1. IiNT  PN T
 . 

2. γNT(pN T
 )  2. 

3. The expected profit for each firm is  (P‾     ). 

According to the Proposition, in a binary demand structure, it's feasible to offer a price higher than the reservation price, 

leading to unpredictable price dispersion. However, as outlined in (Baye and Morgan, 2004) and discussed in (Sun, 

2017), when only marginal prices are taken into account, this oligopoly model doesn't exhibit any price dispersion. 

3.5 General Demand Model 

In this section, we have a generalization of the cases that we discussed before. As a result, we investigate a general 

demand structure and investigate the duopoly and oligopoly models' equilibria. We start by introducing a few extra 

notations: 

 𝑞  : The probability that the demand equals to  , 

 𝐹( ) : The identical assumed strategy chosen by all of the firms, 

 𝐹   ( ) : The probability that the seller   sets a price less than or equal to   in period 𝑇 in a market 

containing 𝑁 sellers, 

 𝐹   (  )  lim𝑝→𝑝−  𝐹iNT( ), 

 𝐼   sup* ∣ 𝐹  ( )  0+, 

 𝑈   inf* ∣ 𝐹  ( )  1+. 

Now, similar to the binary demand section, we first calculate the option-value and reservation price. The option-value 

can be calculated from the following equation: 

𝑉( ‾ 𝑁 𝑇)  ∑  

   

   

 𝑞  𝑉( ‾ 𝑁    𝑇  1)  ∑  

  

   

 𝑞  ‾  (9) 

The first component of (9) is the expected profit we get if the demand is less than the number of players, and the second 

one represents the expected profit of the cases where demand is more than the number of players. In addition, since 

    
  is the lowest price that sellers are willing to offer, it satisfies the following equations: 

𝑉( ‾  𝑁  𝑇)  𝑞  𝑉( ‾  𝑁  𝑇  1)  (1̇  𝑞 )    
   (10) 

So, we have: 

    
  

𝑉( ‾  𝑁  𝑇)  𝑞  𝑉( ‾  𝑁  𝑇  1)

1  𝑞 
 
∑     
    𝑞  𝑉( ‾  𝑁      𝑇  1)  ∑    

    𝑞  ‾

1  𝑞 
 

(11) 

Equation (11) has an intuitive explanation similar to the one mentioned by (Sun, 2017) for the perishable assets. It 

means that if demand is not zero,     
  is equal to the expected option-value. The monopolist's option-value can be 

calculated from the following equation: 

𝑉( ‾ 1 𝑇)  𝑞  𝑉( ‾ 1 𝑇  1)  (1  𝑞 ) ‾  (12) 

Using the equation (12), a closed-form of 𝑉( ‾ 1 𝑇) can be derived as follows: 

𝑉( ‾ 1 𝑇)  (1  𝑞 ) ‾  𝑞  (1  𝑞 ) ‾    𝑞  
   (1  𝑞 ) ‾  (1  𝑞 ) ‾

1  (𝑞  )
 

1  𝑞  
 
 

(13) 
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In the following sections, we first analyze the equilibrium for a duopoly and then for an oligopoly market. 

3.6 Duopoly Competition with General Demand Function 

To examine the properties of equilibrium, we need to first calculate the option-value. From the option-value we 

obtained for monopolist, the option-value for a firm in a duopoly market can be calculated from the following 

equations: 

𝑉( ‾ 2 1)  (1  𝑞  𝑞 ) ‾  (14) 

and we have: 

𝑉( ‾ 2 𝑇)  ∑  

 

   

 𝑞  𝑉( ‾ 2    𝑇  1)  ∑  

  

   

 𝑞  ‾  

(15) 

for 𝑇 > 2. The right-hand side of equation (15) can be calculated using the option-value of 𝑇  1 and the monopolist 

option-value in (13). The following Proposition introduces the symmetric mixed strategy equilibrium for the duopoly 

case. A similar result exists and is proved in (Sun, 2017) for non-perishable assets. The proof of this Proposition is 

stated in the section appendix. 

Proposition 3.5. Considering 𝑞 > 0 and ∑   
   𝑞 > 0, the mixed strategy 𝑊 ( ) represents a Nash equilibrium, and 

its associated expected profit is 𝑉( ‾ 𝑁 𝑇). 

𝑊 ( )  

{
 

 
0  ≤     

 

𝑉( ‾ 2 𝑇)  𝑞  𝑉( ‾ 2 𝑇  1)  ∑    
    𝑞  

𝑞 ( 𝑉( ‾ 1 𝑇  1)   )
    
     ‾

1    ‾

 

(16) 

In Proposition 3.5, we show that 𝑊 ( ) can result in an equilibrium. Another characteristic we discovered for the 

duopoly case is the equilibrium's uniqueness. To show that this is a unique equilibrium, we take advantage of the 

expected profit in equilibrium and the equilibrium strategy. The evidence we need to demonstrate the uniqueness of 

𝑊 ( ) can be found in the following lemmas. 

Lemma 3.6. In equilibrium the following equations hold: 

𝐼   𝐼       
   𝑈   𝑈    ‾  

(17) 

Lemma 3.7. The equilibrium strategy is symmetric.   

Building upon these foundational lemmas, Proposition 3.8 emerges as the centerpiece of our analysis. We demonstrate 

that 𝑊 (p) stands as the unique mixed-strategy equilibrium, thus solidifying our understanding of equilibrium 

dynamics within the duopoly model. 

Proposition 3.8. 𝑊 ( ) is a unique mixed-strategy equilibrium. 

3.7 Oligopoly Competition with General Demand Function 

We define the function     ( ) according to the following equation: 

    ( )  ∑  

 

   

 .
𝑁  1
 
/ (1   )         

(18) 

If all of the firms choose an identical strategy 𝐹( ), the probability of an observation in which at most   firms offer a 

price less than or equal to p is     (𝐹( )). Same as the duopoly case, we can again calculate the option-value as 

follows: 

𝑉( ‾ 𝑁 1)  ∑  

  

   

 𝑞  ‾ 

(19) 

Thus, having 𝑉( ‾ 𝑁 1) and monopolist option-value, the values of     
  and 𝑉( ‾ 𝑁 1) can be calculated. Similar to 

oligopoly cases in (Sun, 2017) for non-perishable assets, the following statement proposes a symmetric mixed strategy 

equilibrium. 
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Proposition 3.9. With the conditions ∑   
   𝑞 > 0, when every firm chooses 𝑊   ( ) as its strategy, this condition 

results in a unique symmetric equilibrium, and their expected profit in equilibrium is 𝑉( ‾ 𝑁 𝑇): 

 ( )  
∑    
    𝑞  ‾  ∑     

    𝑞     ( ) 𝑉( ‾ 𝑁    𝑇  1)

∑    
    𝑞  ∑     

    𝑞     ( )
  𝑊   ( )  {

0  ≤     
 

   ( )     
     ‾

1    ‾
 

(20) 

As it was mentioned before, it is important to examine the uniqueness of equilibrium. Therefore, the following lemma is 

employed in proposition 3.11 to demonstrate the uniqueness of equilibrium under some particular circumstances. For 

this aim, we only need to provide a situation in which asymmetric equilibrium is not possible because we have shown 

that the only possible symmetric strategy is 𝑊   ( ). 

Lemma 3.10. With the conditions ∑   
   𝑞 > 0 𝑊 ( ) is a right continuous increasing function at  ∈ (    

   ‾). 

Proposition 3.11. If the conditions ∑   
   𝑞 > 0 and (23) are satisfied, the equilibrium should be symmetric. 

    
 ≤ 𝐼                (21) 

Proposition 3.11 provides valuable insights into the equilibrium dynamics of our model. By satisfying the specified 

conditions and ensuring symmetry in equilibrium, we gain a deeper understanding of the system's stability and 

behavior. 

4. Numerical Results 

In this section, we delve into the analysis of results obtained in previous chapters and explore the influence of various 

parameters. Utilizing the derived distribution functions, we investigate equilibrium strategies. Additionally, we present 

numerical examples and graphs to aid comprehension. Initially, as part of the model evaluation and validation process, 

we examine the performance of the obtained models over infinite planning horizons, comparing outcomes with those of 

Sun (2017).  

 

 

 

 

 

 

Figure 1. Duopoly model with Binary Demand      Figure 2. Oligopoly model with Binary Demand 

In these experiments, we consider   0   and  ‾  40. Here, in figure 1, we have obtained the equilibrium price of 

duopoly competition from our model for 𝑇  1   10 and the associated result from the model in (Sun, 2017). Same 

experiment is conducted for oligopoly model with 𝑁  3    10, and 𝑇  1   10. The effective prices in equilibrium 

are compared in Figure 2. In both these figures, we observe that the result of presented model converges to the output of 

the infinite horizon model as 𝑇 increases. For general demand, as we showed in the preceding sections, when 

∑   
   𝑞 > 0, then we have a mixed-strategy equilibrium. In Figures 3 and 4 , we have the equilibrium distribution of our 

model for 𝑁  2 and 𝑁  3, respectively. We considered that the demand follows a poison distribution with expected 

value of 0:5. Similarly, we observe that the distribution of the price converges to the equilibrium distribution associated to 

infinite horizon as 𝑇 increases. 
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Figure 3. Duopoly model with General Demand           Figure 4. Oligopoly model with General Demand 

5. Conclusion 

This study outlines four pricing models with limited capacity and identifies equilibrium strategies. The strategies are 

generally symmetric except in the case of duopoly with binary demand. It demonstrates that under efficient price 

criteria, there's zero price dispersion when demand is in balance, but in case of excess demand, the market lacks a single 

price and follows a predictable pattern instead. These equilibrium strategies can empower sellers of limited capacity 

perishable goods to maximize profits. They tend to set lower prices to attract demand when it's uncertain and avoid the 

risk associated with higher prices. As the planning horizon extends, the results converge towards a previously 

established model, suggesting its reliability for longer-term planning. Each vendor in these models can only offer one 

product, but future research could explore broader capacities for a more realistic depiction of market dynamics. The 

study doesn't conclusively establish a unique equilibrium strategy in oligopoly models with general demand, leaving 

room for future investigations into rejecting asymmetric strategies. Additionally, it suggests that sellers conceptualize 

the option-value before it's quantified mathematically, likening it to the potential profits of monopolization. This 

conceptualization may vary across markets, prompting adjustments to the analysis depending on specific circumstances. 
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Appendix A 

To have clarity in the proof process, we first introduce some new notations here. 

1. Duopoly competition with binary demand: The equilibrium expected profit of firm   is denoted by 𝑉‾ 
 (𝑞 𝑇). In 

addition the expected profit of firm   when firm   's strategy 𝐹   is given, is indicated by 𝑉 
 (  𝑞 𝑇) and is 

calculated as follows: 

𝑉 
 (  𝑞 𝑇)  𝑞 𝑉‾ 

 (𝑞 𝑇  1)  (1  𝑞)[𝐹  (  )𝑉( ‾ 1 𝑇  1)

  .𝐹  ( )  𝐹  (  )/
1

2
( 𝑉( ‾ 1 𝑇  1)   ) (1  𝐹  ( )) ]

  

(22) 

2. Oligopoly competition with binary demand: The equilibrium expected profit of firm   is denoted by 𝑉‾ 
 (𝑞 𝑇). The 

expected profit of firm   when 𝐹     is given, is indicated by 𝑉 
 (  𝑞 𝑇) and is calculated as follows: 

𝑉 
 (  𝑞 𝑇)  𝑞 𝑉‾ 

 (𝑞 𝑇  1)  (1  𝑞),𝐹    (  ) 𝑉( ‾ 𝑁  1 𝑇  1) 

  (𝐹    ( )  𝐹    (  )) (
 

  1
 𝑉‾ 

   (𝑞 𝑇  1)  
1

  1
 ) (1  𝐹    ( )) -  

(23) 

The parameter   can be calculated using the joint distribution of all 𝑁  1 firms. For our purpose, it is enough to 

know that it is a scalar in ,1 𝑁  1-. 

3. Duopoly competition with general demand: The expected value of the profit of the firm   when firm   's strategy 

𝐹   is given, is indicated by 𝑊 
 (  𝑞 𝑇) and is calculated as follows: 

𝑊 
 (  𝑞 𝑇)  𝑞  𝑊‾  

 (𝑞 𝑇  1)  𝑞 [𝐹  (  ) 𝑉( ‾ 1 𝑇  1)

 .𝐹  ( )  𝐹  (  )/
1

2
(𝑉( ‾ 1 𝑇  1)   )  (1  𝐹  ( )) ]

 

 ∑  

  

   

 𝑞    

(24) 

Here, we introduce a crucial theory that is applied throughout the proofs from (Baye & Morgan,  2004). 

Theorem 4.1. In a scenario where a game involves an infinite set of strategies, the combination of strategies 

*𝐹    𝐹 +  forms a mixed strategy Nash equilibrium if and only if, for every player i, no action within their strategy 

set results in a payoff higher than their equilibrium payoff when considering the strategies of all other players 

*𝐹    𝐹 +  𝐹 . Additionally, the likelihood of actions yielding a payoff lower than the equilibrium payoff for player i, 

given the strategies of other players *𝐹    𝐹 +  𝐹 , must be zero. 

 

Let's now explore the proofs presented for the equilibrium properties. Given that several equilibrium traits are 

analogous in both finite and infinite scenarios, we may frequently adopt the methodologies outlined in (Sun, 2017) for 

the infinite case to demonstrate similar characteristics within our context. However, it's essential to note that while 

following similar steps, the specifics of our setting may lead to different outcomes. 

 

A. 1 Proof of Lemma 3.1. 

Proof. Let us use proof by contradiction. First, we assume 𝐼   𝐼  . Considering this assumption, firm 1 can increase 

its profit by assigning the probability of the interval (𝐼   𝐼  ) to a point in the left neighborhood of 𝐼  . The reason is 

that they are sure that all of these prices would be sold with probability one if there exists any demands, thus they try to 

choose the maximum of them. So, this is a contradiction arising from our false assumption, and we have 𝐼   𝐼   in 

equilibrium. In addition, if we assume 𝐼   𝐼        in equilibrium, there will be two possible states, and we 

demonstrate that neither of them can lead to equilibrium. Therefore, we prove that the equation 𝐼   𝐼        

cannot stand in equilibrium. 

Assume 𝐹  (𝐼  )  1. Because the cumulative distribution function is right-continuous, we have: 

  ∈ (        
 ) ∣   ∈ ,𝐼    ) → 𝐹  (𝐼  ) ≤ 𝐹  ( )  1  (25) 

Now, considering firm 2's strategy, firm 1 achieves smaller profit for  ∈ ,𝐼    ) than deciding not to sell in this 

period. Utilizing equation (6) and       
   𝑉(  1 𝑇  1), we have: 
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𝑉 
 (  𝑞 𝑇)  𝑞 𝑉‾ 

 (𝑞 𝑇  1)  (1  𝑞)    
   (26) 

The inequality (26) is obtained by substituting   by its upper bound  𝑉( ‾ 1 𝑇  1) in (22), and the right-hand side 

demonstrates the expected profit of firm 1, when they allow the other seller to sell. As a result, based on Theorem 4.1, it 

is not possible to have a pure strategy with a better result than the equilibrium's one. So, firm 1 never offers  ∈ ,𝐼    ), 
and this is a contradiction. So, state 1 is not possible in equilibrium. Assume 𝐹  (𝐼  )  1 in equilibrium. Then, firm 

2's expected profit associated with   𝐼   is absolutely less than its corresponding value for postponing the selling. 

This is shown in the following inequality: 

𝑉 
 (  𝑞 𝑇)  𝑞 𝑉‾ 

 (𝑞 𝑇  1)  (1  𝑞)    
   (27) 

The right-hand side of (27) is obtained based on the assumption 𝐼       
  and by substituting   in (22) with its 

upper bound     
   𝑉( ‾ 1 𝑇  1). Because firm 2 has the option to increase its profit by choosing not to sell, this 

state cannot be an equilibrium according to the definition of a Nash equilibrium. 

 

A. 2 Proof of Lemma 3.2. 

Proof. First, we assume 𝑈   𝑈   and 𝑈   𝑈  . Then, from Lemma 3.1, we have     
 ≤ 𝑈   𝑈  . If 𝑈   

𝑈   in equilibrium, there will be four possible states, and we demonstrate that none of them can lead to equilibrium. In 

other words, we prove that the equation 𝑈   𝑈   is not possible in equilibrium. 

1.     
  𝑈   𝑈   : Considering   ∈ (    

  𝑈  ) and   ∈ (𝑈   𝑈  ) the following equation holds: 

𝑉 
 (   𝑞 𝑇) > 𝑞 𝑉‾ 

 (𝑞 𝑇  1)  (1  𝑞) 𝑉( ‾ 1 𝑇  1)  𝑉 
 (   𝑞 𝑇)  (28) 

The inequality is obtained from the substitution of    with its lower bound     
    𝑉( ‾ 1 𝑇  1) in the function 

𝑉 
 (   𝑞 𝑇). Therefore, firm 2's expected profit for (𝑈   𝑈  ) is less than the equilibrium profit, and based on 

Theorem 4.1 this interval should be assigned zero probability. This is in contradiction with our assumption     
  

𝑈   𝑈  . 

 2.     
  𝑈   𝑈   : From lemma 3.1, we can conclude     

  𝐼   𝑈   𝐼  . For   ∈ (    
  𝑈  ) , the 

following inequality holds: 

𝑉 
 (   𝑞 𝑇) > 𝑞 𝑉‾ 

 (𝑞 𝑇  1)  (1  𝑞) 𝑉( ‾ 1 𝑇  1)  𝑉 
 (    

  𝑞 𝑇)  (29) 

We have (29) by substituting    with its lower bound     
   𝑉( ‾ 1 𝑇  1) in (22). Therefore, firm 1's profit for 

  ∈ (    
  𝑈  ) is greater than its profit for     

 . Thus, it is in contradiction with the definition of Nash equilibrium, 

and this state cannot be an equilibrium. 

As a result of rejection of state 1 and 2 , we can conclude that the equation 𝑈   𝑈   should stand in equilibrium. 

3. Assume 𝑈   𝑈  > 𝐼   𝐼       
 . Because cumulative distribution function is right-continues, we have: 

  ∈ (    
  𝑈  ) ∣   ∈ ,𝐼    - → 𝐹  ( )  1  (30) 

So, for    , we have: 

𝑉 
 (  𝑞 𝑇) > 𝑞 𝑉‾ 

 (𝑞 𝑇  1)  (1  𝑞)  (1  𝑞) 𝑉( ‾ 1 𝑇  1)  (31) 

The inequality results from  >     
   𝑉( ‾ 1 𝑇  1), and the right-hand side is equal to the expected profit 

associated with     
 . In addition, for the points in a small right neighbourhood of     

 , we have: 

𝑉 
 (  𝑞 𝑇) > 𝑞 𝑉‾ 

 (𝑞 𝑇  1)  (1  𝑞)  (1  𝑞) 𝑉( ‾ 1 𝑇  1)  (32) 

which is obtained from the fact that  →     
   𝑉( ‾ 1 𝑇  1) and its substitution in 𝑉 

 (  𝑞 𝑇). Based on limit 

definition, there exists  > 0 as the expected profit of  ∈ [    
      

   ] is less than the expected profit of    . 

This means that there is a pure strategy with the expected profit greater than the equilibrium one, and based on Theorem 

4.1, this state cannot be an equilibrium. In other words based on Nash equilibrium definition, firm 1 never offers a price 

in this interval, and we have: 
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𝐼   sup* ∣ 𝐹  ( )  0+ >     
   (33) 

and this is in contradiction with our initial assumption regarding the lower bound 𝐼  . 

4. Assume 𝑈   𝑈   𝐼   𝐼  >     
 . If the probability firm 2 assigned to 𝑈   is not positive, for each  > 0, 

there exists  ∈ (    
  𝑈  ) as: 

  ∈ (  𝑈  - → 𝐹  ( ) > 1     (34) 

When we consider   
𝐼1𝑇 𝑃2 𝑇

 

1

2
(𝛿𝑉(𝑃‾      ) 3𝑈2𝑇)

, the expected profit of firm 1 for p ∈ (  𝑈  - satisfies the following 

inequality: 

𝑉 
 (  𝑞 𝑇)  𝑞 𝑉‾ 

 (𝑞 𝑇  1) (1  𝑞) [ 𝑉( ‾ 1 𝑇  1)  
1

2
 ( 𝑉( ‾ 1 𝑇  1))  

3

2
𝑈  )]

  𝑞 𝑉‾ 
 (𝑞 𝑇  1)  (1  𝑞)𝐼   

 

(35) 

 

The inequality is obtained by substituting 1  𝐹  ( ) 𝐹  ( )  𝐹  (  )and   with their upper bounds, 1   and 𝑈   

in 𝑉 
 (  𝑞 𝑇), the following inequality is derived: The last expression is obtained by substitution of  . On the other 

hand, in a left neighborhood of 𝐼  , the expected profit is: 

lim
𝑝→𝐼1𝑇

−
 𝑉 
 (  𝑞 𝑇)  𝑞 𝑉‾ 

 (𝑞 𝑇  1)  (1  𝑞)𝐼   (36) 

So, in a left neighborhood of 𝐼  , the expected profit is more than the expected profit of  ∈ (  𝑈  -. Thus, based on 

theorem 4.1, this state is not possible in equilibrium. So, we should have 𝐹  (𝑈  )  𝐹  (𝑈   ) > 0. In this case, since 

we have 𝑈  >     
   𝑉( ‾ 1 𝑇  1), the value of 𝑉 

 (  𝑞 𝑇) in a small left neighborhood of 𝑈   is greater than 

its value in 𝑈  . Accordingly, based on Theorem 4.1, the probability given to the points with expected value below the 

equilibrium expected value is zero, and based on this, the probability firm 1 assigns to 𝑈   is zero. However, we 

proved that the probability assigned to the upper bound should not be zero. As a result, we showed that state 4 is not 

possible to maintain equilibrium. 

 

A. 3 Proof of Proposition 3.3 

Proof. Considering Lemma 3.1 and 3.2, for a duopoly competition with binary demand and 𝑇  2, the necessary 

condition for equilibrium is to have a pure strategy 𝐼    𝐼   𝑈   𝑈  . Since we have     
   𝑉( ‾ 1 𝑇  1), it 

can be shown that this strategy is a Nash equilibrium. When 𝑇  1, this is a simple Bertrand model in which every 

firms offers zero in equilibrium. 

 

A. 4 Proof of Proposition 3.4 

Proof. The proof of this Proposition is similar to the proof of Proposition 3.3. These conditions are proved to be true for 

𝑁  2. So, we can use inductive reasoning. Assume that the three sections of the Proposition are valid for Γ(𝑁  
1 𝑞 𝑇). Let us first demonstrate 𝐼        

 . Without loss of generality, let us first consider the following equation: 

𝐼    min
     

 𝐼    (37) 

Now, we use proof by contradiction. For this aim, we assume 𝐼        
 , and we examine the two resulting 

possibilities. 

1. If 𝐹    (𝐼   )  1, from right-continuity property of cumulative distribution function, we have: 

  ∈ (𝐼        
 ) ∣   ∈ ,𝐼     - → 𝐹    ( )  1  (38) 

Now, consider  ∈ ,𝐼     -. Since we have    𝑉( ‾ 𝑁  1 𝑇  1)      
 , if we substitute   in (26) with the upper 

bound  𝑉( ‾ 𝑁  1 𝑇  1), we have the following inequality: 
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𝑉 
 (  𝑞 𝑇)  𝑞 𝑉‾ 

 (𝑞 𝑇  1)  (1  𝑞) 𝑉( ‾ 𝑁  1 𝑇  1)  (39) 

The right-hand side of (39) is firm 1's expected profit if they decide to postpone their selling. So, based on Theorem 4.1, 

the probability assigned to the points with the expected profit less than the equilibrium expected profit must be zero in 

equilibrium, and as a result it is not possible that firm 1 post a price in ,𝐼     - in equilibrium. This is a contradiction, 

and this state is rejected. 

2. Assume 𝐹    (𝐼   )  1. Because we assumed that 𝐼    is the least lower bound, there is at least one firm, other 

than 1 , that posts a price equal 𝐼    with probability one. As a result, there exists firm   1, such that 𝐹   (𝐼   )  
𝐹   (𝐼   

 ) > 0. Since we have 𝐼        
   𝑉( ‾ 𝑁  1 𝑇  1), and 𝐼    𝐼    is the least lower bound, if we 

substitute 𝐼    with its upper bound  𝑉( ‾ 𝑁  1 𝑇  1) in (23), we have: 

𝑉 
 (  𝑞 𝑇)  𝑞 𝑉‾ 

 (𝑞 𝑇  1)  (1  𝑞) 𝑉( ‾ 𝑁  1 𝑇  1)  (40) 

The right-hand side is the expected value of firm   's profit when they postpone selling. So, firm   should not assign 

positive probability to 𝐼   , and this is a contradiction. 

 

Now, the first part of Proposition is proved. We again use proof by contradiction to prove the second part    (    
 )  

2. We first assume: 

    
 ≤ 𝐼    𝐼   ≤  ≤ 𝐼     (41) 

Considering this assumption, we have: 

  ∈ (𝐼    𝐼   ) ∣ 𝐹   ( ) > 0  (42) 

We only need to calculate firm 1's expected profit for  ∈ ,𝐼     -. Since firm 1 offers the lowest price in the market, it 

can sell for sure if demand is not zero. So, we have: 

𝑉 
 (  𝑞 𝑇)  𝑞 𝑉‾ 

 (𝑞 𝑇  1)  (1  𝑞)   (43) 

The right-hand side of (43) is bounded from above with its value for    .  As a result, offering a price equal to 

 ∈ ,𝐼     ) is not possible in equilibrium, and it is in contradiction with our assumption. As a result, the following 

relation stands: 

    
 ≤ 𝐼    𝐼   ≤  ≤ 𝐼     (44) 

To prove the second part, we should also show     
  𝐼    𝐼    is not possible in equilibrium. We use proof by 

contradiction. Let us assume that     
  𝐼    𝐼    in equilibrium. Now, we examine and reject the two possible 

resulting states. 

1. Assume 𝐹    (𝐼   ) > 0. Then, since 𝐼    is greater than  𝑉( ‾ 𝑁  1 𝑇  1), firm 1 's expected profit satisfies 

the following equation: 

𝑉 
 (𝐼    𝑞 𝑇)  𝑞 𝑉‾ 

 (𝑞 𝑇  1)  (1  𝑞)𝐼     (45) 

We also have the following inequality and equality for the limit of 𝑉 
 (  𝑞 𝑇) when   approaches to 𝐼    from its 

right and left neighbourhoods, respectively: 

lim
𝑝→ 1 𝑇 

 𝑉 
 (  𝑞 𝑇)  𝑞 𝑉‾ 

 (𝑞 𝑇  1)  (1  𝑞)𝐼     

lim
𝑝→𝐼1 𝑇 

 𝑉 
 (  𝑞 𝑇)  𝑞 𝑉‾ 

 (𝑞 𝑇  1)  (1  𝑞)𝐼     

(46) 

Based on the limit definition, we can find    and    as the expected profit of  ∈ ,𝐼    𝐼      ) is less than the 

expected profit of  ∈ (𝐼       𝐼   ). So, based on Theorem 4.1, firm 1 never offers a price from ,𝐼    𝐼      ) 
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in equilibrium, and we can reject the assumption 𝐹  (𝐼   ) > 0. 

2. Assume 𝐹    (𝐼   )  0. In this situation, every firm has the option to sell at 𝐼    when there is a positive demand. 

So, since 𝐼   > 𝑉 
 (  𝑞 𝑇)      

 , the expected profit of firm   𝑉 
 (  𝑞 𝑇), for   𝐼    is strictly greater than its 

corresponding value for selling postponement. Thus, there is no firm tend to let others sell, and the following expression 

holds: 

𝑈    𝑈      𝑈     (47) 

In addition, the probability assigned to the upper bound is zero for all firms. In order to show this we examine two 

different possibilities. First, if firm   assigns a positive probability to 𝑈   , and there exists at least one another firm   
who assigns zero probability to 𝑈   , firm   's expected profit for 𝑈    is equal to the expected profit of 

postponement. So, from Theorem 4.1 the probability firm   assigns to 𝑈    should be zero. This is a contradiction. 

Secondly, If all of the firms assign positive probability to the upper bound, since  𝑉( ‾ 𝑁  1 𝑇  1)  𝑈   , the 

expected profit of firm   at 𝑈    is less than its corresponding value for a small left neighborhood of 𝑈   . This is 

because in the left neighborhood, it has more chance to sell. So, it has to assign zero probability to 

𝑈   , and this is a contradiction. So, we showed that the upper bounds are equal, and the probability assigned to them is 

zero. As a result, the expected value of profit for firm 1 satisfies the following equation: 

lim
𝑝→𝑈1 𝑇−

 𝑉 
 (  𝑞 𝑇)  𝑞 𝑉‾ 

 (𝑞 𝑇  1)  (1  𝑞) 𝑉( ‾ 𝑁  1 𝑇  1)  (48) 

Since we have  𝑉( ‾ 𝑁  1 𝑇  1)  𝐼   , we also have: 

lim
𝑝→𝑈1 𝑇−

 𝑉 
 (  𝑞 𝑇)  𝑞 𝑉‾ 

 (𝑞 𝑇  1)  (1  𝑞)𝐼     (49) 

The right-hand side is the expected profit of firm 1 for   𝐼   . So, the probability assigned to a left neighborhood of 

𝑈    must be zero, and this is a contradiction with the upper bound definition. So, we have the following result is 

established: 

𝐼    𝐼        
 

 (50) 

Applying proof by contradiction, we show that at least two firms assign probability one to     
 . Assume that non of the 

firms assign probability one to     
 . First, we have that the limit of the expected profit of firm 1 when   approaches to 

𝐼        
  from its right neighborhood is equal to its corresponding value at     

 . In other words, we have: 

lim
𝑝→𝐼1 𝑇

 
 𝑉 
 (  𝑞 𝑇)  𝑞 𝑉‾ 

 (𝑞 𝑇  1)  (1  𝑞)    
   (51) 

Secondly, we can find   such that: 

  >     
 ∣ 0  𝐹    ( )  1  (52) 

Now, because     
   𝑉( ‾ 𝑁  1 𝑇  1)   , firm 1's expected profit satisfies the following inequality: 

𝑉 
 (  𝑞 𝑇) > 𝑞 𝑉‾ 

 (𝑞 𝑇  1)  (1  𝑞)    
  (53) 

As a result of (52) and (53) and based on the limit definition, parameter   and interval ,𝐼    𝐼     ) can be found 

such that for each price in this interval the expected profit of firm 1 is less than the expected profit of  . So, this state is 

not possible in equilibrium. Therefore, we should have 𝐹  (    
 )  1. Since we assume that the mixed strategy 

randomizations are independent in definition of mixed strategy (Baye & Morgan,  2004), There should be a firm   
that offers 𝐼    with probability one. With the same reasoning for firm  , there should be another firm   that posts 

𝐼    with probability one, and the result is established. Therefore, the second part of equation is proved. 

We can infer from the preceding sections that the expected profit is equal to 𝑉( ‾ 𝑁 𝑇). Let us first prove it for 𝑇  𝑁. 

We have       
  𝑉( ‾ 𝑁 𝑁  1)  0, and based on the previous sections two firms offer zero price. So, we have: 

𝑉 
 (    

  𝑞 𝑁)  𝑞 0  (1  𝑞) 𝑉( ‾ 𝑁  1 𝑇  1)  𝑉( ‾ 𝑁 𝑇)  (54) 
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So, the induction reasoning can be applied. Note that there are two induction assumptions we are making to prove the 

third part of the proposition. First, we start with the assumption we made regarding a game with 𝑁  1 firms, and that 

is applied in all three sections' proofs. In the meantime, we made another assumption regarding a game with the 

planning horizon 𝑇  1 to prove the third section of the Proposition. As a result, we now assume that the third 

statement is valid for 𝑇  1, and we calculate the expected profit for Γ(𝑁 𝑇 𝑞) as follows: 

𝑉 
 (    

  𝑞 𝑇)  𝑞 𝑉( ‾ 𝑁 𝑇  1)  (1  𝑞) 𝑉( ‾ 𝑁  1 𝑇  1) (55) 

Thus, the result is established. 

 

A. 5 Proof of Proposition 3.5 

Proof. Let us prove this by induction. First, we must establish that 𝑊 ( ) leads to equilibrium, and the equilibrium 

profit equals 𝑉( ‾ 2 1). Substituting 𝑉( ‾ 1 0)  0 in the given formula for 𝑊 ( ), we have: 

𝑊 ( )  

{
 

 
0  ≤     

 

∑    
    𝑞   𝑉( ‾ 2 1)

𝑞  
    
     ‾

1    ‾

 

(56) 

Then, if we substitute 𝐹  ( )  𝑤 ( ) in (28), we have: 

𝑊 
 (  𝑞 1)  𝑞  *

𝑉( ‾ 2 1)  𝑞 ( )  ∑    
    𝑞  

𝑞 ( )
+  ∑  

  

   

 𝑞   𝑉( ‾ 2 1) 
(57) 

for  ∈ (    
   ‾), and 𝑊 

 (  𝑞 1)  0 for other values of  . The expected value of profit for  ∈ (    
   ‾)/ is similar. 

In conclusion, no pure strategy has an expected profit greater than the equilibrium expected profit, and there is no 

probability ascribed to any pure strategy that has an expected profit that is less than the equilibrium profit. As a result, 

the necessary and sufficient conditions of equilibrium stated in Theorem 4.1 are satisfied. To use inductive reasoning, 

we assume that the conditions are satisfied for 𝑇  1. substituting 𝑊 ( ) instead of 𝐹  ( ) in 𝑊 
 (  𝑞 𝑇), we have: 

𝑊 
 (  𝑞 𝑇)  𝑞  𝑉( ‾ 2 𝑇  1)  𝑞 *

𝑉( ‾ 2 𝑇)  𝑞  𝑉( ‾ 2 𝑇  1)  ∑    
    𝑞  

𝑞 ( 𝑉( ‾ 1 𝑇  1)   )
 𝑉( ‾ 1 𝑇  1) 

 (
𝑞 ( 𝑉( ‾ 1 𝑇  1)   )  𝑉( ‾ 2 𝑇)  𝑞  𝑉( ‾ 2 𝑇  1)  ∑    

    𝑞  

𝑞 ( 𝑉( ‾ 1 𝑇  1)   )
) + ∑  

  

   

 𝑞   𝑉( ‾ 2 𝑇) 

(58) 

for  ∈ (    
   ‾). In addition, based on the formulation of 𝑊 ( ), we have 𝑊 

 (  𝑞 𝑇)  0 for   (    
   ‾). As a 

result, the necessary and sufficient of equilibrium in Theorem 4.1 are satisfied, and the result is established. 

 

A. 6 Proof of lemma 3.6. 

 Let's start by demonstrating that 𝐼   𝐼  . To employ proof by contradiction, assume 𝐼   𝐼  . According to this 

assumption, there exists  > 𝐼   such that 𝐹  (  ) > 0. In this case, since firm 2 is absent, firm 1 acts like a 

monopolist. Therefore, the expected profit of  ∈ ,𝐼    ) is smaller than the expected value resulting from offering  . 

This interval should not have a positive probability in equilibrium according to the Theorem 4.1, which is a 

contradiction. So, we have 𝐼    𝐼   in equilibrium. Now, we need to show 𝐼   𝐼       . We again use proof by 

contradiction. If we assume 𝐼   𝐼       
 , there will be two possible states. Here, we examine both of them and 

demonstrate why it is impossible for them to establish an equilibrium. 

1. 𝐹  (𝐼  )  1 : Because cumulative distribution function is right-continues, we have: 

  ∈ (𝐼       
 ) ∣   ∈ ,𝐼    ) → 𝐹  (𝐼  ) ≤ 𝐹  ( )  1  (59) 

Since when ∑   
   𝑞 > 0, we have    

 >  𝑉( ‾ 1 𝑇  1), we can substitute    
  as an upper bound for both   and 
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 𝑉( ‾ 1 𝑇  1) in 𝑊 
 (  𝑞 𝑇). As a result of this substitution, we obtain the following inequality: 

𝑊 
 (  𝑞 𝑇)  𝑞  𝑊‾ 

 (𝑞 𝑇  1)  𝑞     
  ∑  

  

   

 𝑞     
   

(60) 

for  ∈ ,𝐼    ). From (9) and (10), we have: 

(1  𝑞 )    
  𝑞  𝑉( ‾ 1 𝑇  1)  ∑    

    𝑞  ‾ . (61) 

Now, we substitute (1  𝑞 )    
  in (60) : 

𝑊 
 (  𝑞 𝑇)  𝑞  𝑊‾ 

 (𝑞 𝑇  1)  𝑞  𝑉( ‾ 1 𝑇  1)  ∑  

  

   

 𝑞  ‾  
(62) 

The right-hand side of (62) demonstrates the expected value associated with offering the maximum price  ‾ . So, the 

expected benefit of  ∈ ,𝐼    ) is less than its value for    ‾. So, we found a pure strategy with expected profit 

greater than the equilibrium expected profit, and this state cannot establish an equilibrium based on Theorem 4.1. 

2. Assume 𝐹  (𝐼  )  1. The intuition is comparable to the prior section. Because     
 >  𝑉( ‾ 1 𝑇  1) and by (9), 

firm 2 achieves less profit for   𝐼   than    ‾  : 

𝑊 
 (  𝑞 𝑇)  𝑞  𝑊‾ 

 (𝑞 𝑇  1)  𝑞    
  ∑  

  

   

 𝑞    
   

(63) 

So, refusing these two states, we have 𝐼   𝐼𝑍     
  in equilibrium. 

Now, we only need to show     
  𝐼   𝐼𝑍  is not possible to establish an equilibrium. We again employ proof by 

contradiction. Below, we examine the two possible states arising from our assumption     
  𝐼   𝐼  . 

1. Assume 𝐹  (𝐼  ) > 0. Then, because we have 𝐼  >     
  and     

 >  𝑉( ‾ 1 𝑇   1), substituting 𝐼   as an 

upper bound instead of  𝑉( ‾ 1 𝑇  1) in 𝑊 
 (𝐼   𝑞 𝑇), we have: 

𝑊 
 (𝐼   𝑞 𝑇)  𝑞  𝑊‾ 

 (𝑞 𝑇  1)  𝑞 𝐼   ∑  

  

   

 𝑞 𝐼    
(64) 

By same intuition, when   approaches to 𝐼   from its right neighbourhood, we have the following inequality: 

lim
𝑃→𝐼1𝑇 

 𝑊 
 (𝑞 𝑇)  𝑞  𝑊‾ 

 (𝑞 𝑇  1)  𝑞 𝐼   ∑    
    𝑞 𝐼  . (65) 

On the other hand, when   approaches to 𝐼   from its left neighbourhood, the limit of expected profit is calculated as 

follows: 

lim
𝑃→𝐼1𝑇−

 𝑊 
 (𝑞 𝑇)  𝑞  𝑉 (𝑇  1)  𝑞 𝐼   ∑  

  

   

 𝑞 𝐼    
(66) 

Based on limit definition, there are   > 0 and   > 0 such that for  ∈ ,𝐼   𝐼      ) the expected profit is less 

than the expected profit for  ∈ (𝐼      𝐼  ). According to Theorem 4.1, firm 1 never assign a positive probability to 

this interval in equilibrium, and this is a contradiction. 

2. Assume 𝐹  (𝐼  )  0. as a result of the prior state being rejected, we also have 𝐹  (𝐼  )  0. In this situation, both 

firms have an option to sell for 𝐼  . Based on our assumption     
  𝐼   𝐼  , and the relationship  

we have in (61), the expected profit of postponing the sell is less than the existing option of offering 𝐼   𝐼  . 

Therefore, probability assigned to postponement is zero, and the following equation holds: 
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𝑈   𝑈  ≤  ‾  (67) 

In addition, it can be shown that the probability assigned to upper bounds cannot be positive. This is due to the fact that 

if only one of them gives the upper bound a positive probability, that would be the same as giving the postponement a 

positive probability, which we have shown is impossible in equilibrium. Furthermore, it can be demonstrated that the 

expected profit of the upper bounds is lower than the expected profit associated with the prices in a left neighborhood of 

the upper bound, making it impossible for both of them to simultaneously assign a positive probability to the upper 

bound. The reason is that 𝑉( ‾ 1 𝑇  1)      
  𝐼    𝐼  ≤ 𝑈   𝑈  . 

Therefore, when   approaches to 𝑈   from its left neighborhood, the limit of firm 1 's expected profit's can be 

obtained as: 

lim
𝑃→𝑈1𝑇−

 𝑊 
 (  𝑞 𝑇)  𝑞  𝑊‾ 

 (𝑞 𝑇  1)  𝑞  𝑉( ‾ 1 𝑇  1)  ∑  

  

   

 𝑞 𝑈    
(68) 

Considering (9), (10) and our assumption     
  𝐼   𝐼  , firm 1's expected profit for 𝐼   is more than for a right 

neighborhood of 𝑈   : 

lim
𝑝→𝑈1𝑇−

 𝑊 
 (  𝑞 𝑇) ≤ 𝑞  𝑊‾ 

 (𝑞 𝑇  1)  (1  𝑞 )    
  𝑞 𝑊‾ 

 (𝑞 𝑇  1)  (1  𝑞 )𝐼   
 (69) 

Based on limit definition, there exists   > 0 such that for  ∈ (𝑈      𝑈  ), the expected profit is less than the 

expected profit for 𝐼  . So, firm 1 never assigns a positive probability to this interval in equilibrium, and it is a 

contradiction. Thus, the following equation is proved: 

    𝐼       
   (70) 

Now, we examine the second part of lemma 3.6. First, assume 𝑈   𝑈   and 𝑈   𝑈  . According to the previous 

section, we have     
 ≤ 𝑈   𝑈  . So, we have: 

  ∈ (𝑈   𝑈  ) ∣ 0  𝐹  ( )  1  (71) 

Firm 2's expected profit can be calculated from the following equation for  ∈ (𝑈   𝑈  - : 

𝑊 
 (  𝑞 𝑇)  𝑞  𝑉 (𝑇  1)  𝑞  𝑊‾ 

 (𝑞 𝑇  1)  ∑  

  

   

 𝑞   𝑞  𝑉 (𝑇  1)  𝑞  𝑉( ‾ 1 𝑇  1)

 ∑  

  

   

 𝑞 𝑈  

 

(72) 

The right-hand side of (70) is the expected profit at 𝑈  . As a result, since firm 1 is absent in  ∈ (𝑈   𝑈  -, firm 2 

assigns no probability to (𝑈   𝑈  ). In addition, because we know 𝑈   is greater than 𝑈  , firm 2 has to assigns 

positive probability to the upper bound 𝑈  . In addition, it is not possible to have equilibrium if firm 2 assigns a 

positive probability to 𝑈  . To see this, we use proof by contradiction. Thus, assuming 𝐹  (𝑈  )  𝐹  (𝑈   ) > 0, 

firm 1's expected profit for 𝑈   is less than its value for a right neighborhood of 𝑈  . This is due the fact that we have 

𝑉( ‾ 1 𝑇  1)      
  𝑈  . So, firm 1 assigns zero probability to 𝑈  . Considering all we've mentioned, firm 2's 

expected profit of 𝑈   would be less than its corresponding value for 𝑈  . So, we showed that firm 2 assigns zero 

probability to 𝑈  . Let's examine the situation this time from the standpoint of firm 1 . Because firm 2 is absent in 

(𝑈   𝑈  ), we have: 
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𝑊 
 (𝑈   𝑞 𝑇)  lim

𝑃→𝑈1𝑇−
 𝑊 

 (  𝑞 𝑇)  𝑞  𝑊‾ 
 (𝑞 𝑇  1)  𝑞 ,𝐹  (𝑈  ) 𝑉( ‾ 1 𝑇  1)

 (1  𝐹  (𝑈  ))𝑈  ]  ∑  

  

   

 𝑞 𝑈   𝑞  𝑊‾ 
 (𝑞 𝑇  1)  𝑞 ,𝐹  (𝑈  ) 𝑉( ‾ 1 𝑇  1)

 (1  𝐹  (𝑈  )) ]  ∑  

  

   

 𝑞  

 

(73) 

when  ∈ (𝑈   𝑈  ). The right-hand side of (72) demonstrates the expected profit of  . Thus, we showed that there is 

a pure strategy for firm 1 for which the expected profit is greater than the expected profit of the prices in a left 

neighborhood of 𝑈  . Based on Theorem 4.1, firm 1 should assign zero probability to an interval (𝑈     𝑈   ], 

when   is small positive value. This is a contradiction, and we have 𝑈   𝑈   in equilibrium. In order to prove that 

𝑈   𝑈    ‾  is not feasible, we employ proof by contradiction. We assume 𝑈   𝑈    ‾  in equilibrium. 

According to this assumption, there are two probable states that we examine here. 

1. Assume 1  𝐹  (𝑈   ) > 0. The limit of the expected profit of firm 2 , when   approaches to 𝑈   from its left 

neighbourhood is calculated as follows: 

lim
𝑃→𝑈1𝑇−

 𝑊 
 (  𝑞 𝑇)  𝑞  𝑊‾ 

 (𝑞 𝑇  1)  𝑞 [𝐹  (𝑈  −) 𝑉( 
‾ 1 𝑇  1)

 .1  𝐹  (𝑈  −)/𝑈  ]  ∑  

  

   

 𝑞 𝑈  
 

(74) 

A. 7 Proof of lemma 3.7. 

If the domain of two firms' strategies is [    
   ‾], both firms assign zero probability to     

 . To show this, we can 

employ proof by contradiction. Assume firm 2 assigns a positive probability to     
 . Then, we have: 

lim
𝑝→𝑃2 𝑇−

 𝑊 
 (  𝑞 𝑇)  𝑞  𝑊‾  

 (𝑞 𝑇  1)  𝑞     
  ∑  

  

   

 𝑞     
  

lim
𝑝→𝑃2 𝑇 

 𝑊 
 (  𝑞 𝑇)  𝑊 

 (    
  𝑞 𝑇)  𝑞  𝑊‾  

 (𝑞 𝑇  1)  𝑞     
  ∑  

  

   

 𝑞    
  

 

(75) 

We have (75), due to the fact that     
 >  𝑉( ‾ 1 𝑇  1). As a result, based on limit definition, there are   > 0 and 

  > 0 such that for  ∈ [    
      

    ), the expected profit is less than the expected profit for  ∈ (    
        

 ). 
This is a contradiction with our assumption regarding     

  being the lower bound. So, both firms assign a probability 

equal to zero to     
 . Based on Theorem 4.1, the expected profit of a set of pure strategies cannot be greater than the 

equilibrium expected profit. We also have that the expected profit of a set of pure strategies with positive assigned 

probability should not be less than the equilibrium expected profit. Furthermore, we know that there   > 0, we have 

𝐹  (   
   ) > 0. For a small  , we assume the expected profit of the set of points in (   

     
   ) is equal to a 

common value 𝑊. Since we have: 

𝑊  lim
𝑝→𝑃2 𝑇

  
 𝑊 

 (  𝑞 𝑇)  𝑞  𝑊‾  
 (𝑞 𝑇  1)  𝑞     

  ∑  

  

   

 𝑞    
   

(76) 

and the initial condition 𝑊‾  
 (𝑞 1)  𝑉( ‾ 2 1)  0, we can conclude from (10), that the expected profit in equilibrium 

is 𝑉( ‾ 2 𝑇), which is similar for both firms. To complete the proof, we again use proof by contradiction. Let us 

assume that the equilibrium strategy is not symmetric, then we have: 

  ∈ (   
   ‾) → 𝐹  ( ) > 𝐹  ( )  (77) 

Because cumulative distribution function is right-continues, for any small parameters      > 0 there exists   such 

that: 

𝐹  ( )  𝐹  ( 
 )  0

𝐹  ( )  𝐹  ( )        
 (78) 
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Then, firm 1's and firm 2's expected profit at     can be calculated from the following equations: 

𝑊 
 (  𝑞 𝑇)  𝑞  𝑊‾ 

 (𝑞 𝑇  1)  𝑞 ,(𝐹  ( )    ) 𝑉( ‾ 1 𝑇  1)

 (1  (𝐹  ( )    )) ]  ∑  

  

   

 𝑞  
 

𝑊 
 (  𝑞 𝑇)  𝑞  𝑊‾ 

 (𝑞 𝑇  1)  𝑞 ,(𝐹  ( )    ) 𝑉( ‾ 1 𝑇  1)

 (1  (𝐹  ( )    )) ]  ∑  

  

   

 𝑞  
 

(79) 

 

 

 

(80) 

Considering negligible      , firm 1's expected profit is greater than firm 2's in  . This is in contradiction with our 

previous result of similar equilibrium profit. So, the assumption of different equilibrium distribution function cannot be 

true, and the result is established. 

 

A. 8 Proof of Proposition 3.8. This can be shown regarding the result of Proposition 3.5 and Lemma 3.8. 

 

A. 9 Proof of Proposition 3.9. To show that is a mixed-strategy equilibrium, we have to show that it satisfies the 

necessary and sufficient conditions in Theorem 4.1. In addition, we need to show that it is a cumulative distribution 

function, so it should be a monotonically increasing function on ,0 1-. We have the following equation according to the 

definition: 

𝑉( ‾ 𝑁 0)  0  (81) 

In addition, if we assume that all the firms have a common mixed-strategy 𝐹( ), the expected profit of firm 1 can be 

calculated as follows: 

𝑊 
 (  𝑞 1)  𝑞  𝑊 

 (̅𝑞 0)  ∑  

   

   

 𝑞       (𝐹( ))  ∑  

  

   

 𝑞   

(82) 

Now, we obtain the equilibrium strategy which results in 𝑊 
 (  𝑞 1)  𝑉( ‾ 𝑁 1) . Thus, by substituting 

𝑊 
 (  𝑞 1)  𝑉( ‾ 𝑁 1) and 𝑊 

 (̅𝑞 0)  𝑉( ‾ 𝑁 0)  0 in (80), we can conclude the following equation: 

∑  

   

   

 𝑞       (𝐹( ))  ∑  

  

   

 𝑞   ∑  

  

   

 𝑞  ‾  
(83) 

Thus, if we solve (82) for 𝐹( ), we have: 

𝐹( )  {

0  ≤     
 

   ( )     
     ‾

1    ‾
 ,  ( )  

∑    
      𝑝‾

∑    
       ∑   −1

  1    𝑍 −1( )
  

(84) 

Since we have 𝑊   ( )  𝐹( ) in (83), all three equilibrium conditions are satisfied. Because the assumption of 

inductive reasoning is proved, we can assume that we have the equilibrium profit for 𝑇  1. As a result, 𝑊 
 (  𝑞 𝑇) 

can be calculated as follows: 

𝑊 
 (  𝑞 𝑇)  𝑞 𝑉( ‾ 𝑁 𝑇  1)  ∑  

   

   

 𝑞 [      (𝐹( ))  (1        (𝐹( ))

 𝑉( ‾ 𝑁    𝑇  1)-  ∑  

  

   

 𝑞   ∑  

   

   

 𝑞  𝑉( ‾ 𝑁    𝑇  1)  ∑  

  

   

 𝑞  ‾ 

 

(85) 

If we solve (84) for 𝐹( ), we have 𝐹( )  𝑊   ( ). So, the equilibrium conditions are satisfied, and the result is 

established. 
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A.10 Proof of lemma 3.10.  

To show that 𝑊   ( ) is a function, we first should show that its inverse function is an injective function. Now we 

show that its inverse function is monotonous and increasing at  ∈ (    
  ‾). The denominator and numerator of the 

function is positive and monotonous, so because     ( ) is a continues and strictly decreasing this function is 

monotonous. The derivative of these functions can be calculated from the following relations: 

  ( )

  
 ∑  

   

   

 𝑞 
 ( 𝑉( ‾ 𝑁    𝑇  1)   ‾)

     ( )

  

  ∈ (0 1) →
   ( )

  
  (  1) .

  1
  1

/ (1   )        0

 

(86) 

So, 𝑊   ( ) is an increasing monotonous function at  ∈ (    
   ‾). 

 

A. 11 Proof of Proposition 3.11. 

Assuming (23), the probability every firm assigns to lower bound is zero. This can be shown by employing a proof by 

contradiction. If a firm 2 assigns positive probability to this price, firm 1's expected profit when   approaches to     
  

from its left neighbourhood is more than its expected profit at     
  and more than its expected profit when   

approaches to     
  from its right-neighbourhood. This is in contradiction with equilibrium conditions. Here, we have 

the limit of the expected profit of firm 1 as follows: 

lim
𝑃→𝑝  𝑇

  
 𝑊 

 (  𝑞 𝑇)   𝑊‾ 
 (𝑞 𝑇  1)  ∑  

 

   

 𝑞     
   

(87) 

Since ∑   
   𝑞 > 0, we have 𝑉( ‾ 𝑁    𝑇  1)      

 . As a result, when at least one of other 𝑁  1 firms assign a 

positive probability to     
 , we have the following equation at       

  : 

lim
𝑝→𝑃  𝑇

  
 𝑊 

 (  𝑞 𝑇)  𝑊 
 (  𝑞 𝑇)  lim

𝑃→𝑝  𝑇
  

 𝑊 
 (  𝑞 𝑇) (88) 

Based on (86) and (87) and limit definition, we can find two intervals at the left and right of     
 , as the expected profit 

of the points in the left interval is greater than the expected profit of the points in the right interval containing     
 . So 

it is in contradiction with equilibrium definition and firm 1 and firm 2 assign zero probability to     
  and the expected 

profit is 𝑉( ‾ 𝑁 𝑇). (It can be shown with the same reasoning as the one we employed for duopoly) 

If we assume that the equilibrium strategy is asymmetric, we can find   as the following equation holds: 

𝐹    ( ) > 𝐹    ( )  (89) 

Because cumulative distribution function is right-continues,   and   can be found as for   1 2 the equations in 

(90) hold: 

𝐹    ( 
 )  𝐹    ( )  0 

𝐹    ( )  𝐹    ( )        
 (90) 

The existence of   can be shown from the fact that we assume the random strategies are independent, so the we have 

𝐹   ( )  1      
  (1  𝐹   ( )). So, different values for 𝐹    and 𝐹    would result in different values for 𝐹     

and 𝐹    . Based on limit definition,    can be chosen as small as we wish, and firm 1 's expected profit can be 

obtained from the following equation: 

𝑊 
 (  𝑞 𝑇)   𝑊‾ 

 (𝑞 𝑇  1)+ ∑     
    𝑞 ,(𝐹    ( )    ) 𝑉( ‾ 𝑁    𝑇  1) (1  (𝐹    ( )  

  )) ]  ∑    
    𝑞   

(91) 

 

for  ∈ (    min(     )). Similar equation can be obtained for firm 2. Considering a small enough   , firm 1's 

expected profit is less than firm 2's and it is in contradiction with our assumption of identical expected profit. Thus, the 

assumption of different equilibrium distribution function is not true. 


