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Abstract 

This paper investigates calculations of robust X-Value adjustment (XVA), in particular, credit valuation adjustment 

(CVA) and funding valuation adjustment (FVA), for over-the-counter derivatives under distributional ambiguity using 

Wasserstein distance as the ambiguity measure. Wrong way counterparty credit risk and funding risk can be 

characterized (and indeed quantified) via the robust XVA formulations. The simpler dual formulations are derived using 

recent Lagrangian duality results. Next, some computational experiments are conducted to measure the additional XVA 

charges due to distributional ambiguity under a variety of portfolio and market configurations. Finally some suggestions 

for further work are discussed. 
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1. Introduction and Overview 

1.1 Financial Markets Context and Background 

An X-Value adjustment (XVA) is a generic term used to refer to various valuation adjustments, typically applied to 

over-the-counter (OTC) derivatives held by financial institutions. The first of the XVAs, and still one of the most 

significant, in terms of market exposure, is credit valuation adjustment (CVA). One of the more recent, and perhaps 

equally significant, exposures is funding valuation adjustment (FVA). Both of these XVAs have similar structure 

(unilateral, bilateral) and mathematical form for computation. Other XVAs include capital valuation adjustment (KVA) 

and margin valuation adjustment (MVA). Wrong way risk refers to adversely correlated moves in the market exposures 

and the counterparty spreads (e.g. credit, funding). It can materially affect the magnitude of the XVA adjustment. 

CVA represents the impact on portfolio market value due to counterparty default. Unilateral CVA can be represented 

mathematically as an integral of discounted expected positive exposure times (incremental) counterparty default 

probability. The market valuation adjustment is a function of counterparty credit risk, the underlying (market) risk 

factors that drive the portfolio valuation (and hence positive exposure), as well as the correlations between these market 

risk factors and the counterparty credit risk curves for a given portfolio. CVA is typically measured and reported at the 

counterparty level. 

The “other side” of unilateral CVA is unilateral debit valuation adjustment (DVA). This is the benefit to the firm of its 

reduced liability due to its own default. As above, the market valuation adjustment is a function of firm credit risk, 

underlying market risk factors that drive portfolio valuation, and the correlations. Unilateral DVA can be represented 

mathematically as an integral of discounted negative exposure times (incremental) firm default probability. DVA is 

typically measured at the firm level. 

Bilateral CVA represents the dual impact on portfolio market value due to counterparty default and firm default. 

Bilateral CVA can be represented mathematically as the difference between two integrals: (i) discounted expected 

positive exposure times (incremental) counterparty default probability prior to firm default, (ii) discounted expected 

negative exposure times (incremental) firm default probability prior to counterparty default. Bilateral CVA is typically 

measured and reported at the counterparty level, for a given firm. 

FVA represents the impact on portfolio market value due to funding exposures for the hedge on uncollateralized 

derivatives. It represents the market valuation adjustment due to funding exposure risk. Funding cost adjustment (FCA)  
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can be represented mathematically as an integral of discounted expected positive exposure times funding cost (incremen-
tal) conditional on joint counterparty and firm survival. FCA arises for a positive portfolio exposure since this implies a
negative hedge exposure which leads to a funding cost for collateral posted. The market valuation adjustment is a function
of joint counterparty and firm credit risk, the underlying (market) risk factors that drive the portfolio valuation (and hence
positive exposure) as well as funding cost, as well as the correlations between these market risk factors and the credit risk
curves for a given portfolio. FCA is typically measured and reported at the funding netting set level.

The “other side” of FCA is funding benefit adjustment (FBA). This represents the funding benefit to the firm, for interest
income proceeds on received collateral posted against counterparty exposure on the hedge, as measured by discounted
expected negative exposure times funding benefit conditional on joint counterparty and firm survival. As above, the market
valuation adjustment is a function of counterparty and firm credit risk, underlying market risk factors that drive portfolio
valuation and funding benefit, and the correlations. FBA can be represented mathematically as an integral of discounted
negative exposure times funding benefit conditional on joint counterparty and firm survival. FBA is typically measured at
the funding netting set level.

(Bilateral) FVA represents the dual impact on portfolio market value due to both funding cost and funding benefit exhib-
ited over the portfolio lifetime. FVA can be represented mathematically as the difference (or sum) of two integrals: (i)
discounted expected positive exposure times funding cost conditional on joint counterparty and firm survival (ii) discount-
ed expected negative exposure times funding benefit conditional on joint counterparty and firm survival. FVA is typically
measured and reported at the netting set level for a given firm.

U.S. regulatory authorities, the Federal Reserve and Office of the Comptroller of the Currency (OCC), periodically assess
national banks’ compliance with Market Risk Capital Rule (MRR). Counterparty credit risk (CCR) and funding risk
(FR) metrics are key metrics used to evaluate bank risk profiles and balance sheet exposures due to over the counter
(OTC) derivatives, securities financing transactions, and other transactions and exposures (Office of the Comptroller of
the Currency, 2011). Basel Committee on Banking Supervision has issued supervisory guidance, in the form of its
Basel III framework (and supplemental guidance), to quantify capital charges due to CCR. A new element in Basel III
was a capital charge due to degradation in CCR for a given portfolio or book of business (Basel Committee on Banking
Supervision, 2015). Potential revisions to the Basel framework may include elements to quantify CCR capital charges
due to deterioration in market risk exposure.

The Dodd-Frank Wall Street Reform and Consumer Protection Act (July 2010) enacted regulations for the swaps market
and authorized creation of centralized exchanges for swaps (and other) derivatives trading. Derivatives that trade on an
exchange reference the exchange as the transaction counterparty. Since exchanges clear multiple (typically offsetting)
transactions and hedge their risk through other third parties, exchange traded derivatives have minimal CCR risk profile.
However, OTC derivatives typically have banks or other financial institutions as counterparties which do have material
credit risk profiles. According to International Swap Dealers Association (ISDA) the OTC derivatives notional outstanding
was 544 trillion at year end 2018. Interest rate derivatives notional outstanding was 437 trillion at year end 2018. Recent
(04/20/20) Bloomberg CDX investment grade and high yield credit spreads are 93 and 643 basis points respectively.
Consequently the CCR and FR exposures (due to uncollateralized or partially collateralized hedges) inherent in the OTC
derivatives market represent significant market risk exposures. This motivates the concepts of worst case CVA , FVA,
and wrong way risk (WWR) and the impact of ambiguity in probability distribution on these exposures and risk metrics.
It is these considerations that motivate this line of research (Ramzi Ben-Abdallah and Marzouk, 2019), (El Hajjaji and
Subbotin, 2015).

Distributional ambiguity is characterized via the Wasserstein metric for a couple of reasons. The Wasserstein metric is
a (reasonably) well understood metric and a natural, intuitive way to compare two probability distributions using ideas
of transport cost. It is also a flexible approach that encompasses parametric and non-parametric distributions of either
discrete or continuous form. For example, one can explore distributions that alter the shape of the marginals as well as
the correlation structure. Furthermore, recent duality results and structural results on the worst case distributions can help
us to better understand and/or quantify the market model transitions as well as measure (in a relative sense) the degree of
wrong way risk inherent to a given market model.

An outline of this paper is as follows. We begin with an overview of CVA, FVA, and WWR as well as a literature review.
Next, the main theoretical results of the paper are developed. Following that, there is a computational study of wrong
way risk for a representative set of derivative portfolios and market environments. In the last part, we discuss conclusions
and suggestions for further research. All detailed proofs of propositions, corollaries, and theorems are deferred to the
Appendix.
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1.2 Literature Review

The authors are not aware of any substantial research that has been done on the topic of worst case FVA. The discussion
below pertains to literature regarding worst case CVA. In the past few years some research has been done to investigate
and quantify the effect of distributional ambiguity on CVA. Brigo et al. (2013) explicitly incorporate correlation into the
stochastic processes driving the market risk and credit default factors. They quantify the effect of dependency structure
(and hence wrong way risk) on CVA for a variety of asset classes: interest rate swaps, interest rate swaptions, commodities,
equities, and foreign exchange products. Glasserman and Yang (2015) bound the effect of wrong way risk on CVA. Their
approach considers a discrete setting for portfolio exposures and counterparty default times and formulates worst case
CVA as the solution to a worst case linear program subject to certain constraints (such as fixed marginals for portfolio
exposures and default times), where the dependency structure across the risk factors is allowed to vary. As this approach
leads to large values for worst case CVA, they introduce a penalty term to modulate or temper the degree of wrong way
risk and run some sensitivity analysis to study the effect of the penalty term. Kullback-Leibler (KL) divergence is used
to measure the distance between the reference (empirical) and the perturbed distribution. They remark that determining a
suitable value for the penalty term would be a topic for further research.

Memartoluie, in his PhD thesis, uses an ordered scenario copula methodology to quantify worst case CVA (Memartoluie,
2017). A particular method of scenario ordering correlates portfolio exposures to company default times (firm, counter-
party, or both) and the resulting dependency structure introduces wrong way risk. He chooses to order exposure scenarios
by increasing time averaged total exposure and then simulates company default times conditional on the exposure path
using pre-specified correlation between the market risk factor(s) and credit risk factor(s). For worst case correlations set
to one, he finds results for worst case CVA that are comparable to the method of Glasserman and Yang. In a recent paper,
Ben-Abdallah et al. perform a computational study on the effect of wrong way risk on CVA for a portfolio of interest
rate swaps, caps, and floors (Ramzi Ben-Abdallah and Marzouk, 2019). They find that the dependency structure between
interest rates and default intensity produces material wrong way risk whereas the dependency structure between interest
rate volatility and default intensity does not.

Recent results in Lagrangian duality were independently developed by Blanchet and Murthy (2019) and Gao and Kleywegt
(2016). These results hold under mild assumptions such as upper semicontinuity in the objective function and lower
semicontinuity in the distance function. Blanchet et al. (2016a) applied this duality theory to study a number of classical
regression problems in machine learning under distributional ambiguity. In that context, the authors find that distributional
ambiguity can be viewed as adding a regularization term to the objective function, analogous to a penalized regression
setting. Similarly, Gao et al. (2017) apply the Lagrangian duality theory to problems in statistical learning.

The main innovation in our work is to apply these recent results in Lagrangian duality to worst case CVA and FVA using
Wasserstein distance as the ambiguity measure. Furthermore, analytical expressions are derived for the solutions to the
inner and outer convex optimization problems that comprise worst case CVA and FVA via the Wasserstein approach. A
computational study shows the material impact of distributional ambiguity on worst case CVA and FVA, illustrates the
risk profiles, and computes the worst case distributions.

1.3 Preliminary Material

1.3.1 Restatement of Lagrangian Duality Result

As in our earlier work this year, (Singh and Zhang, 2020) a key step in the approach is to use recent Lagrangian duality
results to formulate the equivalent dual problems. The dual problems are much more tractable than the primal problems
since they only involve the reference probability measure as opposed to a Wasserstein ball of probability measures (of
some finite radius). For real valued upper semicontinuous objective function f ∈ L1 and non-negative lower semicon-
tinuous cost function c such that {(u,v) : c(u,v) < ∞} is Borel measurable and non-empty, it holds that (Blanchet et al.,
2016b)

sup
Q∈Uδ (QN)

EQ[ f (X)] = inf
λ≥0

[λδ +
1
N

n

∑
i=1

Ψλ (xi)] (1)

where
Ψλ (xi) := sup

u∈dom( f )
[ f (u)−λc(u,xi)]. (2)

Further details, including proofs and concrete examples, can be found in the papers by Blanchet and Murthy (2019), Gao
and Kleywegt (2016), and Esfahani and Kuhn (2018). These authors independently derived these results around the same
time although Blanchet and Murthy (2019) did so in a more general setting.

1.3.2 Characterization of Worst Case Distributions Simply put, the set of worst case distributions (when non-empty) can
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be defined as WC( f ,δ ) := {Q∗ : EQ∗ [ f (X)] = supQ∈Uδ (QN)
EQ[ f (X)]}. Another recent set of results from the litera-

ture describes the structure of the worst case distribution(s) when they exist (Blanchet and Murthy, 2019), (Gao and
Kleywegt, 2016), (Esfahani and Kuhn, 2018). The boundedness conditions for existence are tied to the growth rate
κ := limsup

d(X ,X0)→∞

f (X)− f (X0)
d(X ,X0)

for fixed X0 and the value of the dual minimizer λ ∗. For empirical reference distributions,

supported on N points, such that WC( f ,δ ) is non-empty, there exists a worst case distribution that is another empirical
distribution supported on at most N + 1 points. This worst case distribution can be constructed via a greedy approach.
For up to N points, they can be identified as solving x∗i ∈x̃∈dom( f ) [λ

∗c(x̃,xi)− f (x̃)]. At most one point has its probability
mass split into two pieces (according to budget constraint δ ) that solve x∗i0 ,x

∗∗
i0 ∈x̃∈dom( f ) [λ

∗c(x̃,xi0)− f (x̃)]. Details can
be found in Gao and Kleywegt (2016).

1.3.3 Bilateral CVA Notation and core definitions for bilateral CVA problem setup incorporate those for unilateral CVA
and DVA. Bilateral CVA measures expected portfolio loss (or benefit) due to counterparty and/or firm default. Let V+(τC)
denote the discounted positive portfolio exposure at time τC and let RC ∈ [0,1) denote the recovery rate the firm receives
upon counterparty default. Let V−(τF) denote the discounted negative portfolio exposure at time τ and let RF ∈ [0,1)
denote the recovery rate the counterparty receives upon firm default. The problem setup here assumes a fixed set of
observation dates, 0 = t0 < t1 < · · ·< tn = T . Let X+ denote the vector of recovery adjusted discounted positive exposures
and YC denote the vector of counterparty default indicators. Let (x+i ,y

c
i ) denote realizations of (X+,YC) along sample paths

for i = {1,2, . . . ,N}. Let X− denote the vector of recovery adjusted discounted firm negative exposures and YF denote the
vector of firm default indicators. Let (x−i ,y

f
i ) denote realizations of (X−,YF) along sample paths for i = {1,2, . . . ,N}.

Due to the linkage, one can write X = X+ +X− and decompose sample realizations of X accordingly. Therefore, let
(xi,yc

i ,y
f
i ) denote realizations of (X ,YC,YF) along sample paths for i = {1,2, . . . ,N}. The relation xi = x+i + x−i can be

used to decompose xi into its positive and negative exposures respectively.

The bilateral CVA associated with discounted positive exposure V+(τC), counterparty default indicator 1{τC≤T}∩{τC<τF},
discounted negative exposure V−(τF), firm default indicator 1{τF≤T}∩{τF<τC}, is

CVAB = E[(1−RC)V+(τC)1{τC≤T}∩{τC<τF}]+E[(1−RF)V−(τF)1{τF≤T}∩{τF<τC}]. (3)

Equivalently, one can write

CVAB = (1−RC)
∫ T

0
E[V+(t)|τC = t,τF > t]dΠ

′
C(t)+(1−RF)

∫ T

0
E[V−(t)|τF = t,τC > t]dΠ

′
F(t), (4)

where the joint counterparty and firm default time distributions are given by Π′C(t) = P(τC ≤ t,τF > τC) and Π′F(t) =
P(τF ≤ t,τC > τF) (Green, 2015), (Lichters et al., 2015), (Memartoluie, 2017). The pair of vectors (X+,YC)∈ (Rn

+×B1
n)

is
X+ = ((1−RC)V+(t1), . . . ,(1−RC)V+(tn)) and YC = (1{τC=t1}∩{τF>τC}, . . . ,1{τC=tn}∩{τF>τC}), (5)

and the pair of vectors (X−,YF) ∈ (Rn
−×B1

n) is

X− = ((1−RF)V−(t1), . . . ,(1−RF)V−(tn)) and YF = (1{τF=t1}∩{τC>τF}, . . . ,1{τF=tn}∩{τC>τF}). (6)

Here B1
n denotes the set of default time vectors: binary vectors of ones and zeros with n components, and at most one

non-zero element. Note that counterparty or firm default occurs on at most one observation date within the fixed set of
dates in the problem setup. The empirical measure ΦN , in terms of Dirac measure δ

(xi,yc
i ,y

f
i )

, is

ΦN :=
1
N

N

∑
i=1

δ
(xi,yc

i ,y
f
i )
. (7)

Under the empirical measure, ΦN , bilateral CVA is a sum of expectations of inner products

CVAB = EΦN [〈X+,YC〉]+EΦN [〈X−,YF〉]. (8)

In the context of this work, the ambiguity set for probability measures is

Uδ3(ΦN) = {P : Dc(Φ,ΦN)≤ δ3} (9)

where Dc is the optimal transport cost or Wasserstein discrepancy for cost function c (Blanchet et al., 2018). For conve-
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nience the definition for Dc is given as

Dc(Φ,Φ′) = inf{Eπ [c(ξA,ξB)] : π ∈P(Rd×Rd),ξA ∼Φ,ξB ∼Φ
′} (10)

where π belongs to the set of joint distributions with marginals Φ and Φ′. Here ξA denotes (XA,YC
A ,Y F

A ) ∈ (Rn×B1
n×B1

n)
and ξB denotes (XB,YC

B ,Y F
B ) ∈ (Rn×B1

n×B1
n) respectively. The analysis in this work uses the cost function cS3 where

cS3((u,v1,v2),(x,y1,y2)) = S3〈v1− y1,v1− y1〉+S3〈v2− y2,v2− y2〉+ 〈u− x,u− x〉. (11)

The scale factor S3 > 0 is used to compensate for different domains: (u,v1,v2) ∈ (Rn×B1
n×B1

n),(x,y1,y2) ∈ (Rn×B1
n×

B1
n).

1.3.4 Unilateral CVA, DVA

Bilateral CVA can be reduced to express unilateral CVA as

CVAU = E[(1−RC)V+(τC)1{τC≤T}] = (1−RC)
∫ T

0
E[V+(t)|τC = t]dΠC(t), (12)

where the counterparty default time distribution is given by ΠC(t) = P(τC ≤ t). Note the assumption here is that τC < τF .
Similarly, it can be reduced to express unilateral DVA (note the minus sign), assuming τF < τC, as

DVAU =−E[(1−RF)V−(τF)1{τF≤T}] =−(1−RF)
∫ T

0
E[V−(t)|τF = t]dΠF(t), (13)

where firm default time distribution is given by ΠF(t) = P(τF ≤ t) (Green, 2015), (Lichters et al., 2015), (Memartoluie,
2017).

1.3.5 FVA

Notation and core definitions for (bilateral) FVA problem setup incorporate those for FCA and FBA. FVA measures
expected funding costs and benefits over portfolio lifetime. Let V+(t) denote the positive portfolio exposure at time t.
Let V−(t) denote the negative portfolio exposure at time t. The problem setup here assumes a fixed set of observation
dates, 0 = t0 < t1 < · · · < tn = T . Let X+ denote the vector of discounted positive exposures and YC denote the vector
of counterparty survival indicators. Let X− denote the vector of discounted negative exposures and YF denote the vector
of firm survival indicators. Further, let YCF denote the Hadamard product YC�YF which represents the vector of joint
survival indicators. To incorporate funding, let Z+ denote the vector of funding costs incurred on exposures X+. And
similarly for Z− with respect to exposures X−. Due to the linkage between Z+ and Z−, one can write Z = Z++Z− and
decompose sample realizations of Z into Z+ and Z− accordingly. Therefore, let (zi,y

c f
i ) denote realizations of (Z,YCF)

along sample paths for i = {1,2, . . . ,N}. The relation zi = z+i + z−i can be used to decompose zi into its positive and
negative exposures respectively.

The FVA associated with funding costs Z(t), joint survival indicator 1{τC>t}∩{τF>t} is (Lichters et al., 2015), (Green,
2015)

FVA = FCA+FBA =
∫ T

0
E[Z+(t)1{τC>t}∩{τF>t}]dt +

∫ T

0
E[Z−(t)1{τC>t}∩{τF>t}]dt =

∫ T

0
E[Z(t)1{τC>t}∩{τF>t}]dt.

(14)
The pair of vectors (Z,YCF) ∈ (Rn×B1

n) is

Z = (Z+(t1)+Z−(t1), . . . ,Z+(tn)+Z−(tn)) and YCF = (1{τC>t1}∩{τF>t1}, . . . ,1{τC>tn}∩{τF>tn}), (15)

and the pair of vectors (Z+,Z−) ∈ (Rn
+×Rn

−) is

Z+ = ( fc(t0, t1)X+(t1), . . . , fc(tn−1, tn)X+(tn)) and Z− = ( fb(t0, t1)X−(t1), . . . , fb(tn−1, tn)X−(tn)). (16)

Here B1
n denotes the set of survival time vectors: binary vectors of ones and zeros with n components, and at most one

block of ones followed by a complementary block of zeros. The empirical measure ΦN , in terms of Dirac measure δ
(zi,y

c f
i )

,
is

ΦN :=
1
N

N

∑
i=1

δ
(zi,y

c f
i )
. (17)
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Under the empirical measure, ΦN , FVA is a sum of expectations of inner products

FVA = EΦN [〈Z+,YCF〉]+EΦN [〈Z−,YCF〉] = EΦN [〈Z,YCF〉]. (18)

In the context of this work, the ambiguity set for probability measures is

Uδ3(ΦN) = {P : Dc(Φ,ΦN)≤ δ3} (19)

where Dc is the optimal transport cost or Wasserstein discrepancy for cost function c (Blanchet et al., 2018). For conve-
nience the definition for Dc is

Dc(Φ,Φ′) = inf{Eπ [c(ξA,ξB)] : π ∈P(Rd×Rd),ξA ∼Φ,ξB ∼Φ
′} (20)

where π belongs to the set of joint distributions with marginals Φ and Φ′. Here ξA denotes (ZA,YA) ∈ (Rn×B1
n) and ξB

denotes (ZB,YB) ∈ (Rn×B1
n) respectively. This work uses the cost function cS3 where

cS3((u,v),(z,y)) = S3〈v− y,v− y〉+ 〈u− z,u− z〉. (21)

The scale factor S3 > 0 is used to compensate for different domains: (u,v) ∈ (Rn×B1
n),(z,y) ∈ (Rn×B1

n).

2. Theory: Robust XVA and Wrong Way Risk

2.1 Unilateral CVA, DVA

The robust unilateral CVA can be written as

sup
P∈Uδ1

(PN)

EP[〈X+,YC〉]P1. (22)

Similarly, the robust unilateral DVA is
− sup

Q∈Uδ2
(QN)

EQ[〈X−,YF〉]P2. (23)

As such, the dual formulations and solutions to the above primal optimization problems are special cases of the solutions
to the bilateral CVA optimization problems, to be described next.

2.2 Bilateral CVA

2.2.1 Inner Optimization Problem

The robust bilateral CVA is
sup

Φ∈Uδ3
(ΦN)

EΦ[〈X+,YC〉+ 〈X−,YF〉]P3. (24)

Similar to before, use recent duality results, noting that the inner product 〈 ;〉 satisfies the upper semicontinuous condition
of the Lagrangian duality theorem, and cost function cS satisfies the non-negative lower semicontinuous condition (see
Blanchet and Murthy (2019) Assumptions 1 & 2, Gao and Kleywegt (2016)). Hence the dual problem can be written as

inf
α≥0

F(α) :=
[

αδ3 +
1
N

N

∑
i=1

Ψα(xi,yc
i ,y

f
i )

]
D3 (25)

where Ψα(xi,yc
i ,y

f
i ) = supu∈Rn,v1∈B1

n,v2∈B1
n
[〈u+,1{v1<v2}v1〉+ 〈u−,1{v2<v1}v2〉−αcS3((u,v1,v2),(xi,yc

i ,y
f
i ))]

= supu∈Rn,v1∈B1
n,v2∈B1

n
[〈u+,1{v1<v2}v1〉+ 〈u−,1{v2<v1}v2〉−α(〈u− xi,u− xi〉+S3〈v1− yc

i ,v1− yc
i 〉

+S3〈v2− y f
i ,v2− y f

i 〉)].
Note that default times (v1,v2) are compared via the indicator function 1{v1≶v2} by comparing indices (into the fixed dates
array 0 < t1 < · · ·< tn = T ) of the respective default times. So if v1 has a one element in index i and either ‖v2‖= 0 or v2
has a one element in index j and i < j then 1{v1<v2} = 1 else if i > j or ‖v1‖= 0 then 1{v1<v2} = 0. The probability that
i = j for any i, j ∈ {1, . . . ,n} is zero in continuous time, hence this case is not considered here. Also ‖v1‖ = 1 implies
default time v1 ≤ tn = T , the maturity date of the CVA calculation. Similar analysis applies to v2.

Now apply change of variables
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w1 =(u−xi), w2 =(v1−yc
i ), and w3 =(v2−y f

i ) to get Ψα(xi,yc
i ,y

f
i )= supw1∈Rn,w2∈B2

n,w3∈B2
n

[
〈(w1+xi)

+,1{w2+yc
i <w3+y f

i }
w2+

yc
i 〉+ 〈(w1 + xi)

−,1{w3+y f
i <w2+yc

i }
w3 + y f

i 〉−α(〈w1,w1〉+S3〈w2,w2〉+S3〈w3,w3〉)
]
.

It turns out that Ψα can be expressed as the pointwise max of four functions of more complex forms. The four functions
represent the four logical cases for w2 and w3 each being zero or non-zero. Furthermore, we need to consider the sub-cases
where the counterparty defaults before the firm, as in Ψa

α or vice-versa as in Ψb
α . Again, Ψα quantifies the adversarial

moves in CVA and DVA across both time and spatial dimensions while accounting for the associated cost via the K terms.
Please note this result involves some lengthy and tedious derivations and requires some time to go through. However,
there are some patterns across the various cases and sub-cases which does simplify the analysis to some extent.

Table 1. Lookup table of optimization sub-problems

Optimization Objective Function Solution

supw1∈Rn 〈w1,yi〉−α〈w1,w1〉 ‖yi‖2
4α

supw1≤xiτ2
〈w1,yi〉−α〈w1,w1〉 [xiτ2 ∧

‖yi‖
2α

]−α[xiτ2 ∧
‖yi‖
2α

]2

supw1∈Rn 〈(w1 + xi)
+,yi〉−α〈w1,w1〉 [ 1

4α
+ 〈xi,yi〉]+

supw1∈Rn 〈(w1 + xi)
−,yi〉−α〈w1,w1〉 1{(xiτ2<−

1
2α

)∨(xiτ2>0)}
[ 1

4α
+ 〈xi,yi〉

]−−1{− 1
2α
≤xiτ2≤0}

[
α(〈xi,yi〉)2

]
supw1∈Rn (w1 + xiτ1)

−−α〈w1,w1〉 1{(xiτ1<−
1

2α
)∨(xiτ1>0)}

[ 1
4α

+ 〈xi,yi〉+(xiτ1 − xiτ2)
]−

−1{− 1
2α
≤xiτ1≤0}

[
α(xiτ1)

2
]

solutions are derived and used in proofs of propositions

We have Ψα(xi,yc
i ,y

f
i ) =

∨4
k=1 Ψk

α(xi,yc
i ,y

f
i ) where

Ψ1
α(xi,yc

i ,y
f
i ) = 1

(yc
i <y f

i )
Ψ1a

α (xi,yc
i ,y

f
i )+1

(y f
i <yc

i )
Ψ1b

α (xi,yc
i ,y

f
i ),

Ψ2
α(xi,yc

i ,y
f
i ) = 1

(w2+yc
i <y f

i )
Ψ2a

α (xi,yc
i ,y

f
i )+1

(y f
i <w2+yc

i )
Ψ2b

α (xi,yc
i ,y

f
i ),

Ψ3
α(xi,yc

i ,y
f
i ) = 1

(yc
i <w3+y f

i )
Ψ3a

α (xi,yc
i ,y

f
i )+1

(w3+y f
i <yc

i )
Ψ3b

α (xi,yc
i ,y

f
i ),

Ψ4
α(xi,yc

i ,y
f
i ) = 1

(w2+yc
i <w3+y f

i )
Ψ4a

α (xi,yc
i ,y

f
i )+1

(w3+y f
i <w2+yc

i )
Ψ4b

α (xi,yc
i ,y

f
i ),

and (suppressing arguments for brevity):

Ψ1a
α =

[
1

4α
+ 〈xi,yc

i 〉
]+

, Ψ1b
α =

[
1{(xiτ2<−

1
2α

)∨(xiτ2>0)}
[ 1

4α
+ 〈xi,y

f
i 〉
]−−1{− 1

2α
≤xiτ2≤0}

[
α(〈xi,y

f
i 〉)2

]]
,

Ψ2a =

[[ 1
4α

+ 〈xi,yc
i 〉+(xiτ∗1

− xiτ2)
]+−αS3K2a

]
, Ψ2b

α =

[
Ψ1b

α −αS3K2b
]

,

Ψ3a =

[
Ψ1a

α −αS3K3a
]

, Ψ3b =

[
1{(xiτ∗1

<− 1
2α

)∨(xiτ∗1
>0)}

[ 1
4α

+〈xi,y
f
i 〉+(xiτ∗1

−xiτ2)
]−−1{− 1

2α
≤xiτ∗1

≤0}
[
α(xiτ∗1

)2
]
−αS3K3b

]
,

Ψ4a =

[
Ψ2a−αS3(K4a−K2a)

]
, Ψ4b =

[
Ψ3b−αS3(K4b−K3b)

]
.

Note parameter τ∗1 and constant K are defined within the proof by cases (see Supplementary Material), and are omitted
here for brevity. Recall τ2 is index τ such that y{c, f}iτ = 1 else it is 0 if ‖y{c, f}i ‖= 0. The selection in {c, f} is determined
by context. This result follows from jointly maximizing the adversarial exposure w1 and the default time indices w2,w3.
The structure of B2

n allows us to decouple this joint maximization and find the critical point to maximize the quadratic in
w1 and write down the condition to select the optimal default time index τ∗1 for either the counterparty (in sub-case a) or
the firm (in sub-case b), as determined by first to default. Finally, take the max over the four logical cases for w2 and w3
to arrive at the solution. The K terms represent the cost associated with the worst case BCVA.

The particular structure of B1
n and B2

n will be exploited to evaluate the sup above. The analysis proceeds by considering
different cases for optimal values (w∗1,w

∗
2,w
∗
3).

Case1 Suppose w∗2 = 0,w∗3 = 0. Then
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Ψα(xi,yc
i ,y

f
i ) = sup

w1∈Rn

[
〈(w1 + xi)

+,1{yc
i <y f

i }
yc

i 〉+ 〈(w1 + xi)
−,1{y f

i <yc
i }

y f
i 〉−α(〈w1,w1〉)

]
. (26)

a) Suppose 1
(yc

i <y f
i )
= 1. Then

Ψα(xi,yc
i ,y

f
i ) = sup

w1∈Rn

[
〈(w1 + xi)

+,yc
i 〉−α(〈w1,w1〉)

]
. (27)

Therefore ‖yc
i ‖= 1. Let τ2 denote default time for yc

i . Simplify further to get

Ψα(xi,yc
i ,y

f
i ) = sup

w1τ2∈R

[
(w1τ2 + xiτ2)

+−α(w1τ2)
2]. (28)

Now follow the approach in Bartl et al. (2017) to write down the first order optimality condition:

1(0,∞)(w1τ2 + xiτ2)−2αw1τ2 ≥ 0≥ 1[0,∞)(w1τ2 + xiτ2)−2αw1τ2 . (29)

i) Suppose (w∗1τ2
+ xiτ2)< 0. Then w∗1τ2

= 0. So xiτ2 < 0w∗iτ2
= 0.

ii) Suppose (w∗1τ2
+ xiτ2)> 0. Then w∗1τ2

= 1
2α

. So xiτ2 >−
1

2α
w∗1τ2

= 1
2α

.

iii) Note (w∗1τ2
+ xiτ2) = 0 is not possible (does not satisfy first order optimality condition).

Considering the intervals for xiτ2 above, there are three cases as below.

i) xiτ2 ≥ 0w∗1τ2
= 1

2α
Ψα = [ 1

4α
+ xiτ2 ].

ii) xiτ2 ≤−
1

2α
w∗1τ2

= 0Ψα = 0.

iii) (− 1
2α

< xiτ2 < 0)Ψα = [ 1
4α

+ xiτ2 ]
+.

In summary, considering all cases above, conclude that

Ψ
1a
α (xi,yc

i ,y
f
i ) =

[ 1
4α

+ xiτ2

]+
. (30)

This can also be expressed as

Ψ
1a
α (xi,yc

i ,y
f
i ) =

[ 1
4α

+ 〈xi,yc
i 〉
]+

. (31)

b) Suppose 1
(y f

i <yc
i )
= 1. Then

Ψα(xi,yc
i ,y

f
i ) = sup

w1∈Rn

[
〈(w1 + xi)

−,y f
i 〉−α(〈w1,w1〉)

]
. (32)

Therefore ‖y f
i ‖= 1. Let τ2 denote default time for y f

i . Simplify further to get

Ψα(xi,yc
i ,y

f
i ) = sup

w1τ2∈R

[
(w1τ2 + xiτ2)

−−α(w1τ2)
2]. (33)

Now follow the approach in Bartl et al. (2017) to write down the first order optimality condition:

1(−∞,0](w1τ2 + xiτ2)−2αw1τ2 ≥ 0≥ 1(−∞,0)(w1τ2 + xiτ2)−2αw1τ2 . (34)

i) Suppose (w∗1τ2
+ xiτ2)> 0. Then w∗1τ2

= 0. So xiτ2 > 0w∗1τ2
= 0.

ii) Suppose (w∗1τ2
+ xiτ2)< 0. Then w∗1τ2

= 1
2α

. So xiτ2 <−
1

2α
w∗1τ2

= 1
2α

.

iii) Note (w∗1τ2
+ xiτ2) = 0 is not possible (does not satisfy first order optimality condition).

Considering the intervals for xiτ2 above, there are three cases as below.

i) xiτ2 > 0w∗1τ2
= 0Ψα = 0.
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ii) xiτ2 <−
1

2α
w∗iτ2

= 1
2α

Ψα = [ 1
4α

+ xiτ2 ].

iii) [− 1
2α
≤ xiτ2 ≤ 0]w∗1τ2

= |xiτ2 |.
Note the slope (1−2αw1τ2) is positive for 0≤ w1τ2 <

1
2α

, and equals zero at w1τ2 =
1

2α
.

However, (w1τ2 + xiτ2)
− attains its max value of zero for wiτ2 = |xiτ2 | so stop there.

In summary, considering all cases above, conclude that

Ψ
1b
α (xi,yc

i ,y
f
i ) =

[
1{(xiτ2<−

1
2α

)∨(xiτ2>0)}
[ 1

4α
+ xiτ2

]−−1{− 1
2α
≤xiτ2≤0}

[
α(xiτ2)

2]]. (35)

This can also be expressed as

Ψ
1b
α (xi,yc

i ,y
f
i ) =

[
1{(xiτ2<−

1
2α

)∨(xiτ2>0)}
[ 1

4α
+ 〈xi,y

f
i 〉
]−−1{− 1

2α
≤xiτ2≤0}

[
α(〈xi,y

f
i 〉)

2]]. (36)

c) Suppose 1
(‖y f

i ‖=‖y
c
i ‖=0) = 1.

In this trivial case, Ψα = 0. Note there is no third subcase for Cases2−4 below since that would imply w∗2 =
0,w∗3 = 0.

Finally, to sum up Case 1, considering parts a) and b), let us write:

Ψ
1
α(xi,yc

i ,y
f
i ) = 1

(yc
i <y f

i )
Ψ

1a
α (xi,yc

i ,y
f
i )+1

(y f
i <yc

i )
Ψ

1b
α (xi,yc

i ,y
f
i ). (37)

Case2 Suppose w∗2 , 0,w∗3 = 0.
Then w∗2 has +1 in position τ∗1 and -1 in position τ2, where τ j = 0 means the value ±1 does not occur.
Furthermore, τ∗1 , τ2 otherwise w∗2 = 0.

Ψα(xi,yc
i ,y

f
i ) = sup

w1∈Rn,w2∈B2
n

[
〈(w1+xi)

+,1{w2+yc
i <y f

i }
w2+yc

i 〉+〈(w1+xi)
−,1{y f

i <w2+yc
i }

y f
i 〉−α(〈w1,w1〉+S3〈w2,w2〉)

]
.

(38)

a) Suppose 1
(w2+yc

i <y f
i )
= 1. Then

Ψα(xi,yc
i ,y

f
i ) = sup

w1∈Rn,w2∈B2
n

[
〈(w1 + xi)

+,w2 + yc
i 〉−α(〈w1,w1〉+S3〈w2,w2〉)

]
. (39)

Recall 〈(w1 + xi),(w2 + yc
i )〉 = (w1τ1 + xiτ1). Also recall τ1 and τ2 are associated with yc

i . Let τ2, f denote default
time (index) for y f

i . The default time constraint implies τ1 < τ2, f . Therefore τ1 > 0. The structure of finite set B2
n

implies
Ψα(xi,yc

i ,y
f
i ) = sup

w1∈Rn,0<τ1<τ2, f ,τ1,τ2

[
(w1τ1 + xiτ1)

+−α(〈w1,w1〉+S3〈w2,w2〉)
]
. (40)

Observe the only positive component for w1 ∈ Rn in sup above is τ1.

sup
w1∈Rn

[
(w1τ1 + xiτ1)

+−α〈w1,w1〉
]
= sup

w1τ1∈R

[
(w1τ1 + xiτ1)

+−α(w2
1τ1

)
]
. (41)

Evaluating at the critical point w∗1τ1
= 1

2α
∈ R for the above quadratic gives

sup
w1τ1∈R

[
(w1τ1 + xiτ1)

+−α(w2
1τ1

)
]
=
[ 1

4α
+ xiτ1

]+
. (42)

Therefore one can write
Ψα(xi,yc

i ,y
f
i ) = max

0<τ1<τ2, f ,τ1,τ2

[ 1
4α

+ xiτ1

]+−αS3K2a (43)

where K2a := (1+1{τ2,0}). Furthermore, τ∗1 is determined as

τ
∗
1 =0<τ1<τ2, f ,τ1,τ2 [x

+
iτ1
]. (44)
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Substituting back into expression for Ψα gives

Ψ
2a
α (xi,yc

i ,y
f
i ) =

[[ 1
4α

+ xiτ∗1

]+−αS3K2a
]
. (45)

This can also be expressed as

Ψ
2a
α (xi,yc

i ,y
f
i ) =

[[ 1
4α

+ 〈xi,yc
i 〉+(xiτ∗1

− xiτ2)
]+−αS3K2a

]
. (46)

b) Suppose 1
(y f

i <w2+yc
i )
= 1. Then

Ψα(xi,yc
i ,y

f
i ) = sup

w1∈Rn,w2∈B2
n

[
〈(w1 + xi)

−,y f
i 〉−α(〈w1,w1〉+S3〈w2,w2〉)

]
. (47)

Recall τ1 and τ2 are associated with yc
i . Let τ2, f denote the default time (index) for y f

i . The default time constraint
implies τ2, f < τ1. Therefore τ2, f > 0 and ‖y f

i ‖ = 1. Note the only non-zero component of ‖y f
i ‖ is τ2, f . Hence set

w∗1τ
= 0∀τ , τ2, f . Simplifying further

Ψα(xi,yc
i ,y

f
i ) = sup

w1τ2, f ∈R,w2∈B2
n

[
(w1τ2, f + xiτ2, f )

−−α((w1τ2, f )
2 +S3K2b)

]
. (48)

where K2b := (1{τ1,0}+1{τ2,0}) = 1. For K2b, if τ2 = 0, then τ1 , 0 since w∗2 , 0. Otherwise set τ1 = 0 if τ2 , 0 to
maximize supw2

above. Following the calculations in Case 1b) above, conclude that

Ψ
2b
α (xi,yc

i ,y
f
i ) =

[
1{(xiτ2<−

1
2α

)∨(xiτ2>0)}[
1

4α
+ xiτ2 ]

−−1{− 1
2α
≤xiτ2≤0}

[
α(xiτ2)

2]−αS3K2b
]
. (49)

This can also be expressed as

Ψ
2b
α (xi,yc

i ,y
f
i ) =

[
1{(xiτ2<−

1
2α

)∨(xiτ2>0)}
[ 1

4α
+ 〈xi,y

f
i 〉
]−−1{− 1

2α
≤xiτ2≤0}

[
α(〈xi,y

f
i 〉)

2]−αS3K2b
]
. (50)

Finally, to sum up Case 2, considering parts a) and b), let us write:

Ψ
2
α(xi,yc

i ,y
f
i ) = 1

(w2+yc
i <y f

i )
Ψ

2a
α (xi,yc

i ,y
f
i )+1

(y f
i <w2+yc

i )
Ψ

2b
α (xi,yc

i ,y
f
i ). (51)

Case3 Suppose w∗2 = 0,w∗3 , 0.
Then w∗3 has +1 in position τ∗1 and -1 in position τ2, where τ j = 0 means the value ±1 does not occur.
Furthermore, τ∗1 , τ2 otherwise w∗3 = 0.

Ψα(xi,yc
i ,y

f
i ) = sup

w1∈Rn,w3∈B2
n

[
〈(w1+xi)

+,1{yc
i <w3+y f

i }
yc

i 〉+〈(w1+xi)
−,1{w3+y f

i <yc
i }

w3+y f
i 〉−α(〈w1,w1〉+S3〈w3,w3〉)

]
.

(52)

a) Suppose 1
(yc

i <w3+y f
i )
= 1. Then

Ψα(xi,yc
i ,y

f
i ) = sup

w1∈Rn,w3∈B2
n

[
〈(w1 + xi)

+,yc
i 〉−α(〈w1,w1〉+S3〈w3,w3〉)

]
. (53)

Recall 〈(w1 + xi),yc
i 〉= (w1τ2 + xiτ2). Also recall τ1 and τ2 are associated with y f

i . Let τ2,c denote the default time
(index) for yc

i . The default time constraint implies τ2,c < τ1. Therefore τ2,c > 0 and ‖yc
i ‖= 1. Note the only positive

component of ‖yc
i ‖ is τ2,c. Hence set w∗1τ

= 0∀τ , τ2,c. Simplify further to get

Ψα(xi,yc
i ,y

f
i ) = sup

w1τ2,c∈R,w3∈B2
n

[
(w1τ2,c + xiτ2,c)

+−α((w1τ2,c)
2 +S3K3a)

]
(54)

where K3a := (1{τ1,0}+1{τ2,0}) = 1, following logic in Case 2b) above. Evaluating at the critical point w∗1τ2,c
=
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1
2α
∈ R gives

sup
w1τ2,c∈R

[
(w1τ2,c + xiτ2,c)

+−α(w2
1τ2,c

)
]
=
[ 1

4α
+ xiτ2,c

]+
. (55)

Therefore one can write
Ψα(xi,yc

i ,y
f
i ) =

[ 1
4α

+ xiτ2,c

]+−αS3K3a. (56)

This can also be expressed as

Ψ
3a
α (xi,yc

i ,y
f
i ) =

[[ 1
4α

+ 〈xi,yc
i 〉
]+−αS3K3a

]
. (57)

b) Suppose 1
(w3+y f

i <yc
i )
= 1. Then

Ψα(xi,yc
i ,y

f
i ) = sup

w1∈Rn,w3∈B2
n

[
〈(w1 + xi)

−,w3 + y f
i 〉−α(〈w1,w1〉+S3〈w3,w3〉)

]
. (58)

Recall 〈(w1 + xi),(w3 + y f
i )〉 = (w1τ1 + xiτ1). Also recall τ1 and τ2 are associated with y f

i . Let τ2,c denote default
time (index) for yc

i . The default time constraint implies τ1 < τ2,c. Therefore τ1 > 0 and

Ψα(xi,yc
i ,y

f
i ) = sup

w1∈Rn,0<τ1<τ2,c,τ1,τ2

[
(w1τ1 + xiτ1)

−−α((w1τ1)
2 +S3K3b)

]
(59)

where K3b := (1+1{τ2,0}). Following the calculations in Case 2b) above, conclude that

Ψα(xi,yc
i ,y

f
i ) =

[
1{(xiτ∗1

<− 1
2α

)∨(xiτ∗1
>0)}

[ 1
4α

+ xiτ∗1

]−−1{− 1
2α
≤xiτ∗1

≤0}
[
α(xiτ∗1

)2]−αS3K3b
]
. (60)

Furthermore, τ∗1 is determined as
τ
∗
1 =0<τ1<τc

2 ,τ1,τ2 [xiτ1 ]. (61)

Therefore one can write

Ψ
3b
α (xi,yc

i ,y
f
i ) =

[
1{(xiτ∗1

<− 1
2α

)∨(xiτ∗1
>0)}

[ 1
4α

+ xiτ∗1

]−−1{− 1
2α
≤xiτ∗1

≤0}
[
α(xiτ∗1

)2]−αS3K3b
]
. (62)

This can also be expressed as

Ψ
3b
α (xi,yc

i ,y
f
i ) =

[
1{(xiτ∗1

<− 1
2α

)∨(xiτ∗1
>0)}

[ 1
4α

+ 〈xi,y
f
i 〉+(xiτ∗1

− xiτ2)
]−−1{− 1

2α
≤xiτ∗1

≤0}
[
α(xiτ∗1

)2]−αS3K3b
]
.

(63)

Finally, to sum up Case 3, considering parts a) and b), let us write:

Ψ
3
α(xi,yc

i ,y
f
i ) = 1

(yc
i <w3+y f

i )
Ψ

3a
α (xi,yc

i ,y
f
i )+1

(w3+y f
i <yc

i )
Ψ

3b
α (xi,yc

i ,y
f
i ). (64)

Case4 Suppose w∗2 , 0,w∗3 , 0.
Then w∗2 has +1 in position τ∗1,c and -1 in position τ2,c, where τ j,c = 0 means the value ±1 does not occur.
Furthermore, τ∗1,c , τ2,c otherwise w∗2 = 0.
And w∗3 has +1 in position τ∗1, f and -1 in position τ2, f , where τ j, f = 0 means the value ±1 does not occur.
Furthermore, τ∗1, f , τ2, f otherwise w∗3 = 0.

Ψα(xi,yc
i ,y

f
i )= supw1∈Rn,w2∈B2

n,w3∈B2
n

[
〈(w1+xi)

+,1{w2+yc
i <w3+y f

i }
w2+yc

i 〉+〈(w1+xi)
−,1{w3+y f

i <w2+yc
i }

w3+y f
i 〉−α(〈w1,w1〉+

S3〈w2,w2〉+S3〈w3,w3〉)
]
.
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a) Suppose 1
(w2+yc

i <w3+y f
i )
= 1. Then

Ψα(xi,yc
i ,y

f
i ) = sup

w1∈Rn,w2∈B2
n,w3∈B2

n

[
〈(w1 + xi)

+,w2 + yc
i 〉−α(〈w1,w1〉+S3〈w2,w2〉+S3〈w3,w3〉)

]
. (65)

Recall 〈(w1 + xi),(w2 + yc
i )〉= (w1τ1,c + xiτ1,c). The default time constraint implies τ1,c < τ1, f . Therefore τ1,c > 0.

The structure of finite set B2
n implies

Ψα(xi,yc
i ,y

f
i ) = sup

w1∈Rn,0<τ1,c<τ1, f ,τ1,c,τ2,c

[
(w1τ1,c + xiτ1,c)

+−α(〈w1,w1〉+S3〈w2,w2〉+S3〈w3,w3〉)
]
. (66)

Observe the only positive component for w1 ∈ Rn in sup above is τ1,c.

sup
w1∈Rn

[
(w1τ1,c + xiτ1,c)

+−α〈w1,w1〉
]
= sup

w1τ1,c∈R

[
(w1τ1,c + xiτ1,c)

+−α(w2
1τ1,c

)
]
. (67)

Evaluating at the critical point w∗1τ1,c
= 1

2α
∈ R for the above quadratic gives

sup
w1τ1,c∈R

[
(w1τ1,c + xiτ1,c)

+−α(w2
1τ1,c

)
]
=
[ 1

4α
+ xiτ1,c

]+
. (68)

Therefore one can write

Ψα(xi,yc
i ,y

f
i ) = max

0<τ1,c<τ1, f ,τ1,c,τ2,c

[ 1
4α

+ xiτ1,c

]+−αS3K4a. (69)

where K4a := (1{τ1,c,0}+1{τ2,c,0}+1{τ1, f,0}+1{τ2, f,0}) = (2+1{τ2,c,0}) following logic as in Case 3a) above.
Furthermore, τ∗1 is determined as

τ
∗
1 =0<τ1,c<τ1, f ,τ1,c,τ2,c [x

+
iτ1,c

]. (70)

Substituting back into expression for Ψα gives

Ψ
4a
α (xi,yc

i ,y
f
i ) =

[[ 1
4α

+ xiτ∗1

]+−αS3K4a
]
. (71)

Let τ2 = τ2,c. Then this can also be expressed as

Ψ
4a
α (xi,yc

i ,y
f
i ) =

[[ 1
4α

+ 〈xi,yc
i 〉+(xiτ∗1

− xiτ2)
]+−αS3K4a

]
. (72)

b) Suppose 1
(w3+y f

i <w2+yc
i )
= 1. Then

Ψα(xi,yc
i ,y

f
i ) = sup

w1∈Rn,w2∈B2
n,w3∈B2

n

[
〈(w1 + xi)

−,w3 + y f
i 〉−α(〈w1,w1〉+S3〈w2,w2〉+S3〈w3,w3〉)

]
. (73)

Recall 〈(w1 + xi),(w3 + y f
i )〉= (w1τ1, f + xiτ1, f ). The default time constraint implies τ1, f < τ1,c. Therefore τ1, f > 0.

The structure of finite set B2
n implies

Ψα(xi,yc
i ,y

f
i ) = sup

w1∈Rn,0<τ1, f <τ1,c,τ1, f,τ2, f

[
(w1τ1, f + xiτ1, f )

−−α(〈w1,w1〉+S3〈w2,w2〉+S3〈w3,w3〉)
]
. (74)

Ψα(xi,yc
i ,y

f
i ) = sup

w1∈Rn,0<τ1, f <τ1,c,τ1, f,τ2, f

[
(w1τ1, f + xiτ1, f )

−−α((w1τ1, f )
2 +S3K)

]
. (75)

where K := (1{τ1,c,0}+1{τ2,c,0}+1{τ1, f,0}+1{τ2, f,0}) = (2+1{τ2, f,0}) following logic as in Case 4a) above.
Following the calculations in Case 3b) above, conclude that

Ψα(xi,yc
i ,y

f
i ) =

[
1{(xiτ∗1

<− 1
2α

)∨(xiτ∗1
>0)}

[ 1
4α

+ xiτ∗1

]−−1{− 1
2α
≤xiτ∗1

≤0}
[
α(xiτ∗1

)2]−αS3K
]
. (76)
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Furthermore, τ∗1 is determined as
τ
∗
1 =0<τ1, f <τ1,c,τ1, f,τ2, f [xiτ1, f ]. (77)

Therefore one can write

Ψ
4b
α (xi,yc

i ,y
f
i ) =

[
1{(xiτ∗1

<− 1
2α

)∨(xiτ∗1
>0)}

[ 1
4α

+ xiτ∗1

]−−1{− 1
2α
≤xiτ∗1

≤0}
[
α(xiτ∗1

)2]−αS3K4b
]
. (78)

Let τ2 = τ2, f . Then this can also be expressed as

Ψ
4b
α (xi,yc

i ,y
f
i ) =

[
1{(xiτ∗1

<− 1
2α

)∨(xiτ∗1
>0)}

[ 1
4α

+ 〈xi,y
f
i 〉+(xiτ∗1

− xiτ2)
]−−1{− 1

2α
≤xiτ∗1

≤0}
[
α(xiτ∗1

)2]−αS3K4b
]
.

(79)

Finally, to sum up Case 4, considering parts a) and b), let us write:

Ψ
4
α(xi,yc

i ,y
f
i ) = 1

(w2+yc
i <w3+y f

i )
Ψ

4a
α (xi,yc

i ,y
f
i )+1

(w3+y f
i <w2+yc

i )
Ψ

4b
α (xi,yc

i ,y
f
i ). (80)

2.2.2 Outer Optimization Problem

The goal now is to evaluate

inf
α≥0

F(α) :=
[

αδ3 +
1
N

N

∑
i=1

Ψα(xi,yc
i ,y

f
i )

]
(81)

where the Ψα functions are given as the solutions to Proposition 2.1. Although Lagrangian duality implies the convexity
of F(α), due to its complexity, computational methods and solvers are used to evaluate this expression. Nonetheless, the
solution can be expressed as below. Note that for δ3 = 0 one recovers the expression for original CVAB given in Section
1.3.3.

The primal problem 24 has solution
[
α∗δ3 +

1
N ∑

N
i=1 Ψα∗(xi,yc

i ,y
f
i )
]

where α∗ = α≥0
[
αδ3 +

1
N ∑

N
i=1 Ψα(xi,yc

i ,y
f
i )
]

and Ψα∗(xi,yc
i ,y

f
i ) =

∨4
k=1 Ψk

α∗(xi,yc
i ,y

f
i ).

Expressed in terms of original BCVA, this says

sup
Φ∈Uδ3

(ΦN)

EΦ[〈X+,YC〉+〈X−,Y F〉] =EPN [〈X+,YC〉+〈X−,Y F〉]+α
∗
δ3+EPN

[
Ψα∗(X ,YC,Y F)−[〈X+,YC〉+〈X−,Y F〉]

]+
(82)

where the additional terms represent a penalty due to ambiguity in probability distribution. This follows directly from
the previous proposition. δ3 = 0 reduces to original BCVA. This follows by direct substitution of α∗ as characterized
above into the dual problem 25.

2.2.3 Recovering the Worst Case Distribution

The process of recovering the worst case CVA distribution involves evaluating the expressions given in Section 1.3.2.
The procedure is a bit tedious but one can go through the various cases and subcases discussed in Proposition 2.1, and
compute the value of the dual minimizer α∗ as given in Theorem 2.1, to recover the worst case distribution {(x∗i ,yc∗

i ,y f∗
i ) :

i ∈ {1, ...,N +1}} for a given δ . This procedure is done for a few concrete examples in Section 3.

2.2.4 Discussion

One limitation in the current approach is the omission of a risk neutral measure constraint on the underlying interest
rate and credit default distributions that generate the portfolio exposure distributions described by the Wasserstein ball
Uδ3(ΦN). It is not clear how to (either explicitly or implicitly) incorporate such a constraint in a solvable way. We
highlight this as an opportunity for improvement and a direction for further research. Empirical results for our worst
case CVA studies are provided in Section 3. From the authors’ perspective the computational study was illuminating to
understand the magnitude and shape of worst case CVA profiles as a function of ambiguity. Some recent work was done
to map Wasserstein radii into lower and upper bounds on the distance between the true and empirical distributions. See
the discussion on this topic in Section 3.1.

2.3 FCA, FBA

The robust FCA can be written as
sup

P∈Uδ1
(PN)

EP[〈Z+,YCF〉]P4. (83)
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Similarly, the robust FBA can be written as

sup
Q∈Uδ2

(QN)

EQ[〈Z−,YCF〉]P5. (84)

As such, the dual formulations and solutions to the above primal optimization problems are special cases of the solutions
to the FVA optimization problems, to be described next.

2.4 FVA

2.4.1 Inner Optimization Problem

The robust FVA is
sup

Φ∈Uδ3
(ΦN)

EΦ[〈Z,YCF〉]P6. (85)

Similar to before, we use recent duality results, noting the inner product 〈 ;〉 satisfies the upper semicontinuous condition
of the Lagrangian duality theorem, and cost function cS satisfies the non-negative lower semicontinuous condition (see
Blanchet and Murthy (2019) Assumptions 1 & 2, Gao and Kleywegt (2016)). Hence the dual problem (to sup above) can
be written as

inf
α≥0

F(α) :=
[

αδ3 +
1
N

N

∑
i=1

Ψα(zi,y
c f
i )

]
D6 (86)

where

Ψα(zi,y
c f
i ) = sup

u∈Rn,v∈B1
n

[〈u,v〉−αcS3((u,v),(zi,y
c f
i ))] = sup

u∈Rn,v∈B1
n

[〈u,v〉−α(〈u− zi,u− zi〉+S3〈v− yc f
i ,v− yc f

i 〉)]. (87)

Now apply change of variables w1 = (u− zi) and w2 = (v− yc f
i ) to get

Ψα(zi,y
c f
i ) = sup

w1∈Rn,w2∈B2
n

[〈w1 + zi,w2 + yc f
i 〉−α(〈w1,w1〉+S3〈w2,w2〉)] (88)

where the sets B1
n and B2

n are defined as before. It turns out that Ψα can be expressed as original FVA plus the pointwise
max of (n+1) convex functions. The degenerate case l = 0 is just a line of negative slope. The other n cases are hyperbolas
plus lines of negative slope. Ψα quantifies the adversarial move in FVA across both time and spatial dimensions while
accounting for the cost via the K terms.

We have Ψα(zi,y
c f
i ) = 〈zi,y

c f
i 〉+

[ l∗
4α

+
(

∑
l∗
k=1 zik−∑

‖yc f
i ‖1

k=1 zik
)
−αS3K

]
where l∗=l≥0 [

l
4α

+∑
l
k=1 zik−αS3K] and l = ‖w2+yc f

i ‖1≥ 0, l ∈Z+. Also ‖yc f
i ‖1 ∈Z+, and K = |l−‖yc f

i ‖1|= ‖w2‖1≥
0,K ∈ Z+. Once l∗ is selected, K := |l∗−‖yc f

i ‖1|= ‖w∗2‖1. Alternatively, Ψα(zi,y
c f
i ) = 〈zi,y

c f
i 〉+

∨n
l=0 hα(l) for

hα(l) :=
[ l

4α
+
(

∑
l
k=1 zik−∑

‖yc f
i ‖1

k=1 zik
)
−αS3K

]
. This result follows from jointly maximizing the adversarial funding

exposure w1 and the survival time index w2. The structure of B2
n allows us to decouple this joint maximization and find

the critical point to maximize the quadratic in w1 and write down the condition to select the optimal survival time index
l∗. Finally, consider the two cases w2 = 0 and w2 , 0 and take the max to arrive at the solution. The K terms represent the
cost associated with the worst case.

The particular structure of B1
n and B2

n will be exploited to evaluate the sup above. The analysis proceeds by considering
different cases for optimal values (w∗1,w

∗
2).

Case1 Suppose w∗2 = 0l = ‖yc f
i ‖1. Then

Ψα(zi,y
c f
i ) = 〈zi,y

c f
i 〉+ sup

w1∈Rn
[〈w1,y

c f
i 〉−α〈w1,w1〉]. (89)

Applying the Cauchy-Schwarz Inequality gives

Ψα(zi,y
c f
i ) = 〈zi,y

c f
i 〉+ sup

‖w1‖
[‖w1‖‖yc f

i ‖−α‖w1‖2]. (90)
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Evaluating the critical point ‖w∗1‖=
‖yc f

i ‖
2α
∈ R+ for the quadratic gives

Ψα(zi,y
c f
i ) = 〈zi,y

c f
i 〉+

‖yc f
i ‖2

4α
= 〈zi,y

c f
i 〉+

‖yc f
i ‖1

4α
. (91)

Case2 Now consider w∗2 , 0l , ‖yc f
i ‖1.

Observe for l = ‖w2 + yc f
i ‖1 ≥ 0,

〈w1 + zi,w2 + yc f
i 〉=

l

∑
k=1

(w1k + zik). (92)

The structure of finite set B2
n implies

Ψα(zi,y
c f
i ) = sup

w1∈Rn,l∈{0,...,n},l,‖yc f
i ‖1

[
l

∑
k=1

(w1k + zik)−α(〈w1,w1〉+S3K)]. (93)

Again, using that B2
n is a finite set, one can write

Ψα(zi,y
c f
i ) = max

l∈{0,...,n},l,‖yc f
i ‖1

sup
w1∈Rn

[
l

∑
k=1

(w1k + zik)−α(〈w1,w1〉+S3K)]. (94)

Observing that only the first l components of w1 inside the sup are positive gives ∀k ∈ {1, . . . , l}

sup
w1∈Rn

[
l

∑
k=1

(w1k)−α〈w1,w1〉] = l× sup
w1k∈R

[w1k−α(w1k)
2]. (95)

Evaluating at the critical point w∗1k =
1

2α
∈ R+ for the above quadratic gives

sup
w1k∈R

[w1k−α(w2
1k)] =

1
4α

. (96)

Therefore one can write

Ψα(zi,y
c f
i ) = max

l∈{0,...,n},l,‖yc f
i ‖1

[
l

4α
+

l

∑
k=1

(zik)−αS3K]. (97)

Furthermore, l∗ is determined as

l∗ =l∈{0,...,n},l,‖yc f
i ‖1

[
l

4α
+

l

∑
k=1

(zik)−αS3K]. (98)

Substituting back into expression for Ψα gives

Ψα(zi,y
c f
i ) = 〈zi,y

c f
i 〉+

[
l∗

4α
+

( l∗

∑
k=1

zik−
‖yc f

i ‖1

∑
k=1

zik

)
−αS3K

]
. (99)

Finally, taking the max values for Ψα over cases w∗2 = 0 and w∗2 , 0 gives

Ψα(zi,y
c f
i ) = 〈zi,y

c f
i 〉+

[
‖yc f

i ‖1

4α

]
∨
[

l∗

4α
+

( l∗

∑
k=1

zik−
‖yc f

i ‖1

∑
k=1

zik

)
−αS3K

]
. (100)
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Observe that for l∗ = ‖yc f
i ‖1, the last term in brackets [ ; ] above evaluates to

[ ‖yc f
i ‖1
4α

]
. Let l∗ be determined as

l∗ =l∈{0,...,n} [
l

4α
+

l

∑
k=1

(zik)−αS3K] (101)

and write

Ψα(zi,y
c f
i ) = 〈zi,y

c f
i 〉+

[
l∗

4α
+

( l∗

∑
k=1

zik−
‖yc f

i ‖1

∑
k=1

zik

)
−αS3K

]
. (102)

Alternatively, one can write

Ψα(zi,y
c f
i ) = 〈zi,y

c f
i 〉+

n∨
l=0

[
l

4α
+

( l

∑
k=1

zik−
‖yc f

i ‖1

∑
k=1

zik

)
−αS3K

]
. (103)

2.4.2 Outer Optimization Problem

The goal now is to evaluate

inf
α≥0

F(α) :=
[

αδ3 +
1
N

N

∑
i=1

Ψα(zi,y
c f
i )

]
(104)

where

Ψα(zi,y
c f
i ) = 〈zi,y

c f
i 〉+

n∨
l=0

hα(l) f or hα(l) :=
[ l

4α
+
( l

∑
k=1

zik−
‖yc f

i ‖1

∑
k=1

zik
)
−αS3K

]
. (105)

The convexity of the objective function F(α) simplifies the task of solving this optimization problem. The first order
optimality condition suffices. As Ψα and hence F(α) may have non-differentiable kinks due to the max functions, ∨, we
characterize the optimality condition via subgradients. In particular, we look for α∗ ≥ 0 such that 0 ∈ ∂F(α∗). Inspection
of the asymptotic properties of Ψα and its subgradients reveals that ∂F(α) will cross zero (as α sweeps from 0 to ∞) and
hence α∗ ≥ 0. Note that for δ3 = 0 one recovers the expression for original FVA given in Section 1.3.5.

Let α∗ ∈ {α ≥ 0 : 0 ∈ ∂F(α)}
where ∂Ψα = Conv∪

{
∂hα(l) | 〈zi,y

c f
i 〉+hα(l) = Ψα ; l ∈ {0, . . . ,n}

}
and ∂F(α) = δ3 +

1
N ∑

N
i=1 ∂Ψα .

This follows from application of standard properties of subgradients as well as inspection of the asymptotic properties of
Ψα and ∂Ψα . For α sufficiently small, Ψα has a large positive value and ∂Ψα has a large negative derivative. For α

sufficiently large, for optimal l∗, either l∗ = 00 ∈ ∂Ψα or l∗ = ‖yc f
i ‖1 > 0∂Ψα approaches zero ∂F(α) crosses zero.

This follows from standard application of properties of convex functions and subgradients. First note that function hα

is convex in α since (for fixed l) it is the sum of a hyperbola plus a constant plus a negative linear term. So then
Ψα is convex since it is the pointwise max of a finite set of convex functions plus a constant. Using properties of
subgradients, one can write ∂Ψα = Conv∪{∂hα(l) | 〈zi,y

c f
i 〉+hα(l) = Ψα ; l ∈ {0, . . . ,n}}. Furthermore F(α) is convex

in α since it is a linear term plus a sum of convex functions, so one can write α∗ ∈ {α : 0 ∈ ∂F(α)} and it follows
that ∂F(α) = δ3 +

1
N ∑

N
i=1 ∂Ψα . Finally, we argue that α∗ ≥ 0. For α > 0 sufficiently small, ∃z < −δ3 such that

z ∈ ∂Ψα and for α > 0 sufficiently large, ∃z > −δ3 such that z ∈ ∂Ψα . To elaborate, for α > 0 sufficiently large,
‖yc f

i ‖1 > 0l∗ = ‖yc f ‖1K = 0∃z >−δ3 such that z ∈ ∂Ψα . To elaborate, for α > 0 sufficiently large, ‖yc f
i ‖1 = 0l∗ = 0K =

0,Ψα = 0,0 = z >−δ3 such that z ∈ ∂Ψα . Hence we deduce ∂F(α) crosses the origin ( as α sweeps from 0 to ∞ ).

The primal problem 85 has solution
[
α∗δ3 +

1
N ∑

N
i=1 Ψα∗(zi,y

c f
i )
]

where α∗ ∈ {α ≥ 0 : 0 ∈ ∂F(α)} and Ψα∗(zi,y
c f
i )= 〈zi,y

c f
i 〉+

∨n
l=0 hα∗(l) f or hα∗(l) :=

[ l
4α∗ +

(
∑

l
k=1 zik−∑

‖yc f
i ‖1

k=1 zik
)
−

α∗S3K
]
. Expressed in terms of original FVA, this says

sup
Φ∈Uδ3

(ΦN)

EΦ[〈Z,YCF〉] = EΦN [〈Z,YCF〉]+α
∗
δ3 +EΦN

[ n∨
l=0

l
4α∗

+
( l

∑
k=1

Zk−
‖YCF‖1
∑
k=1

Zk
)
−α

∗S3K
]

(106)

where the additional terms represent a penalty due to ambiguity in probability distribution. This follows directly from
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the previous two propositions. δ3 = 0 reduces to original FVA. This follows by direct substitution of α∗ as characterized
in Proposition 2.3 into Proposition 2.2 and then the dual problem 86.

2.4.3 Recovering the Worst Case Distribution

The process of recovering the worst case FVA distribution is similar to that for CVA. In fact, for the FVA case, the
procedure is a bit simpler since there are less cases and subcases to consider to recover {x∗i ,y

c f∗
i : i ∈ {1, ...,N +1}}. The

steps to recover the dual minimizer α∗ are the same. This procedure is done for a few concrete examples in Section 3.

2.4.4 Discussion

The comments regarding incorporation of risk neutral measure constraint for the robust CVA problem formulations apply
for the robust FVA problem formulations as well. Empirical results for the worst case FVA studies are provided in Section
3. Similar to CVA, from the authors’ perspective the computational study was illuminating to understand the magnitude
and shape of worst case FVA profiles as a function of ambiguity.

3. Computational Study: Robust XVA and Wrong Way Risk

This computational study uses the Matlab Financial Instruments Toolbox and extends WWR portfolio analysis (Brigo
et al., 2013, section 5.3) to consider ambiguity in probability distribution. Other key concepts that will be discussed
in this section include suitable choice for Wasserstein radius δ , calibration of scale factor S3, and choice of units for
exposures. The studies in this section will investigate (and quantify) worst case bilateral CVA and FVA for different
market environments and portfolios of interest rate swaps. For CVA, the current swaps market data (see below) will be
used in conjunction with monte carlo simulation of a market calibrated one factor Hull-White model for interest rates.
The counterparty credit curve selection will vary between investment grade and high yield. For FVA, the funding spreads
and volatility data is taken from Markit. The swaps portfolios are shown as well. All calculations are done in Matlab
using the financial instruments toolbox (Matlab, 2019).

3.1 Suitable Choice for Wasserstein Radius

A natural question to ask when computing worst case XVA is how to interpret the size of the Wasserstein radius δ . A
discussion of some key results is given in (Carlsson et al., 2018, Section 3). For this study, we adopt a fairly straight-
forward approach to compute upper and lower bounds for the expected Wasserstein distance between the empirical and
true distributions. A rough procedure for selecting δ involves sampling two independent data sets D1 and D2, and setting
δ = αc∗ where α ∈ [1/2,1] and c∗ denotes the cost of the minimum bipartite matching between D1 and D2 (Carlsson
et al., 2018), (Canas and Rosasco, 2012). This approach relies on the following theorem referenced in Carlsson et al.
(2018) and established in Canas and Rosasco (2012). Let f̂1 and f̂2 denote empirical distributions associated with two
sets of independent samples of n points from a distribution f . Then

1
2
E [Dc( f̂1, f̂2)]≤ E [Dc( f , f̂1)]≤ E [Dc( f̂1, f̂2)].

As such, our approach is to sample two indepedent data sets D1 and D2 of portfolio exposures and default times and
compute lower and upper bounds δ l := 1

2E [Dc( f̂1, f̂2)] and δ u := E [Dc( f̂1, f̂2)] for the expected Wasserstein distance
between the empirical and true distributions. Given these bounds, one can compute the corresponding lower and upper
bounds on the worst case XVA risk metrics and exposure and default time distributions.

Constructing the bounds δ l and δ u in this way builds in a dependency on the units of portfolio exposures (e.g. millions
of dollars) and units in the time dimension (e.g. years), through the computation of Dc( f̂1, f̂2) and the calibration of the
scale factor S3 (see Section 3.2 below for this). Such a dependency is desirable to assign “units” to δ as well as to conduct
relative value analysis across portfolios. See Section 3.3 below for more commentary on choice of units for exposures.

3.2 Calibration of Scale Factors

3.2.1 Calibration of S3 for CVA

The scale factor S3 represents a scaling for changes to default times. A suitable choice for S3 is one that charges an
appropriate cost for this. Let us think about what a change in default time means in the context of CVA. For a fixed path
with index i, and exposure vector x±i , changing the default time from τ2 to τ1 changes the value of the realized exposure
from x±iτ2

to x±iτ1
upon default. A reasonable value for S3, call it s3, for this particular path, might be ‖x±iτ1

− x±iτ2
‖∞ where

τ1,τ2 ∈ {1, ...,n}. Now let us generalize this to average over all paths i ∈ {1, ...,N} in our empirical distribution ΦN . Let
x±τ denote 1

N ∑
N
i=1 x±iτ , the average exposure at default time τ . Substituting average exposures into our previous expression

gives the relation S3 := ‖x±τ1−x±τ2‖∞. Let us use this as our working definition for S3 for unilateral CVA, DVA. Calibration
is straightforward given ΦN , the set of sample paths {(xi,yc

i ,y
f
i ) : i ∈ {1, ...,N}}. For bilateral CVA, take the average over
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the unilateral CVA and DVA scale factors, namely S3 := 1
2 (‖x

+
τ1 − x+τ2‖∞ +‖x−τ1 − x−τ2‖∞).

3.2.2 Calibration of S3 for FVA

Let us the follow the approach above for FVA. For a fixed path with index i, the funding exposure vector is z±i and
the incremental change is ∆z±iτ2

. A reasonable value for S3, call it s3, for this particular path, might be ‖z±iτ1
− z±iτ2

‖∞.

Substituting average exposures into this expression gives the relation S3 := ‖z±τ1 − z±τ2‖∞. Let us use this as our working
definition for S3 for FCA, FBA. Calibration is straightforward given ΦN , the set of sample paths {(zi,y

c f
i ) : i∈ {1, ...,N}}.

For FVA, take the average over the FCA and FBA scale factors, namely S3 := 1
2 (‖z

+
τ1 − z+τ2‖∞ +‖z−τ1 − z−τ2‖∞).

3.3 Choice of Units for Exposures

Standardizing the units across portfolios is useful for relative value analysis. The choice of units for exposures (e.g.
millions of dollars) and default times (e.g. decimal years) is up to the user, although we recommend these conventions,
and use them in our analysis in this section. Note that different choices of units will lead to calibrated different values for
S3 for BCVA and FVA. There is no one choice for units (as in regression analysis, for example) although consistency is
recommended as a good practice. The same comments apply for the choices of time frequency and time horizon for the
robust XVA analysis.

3.4 Definitions for Exposure Calculations

The definitions for the various exposure calculations plotted in Section 3.6 for CVA and DVA are given in Table 2 below.
For FVA calculations (FCA and FBA), plotted in Section 3.7, replace portfolio exposures V+ and V− with funding
exposures Z+ and Z− respectively.

Table 2. CVA Exposure Calculations

Term CVAU DVAU

EE(t) E[V+(t)] E[V−(t)]

PFEα(t) inf {x ∈ R : α ≤ FV+(t)(x)} inf {x ∈ R : α ≤ FV−(t)(x)}

EPE(t) 1
T
∫ T

0 EE(t)dt 1
T
∫ T

0 EE(t)dt

E f f EE(t) max {EE(τ) : τ ∈ [0, t]} max {EE(τ) : τ ∈ [0, t]}

E f f EPE(t) 1
T
∫ T

0 E f f EE(t)dt 1
T
∫ T

0 E f f EE(t)dt

standard definitions

3.5 Market Data

As of April 20, 2020, the 5y par interest rate swap rate is 0.47% (on Bloomberg). The full interest rate swaps curve is
shown in Table 3. All market data displayed below is for this date.

Table 3. Swap Rates

Swap Tenor 1y 2y 3y 5y 7y 10y 30y
Swap Rate 0.515% 0.409% 0.401% 0.470% 0.569% 0.691% 0.855%

term structure of par coupon fixed floating swap rates

Bloomberg shows the interest rate swaption volatility matrix (with option expirations as rows and swap tenors as columns).
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Table 4. Swaption Normal Volatilities

Exp / Tenor 2y 3y 5y 7y 10y
2y 0.520% 0.542% 0.601% 0.631% 0.680%
3y 0.577% 0.592% 0.622% 0.640% 0.671%
5y 0.637% 0.637% 0.637% 0.643% 0.652%
7y 0.640% 0.639% 0.636% 0.636% 0.636%
10y 0.639% 0.633% 0.624% 0.618% 0.612%

term structure of at-the-money swaption volatilities

Furthermore, Markit shows U.S. CDX investment grade and high yield 5y credit default swap spreads as in Table 5. The
firm and counterparty investment grade credit spreads are set to 100 and 150 basis points respectively. The high yield
credit spreads are shown in Table 6. Referencing MarkIt funding spreads, the funding spread curves are shown in Table 7.
Unavailable quotes for high yield spreads are displayed as “N/A”. This term structure of funding spreads is used for the
FVA analysis. Funding spread lognormal volatility is set to exponential decay. For investment grade it decays from 85%
down to about 31% in 10 years. For high yield it decays from 35% down to about 13%.

Table 5. 5y CDS Spreads

CDX Index IG HY
CDS Spread 0.933% 6.432%

credit default swap spreads

Table 6. High Yield Counterparty Credit Spreads

CDS Tenor 1y 2y 3y 4y 5y 6y 7y 8y 9y 10y
HY Spread 6.00% 5.75% 5.50% 5.25% 5.00% 4.75% 4.50% 4.25% 4.00% 3.75%

term structure of credit default swap spreads

Talbe 7. Funding Spreads

Funding Tenor 1y 2y 3y 5y 7y 10y
IG Spread 0.54% 0.81% 0.81% 0.88% 1.01% 1.14%
HY Spread N/A N/A 8.02% 6.72% 7.08% 6.36%

term structure of funding spreads

The swaps portfolios for the CVA and FVA studies are shown in Tables 8 and 9. All 10 swaps are used for the 30y monte
carlo simulation for CVA. The last 4 are capped at 10y maturity for FVA, as we have (only) 10y of funding market data.
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Table 8. CVA Swaps Portfolio

Issued Notional Maturity Rec / Pay Fixed Coupon Freq
4/20/20 10 4/20/21 Rec 0.51% quarterly
4/20/20 10 4/20/22 Pay 0.41% quarterly
4/20/20 10 4/20/23 Pay 0.40% quarterly
4/20/20 10 4/20/25 Rec 0.47% quarterly
4/20/20 10 4/20/27 Pay 0.57% quarterly
4/20/20 10 4/20/30 Rec 0.69% quarterly
4/20/20 10 4/20/35 Rec 0.74% quarterly
4/20/20 10 4/20/40 Rec 0.83% quarterly
4/20/20 10 4/20/45 Pay 0.83% quarterly
4/20/20 10 4/20/50 Pay 0.85% quarterly

individual swap positions in the portfolio

Table 9. FVA Swaps Portfolio

Issued Notional Maturity Rec / Pay Fixed Coupon Freq
4/20/20 100 4/20/21 Pay 0.51% quarterly
4/20/20 100 4/20/22 Rec 0.41% quarterly
4/20/20 100 4/20/23 Rec 0.40% quarterly
4/20/20 100 4/20/25 Pay 0.47% quarterly
4/20/20 100 4/20/27 Rec 0.57% quarterly
4/20/20 100 4/20/30 Pay 0.69% quarterly
4/20/20 100 4/20/30 Pay 0.74% quarterly
4/20/20 100 4/20/30 Pay 0.83% quarterly
4/20/20 100 4/20/30 Rec 0.83% quarterly
4/20/20 100 4/20/30 Rec 0.85% quarterly

individual swap positions in the portfolio

3.6 Bilateral CVA

3.6.1 Investment Grade Counterparty and Firm

The swaps portfolio shown in Table 8 is used for this analysis. The portfolio consists of ten par coupon interest rate swaps,
with a mix of receving fixed and paying fixed swaps at different maturities. The investment grade firm and counterparty
credit spreads are set to 100 and 150 basis points respectively. The calibrated value of S3 is 1.4584 which results in
δ l = 14.414 and δ u = 28.828 using a second set of Bloomberg market data (for 03/20/20) along with the first set for
04/20/20. The full range of Wasserstein radii δ is given in Table 10.

Table 10. BCVA Wasserstein Radii

Percentage of δ u 50% 60% 70% 80% 90% 100%
W Radius delta 14.41 17.30 20.18 23.06 25.95 28.83

range of δ that covers the true distribution f

Matlab plots characterizing the BCVA positive and negative exposure profiles and trajectory of worst case BCVA as a
function of Wasserstein radius are shown in Figures 1,2,3.

The baseline BCVA for this portfolio is approximately 160k USD and represents the dot product of the discounted positive
portfolio exposure profile times counterparty default probability plus dot product of the discounted negative portfolio
exposure times firm default probability. The worst case BCVA curve is shown in Figure 3. The worst case CVA curve
ranges from 69% to 93% the size of Max PFE (Potential Future Exposure) which is equal to 6.43mm USD (see Figure
1), for Wasserstein radii δ given in Table 10. So the takeaway here is worst case BCVA can be a significant percentage of
PFE for swap portfolios with low risk counterparty default curves (investment grade).
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Figure 1. Swaps Portfolio Positive Exposure Profiles

Figure 2. Swaps Portfolio Negative Exposure Profiles

Figure 3. Swaps Portfolio Worst Case BCVA Profile

The worst case distribution for δ u is shown in Figures 4 and 5. The first plot shows the exposures {x∗i } and the second plot
shows the joint distribution of counterparty and firm default times {yc∗

i ,y f∗
i }. Default times beyond the portfolio maturity

date denote no default prior to portfolio maturity for those simulation paths. This results in higher contours in the back
row.
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Figure 4. Worst Case Exposures

Figure 5. Worst Case Default Times

3.6.2 High Yield Counterparty and Investment Grade Firm

The swaps portfolio shown in Table 8 is used for this analysis. The portfolio consists of ten par coupon interest rate swaps,
with a mix of receving fixed and paying fixed swaps at different maturities. The high yield counterparty credit spreads
are set as in Table 6. The investment grade firm credit spreads are set to a constant 100 basis points. The calibrated value
of S3 is 1.4584 which results in δ l = 14.45 and δ u = 28.90 using a second set of Bloomberg market data (for 03/20/20)
along with the first set for 04/20/20. The full range of Wasserstein radii δ is given in Table 11. Matlab plots characterizing
the BCVA positive and negative exposure profiles and trajectory of worst case BCVA as a function of Wasserstein radius
are shown in Figures 6,7,8.

Table 11. BCVA Wasserstein Radii

Percentage of δ u 50% 60% 70% 80% 90% 100%
W Radius delta 14.45 17.34 20.23 23.12 26.01 28.90

range of δ that covers the true distribution f

The baseline BCVA for this portfolio is approximately 106k USD and represents the dot product of the discounted posi-
tive portfolio exposure profile times counterparty default probability plus dot product of the discounted negative portfolio
exposure times firm default probability. The worst case BCVA curve is shown in Figure 8. Note that for this problem
instance, the worst case BCVA results for high yield counterparty credit are similar to the previous subsection, for in-
vestment grade counterparty credit. Note the worst case BCVA ranges from 70% to 95% the size of Max PFE (Potential
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Figure 6. Swaps Portfolio Positive Exposure Profiles

Figure 7. Swaps Portfolio Negative Exposure Profiles

Figure 8. Swaps Portfolio Worst Case BCVA Profile

Future Exposure), which is equal to 6.43mm USD (see Figure 6), for Wasserstein radii δ given in Table 11. So the take-
away here is worst case BCVA can be a significant percentage of PFE for swap portfolios with high yield counterparty
default curves as well.
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Figure 9. Worst Case Exposures

Figure 10. Worst Case Default Times

The worst case distribution for delta value δ u is shown in Figures 9 and 10. The first plot shows the exposures {x∗i }
and the second plot shows the joint distribution of counterparty and firm default times {yc∗

i ,y f∗
i }. Default times beyond

the portfolio maturity date denote no default prior to portfolio maturity for those simulation paths. This results in higher
contours in the joint density plot in the back row. Higher counterparty credit spreads lead to earlier counterparty default
times.

3.7 FVA

3.7.1 Investment Grade Counterparty and Firm

The swaps portfolio shown in Table 9 is used for this analysis. The portfolio consists of ten interest rate swaps, with a
mix of receving fixed and paying fixed swaps at different maturities. Capping maturities at 10y introduces some positive
NPV to this portfolio. The investment grade firm and counterparty funding spreads are set as shown in Table 7. The
calibrated value of S3 is 0.082 which results in δ l = 0.387 and δ u = 0.774 using a second set of Bloomberg market data
(for 03/20/20) along with the first set for 04/20/20. The full range of Wasserstein radii δ is given in Table 12. Matlab
plots characterizing the FVA positive and negative exposure profiles and trajectory of worst case FVA as a function of
Wasserstein radius are shown in Figures 13,14,15.
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Table 12. FVA Wasserstein Radii

Percentage of δ u 0.50 0.60 0.70 0.80 0.90 1.0
W Radius delta 0.387 0.464 0.542 0.560 0.697 0.774

range of δ that covers the true distribution f

Figure 11. Swaps Portfolio Positive Exposure Profiles

Figure 12. Swaps Portfolio Negative Exposure Profiles

The baseline FVA for this portfolio is 240k USD and represents the dot product of the discounted portfolio FCA exposure
profile times joint survival probability plus dot product of the discounted portfolio FBA exposure times joint survival
probability. The worst case FVA curve is shown in Figure 15. For Wasserstein radius δ l = 0.387, the worst case FVA is
approximately 4.55, or 3.0 times the size of integrated FCA PFE which is about 1.54. For Wasserstein radius δ u = 0.774,
the worst case FVA is approximately 5.72, or 3.7 times the size of integrated FCA PFE. In this problem instance, worst
case FVA is a multiple of integrated FCA PFE exposure, so quite significant.

The worst case distribution for delta value δ u is shown in Figures 16 and 17. The first plot shows the exposures {z∗i }
and the second plot shows the joint distribution of counterparty and firm survival times {yc f∗

i }. Survival times beyond the
portfolio maturity date denote no defaults prior to portfolio maturity for those simulation paths.

3.7.2 High Yield Counterparty and Investment Grade Firm

The swaps portfolio is shown in Table 8. The firm and counterparty funding spreads are set as in Table 7. The high yield
counterparty credit spreads are set as shown in Table 5. The investment grade firm credit spreads are set to a constant
100 basis points. The calibrated value of S3 is 0.2898 which results in δ l = 1.935 and δ u = 3.87 using a second set of
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Figure 13. Swaps Portfolio IG FCA Exposure Profiles

Figure 14. Swaps Portfolio IG FBA Exposure Profiles

Figure 15. Swaps Portfolio Worst Case IG FVA Profile

Bloomberg market data (for 03/20/20) along with the first set for 04/20/20. The full range of Wasserstein radii δ is given
in Table 13. Matlab plots characterizing the FVA positive and negative exposure profiles and trajectory of worst case FVA
as a function of Wasserstein radius are shown in Figures 20,21,22.
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Figure 16. Worst Case Exposures

Figure 17. Worst Case Survival Times

Table 13. FVA Wasserstein Radii

Percentage of δ u 0.50 0.60 0.70 0.80 0.90 1.0
W Radius delta 1.935 2.322 2.709 3.096 3.483 3.87

range of δ that covers the true distribution f

The baseline FVA for this portfolio is 1.18mm USD. The worst case FVA curve is shown in Figure 22. For Wasserstein
radius δ l = 1.935, the worst case FVA is approximately 9.35, or 1.31 times the size of integrated FCA PFE which is about
7.127. For Wasserstein radius δ u = 3.87, the worst case FVA is approximately 12.44, or 1.75 times the size of integrated
FCA PFE. In this problem instance, similar to the investment grade example, worst case FVA is a multiple of integrated
FCA PFE exposure, so quite significant.

The worst case distribution for delta value δ u is shown in Figures 23 and 24. The first plot shows the exposures {z∗i }
and the second plot shows the joint distribution of counterparty and firm survival times {yc f∗

i }. Survival times beyond the
portfolio maturity date denote no defaults prior to portfolio maturity for those simulation paths.

4. Conclusions and Further Work

This work has developed theoretical results and investigated calculations of robust CVA, FVA, and wrong way risk for
OTC derivatives under distributional uncerainty using Wasserstein distance as an ambiguity measure. The financial market
overview, foundational notation, and robust XVA primal problems were introduced in Section 1. Using recent duality
results (Blanchet and Murthy, 2019), the simpler dual formulations and their analytic solutions for BCVA and FVA were
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Figure 18. Swaps Portfolio Positive Exposure Profiles

Figure 19. Swaps Portfolio Negative Exposure Profiles

Figure 20. Swaps Portfolio HY FCA Exposure Profiles

derived in Section 2. After that, in Section 3, some computational experiments were conducted to measure the additional
XVA charge due to distributional ambiguity for a variety of portfolio and market configurations. Worst case BCVA and
FVA were found to be significant relative to their respective PFE profiles in all problem instances. Finally, we conclude
with some commentary on directions for further research.

One direction for future research, as has been previously discussed, is to extend the problem formulations to include
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Figure 21. Swaps Portfolio HY FBA Exposure Profiles

Figure 22. Swaps Portfolio Worst Case HY FVA Profile

Figure 23. Worst Case Exposures

a risk neutral measure constraint in a solvable way. Explicitly adding the constraint would complicate the problem
formulations no doubt, so perhaps there is a more tractable indirect approach. Another direction for future research would
be to develop (and apply) similar theoretical machinery as used for robust CVA and FVA towards robust KVA (Capital
Valuation Adjustment) and MVA (Margin Valuation Adjustment) and wrong way risk in that context. Intuitively, wrong
way risk arises in that context when the market cost of capital and/or funding the margin position increases at the same

98



Applied Economics and Finance Vol. 7, No. 6; 2020

Figure 24. Worst Case Survival Times

time as the portfolio exposure increases.
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