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Abstract 

Trading option strangles is a highly popular strategy often used by market participants to mitigate volatility risks in their 

portfolios. We propose a measure of the relative value of a delta-Symmetric Strangle and compute it under the standard 

Black-Scholes-Merton option pricing model. This new measure accounts for the price of the strangle, relative to the 

Present Value of the spread between the two strikes, all expressed, after a natural re-parameterization, in terms of delta 

and a volatility parameter. We show that under the standard BSM model, this measure of relative value is bounded by a 

simple function of delta only and is independent of the time to expiry, the price of the underlying security or the 

prevailing volatility used in the pricing model. We demonstrate how this bound can be used as a quick benchmark to 

assess, regardless the market volatility, the duration of the contract or the price of the underlying security, the market 

(relative) value of the   strangle in comparison to its BSM (relative) price. In fact, the explicit and simple expression 

for this measure and bound allows us to also study in detail the strangle’s exit strategy and the corresponding optimal 

choice for a value of delta. 

Keywords: call-put parity, option pricing, the Black-Scholes-Merton model, European options  

1. Introduction 

Options, as asset’s price derivatives, are the primary tools available to the market participants for hedging their portfolio 

from directional risk and/or volatility risk. The so-called option’s delta, which typically is denoted as   or  , 

measures the ’sensitivity’ of the option’s price to changes in the price of the underlying security, is the primary 

parameter one considers when using an option to mitigate directional risk. The option’s delta is seen as the hedging ratio 

and is often also used (near expiration) by market participants as a surrogate to the probability that the option will 

expire in the money. With standard option pricing model of Black & Scholes (1973) and Merton (1973), (abbreviated 

here as the BSM model, see below), these probabilities are readily available for direct calculations under the governing 

log-normality assumption of the asset’s returns. Roughly speaking, a trader that sells (or buys) a put option at a strike 

located one standard deviation  below the current asset’s price, ends up with a 16-delta put contract option (i.e. with 

= 0.16  ). We denote the corresponding strike for this 16-delta put contract option as 
0.16k  . Similarly, a trader that 

sells (or buys) a call option at a strike located one standard deviation  above the current asset’s price, ends up with a 

16-delta call option (i.e. = 0.16 ). We denote the corresponding strike for this 16-delta call contract as 
0.16k  . Thus, 

the corresponding strangle, which is obtained by selling a (negative) 16-delta put option and a (positive) 16-delta call 

option, is a delta-neutral strategy that is associated, very roughly, with a 0.68 probability for the asset’s price to remain 

between the two strikes, 
0.16k   and 

0.16k   by expiration, all as resulting from the governing normal distribution 

assumption. We refer to such a strangle as a  16-delta Symmetric Strangle, only to indicate the common (absolute) 

delta value ( = 0.16 ) of its put and call components. 

In a similar fashion we use the term a    Symmetric Strangle to indicate the strangle obtained, for some fixed 

(0,0.5)  , from buying (or selling) a  -units put and a  -units call option contracts at the corresponding strikes 

k
  and k

 , respectively. Such a strangle would be a delta-neutral strategy offering zero directional risk but potentially 

useful for mitigating volatility risk1. We further denote by   the price of (or the credit received from) such   
Symmetric Strangle. In this paper, we study, for a a given  , the value of this    Symmetric Strangle relative to the 

                                                        
1 Sometimes such a strangle is referred to a zero-delta strangle to reflect the lack of any directional risk to it.   
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width of the corresponding spread ( )k k 

  , adjusted for its present value (PV). More precisely, for any a (0,0.5)  , 

we define the relative value of the corresponding    Symmetric Strangle as   

 := .
( )

R
PV k k




 

 




 (1) 

In the main result of the paper, we show that under the standard BSM option pricing model, the strangle’s relative value, 

R , (1),  is independent of the price of the underlying security and is a function only of   and the prevailing 

volatility used in the pricing model. In fact, as we will see in Theorem 1 below, for any given (0,0.5)  , we have 

R    where   

 
( )

= ,
z

z







    (2) 

and where ( )   is the standard normal density ( pdf ), 

2

2( ) := / 2
u

u e 


, and 1( )z  , is usual 
th  percentile 

of the standard normal distribution, whose cumulative distribution function ( cdf ) is ( ) := ( )
z

z u du


  . We point out 

that since < 0.5 , we have < 0z  in expression (2) of  . 

As an illustration, one quickly finds by utilizing (2) that the  16 -delta Symmetric Strangle has a relative value of 

0.16 = 0.08467  and that the  30 -delta Symmetric Strangle has a relative value of 0.30 = 0.36 . That is to say that 

under the standard BSM option pricing model, one would expect the price of the  30 -delta Symmetric Strangle to be  

at most 36% of the width of the spread between the corresponding strikes, irrespective of the security’s price, or time to 

expiry, and irrespective of the prevailing volatility. More generally, it follows from Theorem 1, that for a any given 

(0,0.5)  , the corresponding   strangle’s price,  ,  as calculated under the BSM pricing model, satisfies  

 ( ),PV k k   

      

irrespective of the security’s price, or time to expiry, and irrespective of the prevailing volatility. We also  illustrate 

how this measure   in (2) may be used as a  benchmark to assess the market pricing (or ’worthiness’) of the  
symmetric strangle compared to its (relative) price, R , as suggested by standard BSM pricing model. The explicit 

expression of   as is given in (2) allow us to also address, in the last section, the strangle’s exit strategy and the 

corresponding  optimal choice of   for it. However, in the next section we first show how, for a fixed value of   , 

ths standard BSM option pricing model can be reparmetrized in terms of  and a volatility parameter. 

2. Pricing the -Unit Option Contract 

One of the most widely celebrated option pricing model for equities (and beyond) is that of Black and Scholes (1973). 

Their pricing model is derived under some simple assumptions concerning the distribution of the asset’s returns, 

coupled with presumptive continuous hedging, zero dividend, risk-free interest rate, r , and no cost of carry or 

transactions fees. While the aptness of these assumptions has often been criticized (see for example, Yalincak (2012) or 

Bueno-Guerrero, (2019), it has remained as a leading option pricing model for the retail trading practitioner (e.g.: 

Sinclair (2010)). However, in its standard form, the BSM model evaluates, for a risky asset with a current market price 

 , the price of an European call option contract at a strike k  and t  days to expiration as:   

 1 2( ) = ( ( )) ( ( )).rtc k d k k e d k       (3) 

Here, using the standard notation,   

 

2

1 2 1

log( ) ( )
2( ) := ( ) := ( ) ,

r t
kd k and d k d k t

t

 




 

  (4) 

where   denotes the standard deviation of the daily asset’s returns, and ( )   is the standard normal cdf defined 

above. The model for the corresponding price of a put option contract, ( )p k
, may be obtain from expression (3) of 

( )c k , by exploiting the so-called  put-call parity which is expressed by the equation 

   ( ) = ( ),rtc k k e p k      (5) 

see for example Jiang (2005, Theorem 2.3) or Peskir and Shiryaev (2002) for additional details. This parity implies that 

the price of the corresponding put option contract is,   

 2 1( ) = ( ( )) [1 ( ( ))].rtp k k e d k d k        (6) 

There is substantial body of literature dealing with the BSM option pricing model in (3)-(6), its refinements, its 

extensions and the so-called, its implied ’Greeks’ (i.e. the various partial derivatives of different orders, representing the 

model’s "sensitivities" to changes in its parameters). The interested reader is referred to standard textbooks such as 

Wilmott, Howison, Dewynne (1995), Hull (2005), Jiang (2005) or Iacus (2011). 

As we already mentioned in the Introduction, we focus our attention here on the option’s  delta, which we denote by 

  as a function with a corresponding value of (0,1)  . More specifically, while suppressing (for sake of simplicity 
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for now) from the notation ,r t  and 
2 , we define for the call and the put contracts options their respective   

functions as, ( ) := ( ) /c k c k     and ( ) := ( ) /p k p k    . It follows immediately from the put-call parity equation 

in (5) that ( ) = (1 ( ))p ck k   . It is well known (see for Example, Jiang (2005)) that for the BSM pricing model in 

(3), 1( ) = ( ( ))c k d k  , where 1( )d k  is given in (4), and hence 
1 1( ) = (1 ( ( )) ( ( ))p k d k d k      . 

For its supreme importance to portfolio hedging, the investor/trader often needs to buy (or sell) an option at a strike, k , 

which is associated with a  specified and desired value   of the option’s  . For any given (0,1)  , we let k
  

denote the (unique) solution of the equation ( ) =c k  , or equivalently the solution of   

 
1( ( )) = .d k   (7) 

 Accordingly, it follows immediately that k
  satisfies the equation   

 1

1( ) = ( ) ,d k z     (8) 

 and hence, by utilizing (4) in (8) leads to the solution as   

 
2 /2

= ,
z rt

k e
 

 
     (9) 

where we have substituted t   throughout. It should be clear from (9) that if < 0.5 , one has < 0z  and 

therefore >k  , so that the corresponding call option is said to be ’out of the money’ (OTM). Also, note that it 

follows from (4) and (8) that 2 1( ) = ( )d k d k t z        , so that   

 
2( ( )) = ( )d k z      (10) 

in (3). Indeed, with the re-parameterization by ( , )   (with t  ), of the BSM option pricing model in (3), we 

may re-express, upon using the matching expressions (7)-(10) in equation (3), the current price of a   unit call option 

in a much simpler form as   

 
2 /2

( , ) ( ) = ( )

                          ( ) ,

rt

z

c c k k e z

e z

    

 


    

  

  

 

     

     
  

 (11) 

for any (0,1)   and with > 0 .  

Remark 1:   Note in passing that in practice, the option’s   is often used as a crude approximation to the 

probability the option will end in the money, ( )Pr ITM , which by (10), (11) is equal to 
2( ( )) ( )d k z     . 

However, since > 0t  , it immediately follows that ( )) ( ))z z       . Hence, for any (0,1)   and 

> 0 , ( )Pr ITM   and only near expiration, as 0 ( ) =tlim Pr ITM  , it holds.  

Similarly to (11), we calculate the current price of the   unit put contract option by using the put-call parity equation 

in (5), and by noting that by (7) the corresponding k
  strike for the put contract is the same as the strike 

1k 




 of the 

(1 )  unit call option contract, so that 
1k k 

 

 . Accordingly, since 1z z   , we obtain from (9) that   

 
2 /2

= .
z rt

k e
 

 
    (12) 

Hence, it follows immediately from (5) and (12), that under the ( , )   re-parameterization, the expression for the 

current price of the   unit put option is,   

 

 

 

1

2 /2

( , ) ( ) = (1 ( ))

                            ( ) .

rt

z

p p k k e z

e z

    

 


   

  

  





      

      
  

 (13) 

It should be clear from (12) that if < 0.5  and = 0r , one has < 0z  and therefore <k   only if < 2 z   , in 

which case, the corresponding put option is said to be ’out of the money’ (OTM). Hence, we will restrict our attention to 

the practical case of the above parametrization in which ( , )   are such that < <k k   , or alternatively, ( , ) B   , 

where  

 = {( , ); > 0, & > 0, s.t. < ( / 2)}.         

We further point out that the two strikes, k
  and 

1,( )k k 

 

 , need not be symmetrical with respect of the current 

price   of the underlying security (i.e.: k k      ). It is well-known that the occasional observed asymmetry 

of these equal    units strikes is a fixture of the skew in the volatility surface that is affecting the option pricing 

model (see for example Gatheral (2006), or Doran & Krieger (2010)). 

3. The Relative Value of the -Symmetric Strangle   

Consider now a trader that desires to simultaneously sells (say), at some given level of < 0.5 , the   unit put and 
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the   unit call contracts so as to form the ’OTM’    Symmetric Strangle strategy. The total selling price of this 

strangle as calculated under the BSM pricing model, is therefore = ( ) ( )c k p k    

   . As a measure for assessing 

the ’worthiness’ of this strangle, we consider the ’value’ of the selling price,  , relative to the present value of the 

spread between the strikes, namely, ( ) = ( ) rtPV k k k k e   

       . We express this relative value measure in (1) as 

 
( , ) ( , )

( , ) := = .
( ) ( ) rt

c p
R

PV k k k k e

 

   

   
 

    



  
 (14) 

 
Figure 1. The Relative Value function ( , )R    of the   Symmetric Strangle for < 0.5  and (0,1)  . 

 

Note that by its definition, ( , ) 0R     for all (0,0.5)   and > 0 , in particular over the set  . Further, since an 

European option price is (linearly) homogeneous in  , and in the strike, k , (see Theorem 6 of Merton (1973)), the 

ratio ( , )R    in (14), is independent of the current price of the underlying security,  . Also note that since we account 

in (14) for the present value of the spread between the strikes, this quotient is, by construction, also independent of the 

risk-free interest rate, r . This can fully realized by substituting expressions (9), (11), (12) and (13) in ( , )R    and 

simplifying the resulting terms, to obtain, for each < 0.5  and > 0t  , the expression,   

 
( ) ( )

( , ) = ,

z z

z z

e z e z
R

e e

  
 

  

 
 





    


 (15) 

for the relative value of the    Symmetric Strangle under the BSM option pricing model. We point that the values of 

( , )R    in (15) are straightforward to calculate for any ( , )  .  

Figure 1 above provides the graph of ( , )R    for various values of ( , )  , with 0 < < 0.5  and 0 < <1 , where 

= t   representing realistic values for t  (the time in days to expiry) and the model’s daily (implied or historical) 

volatility,  . In any case, the properties of ( , )R   , as a function of   and   (in B ) are of interest. In the 

Appendix below we show that for a fixed < 0.5 , ( , )R    is monotonically non-increasing function of   (with 

/ 0R    ) and that for a fixed > 0 , ( , )R    is monotonically increasing function of   (with / > 0R   ). In 

Theorem 1 below we present the main results of the paper, establishing that ( , )R     , and claculating expicitly the 

value of the bound  . The proof of the Theorem is provided in the Appendix.   

Theorem 1 Under the BSM model and irrespective of the current price,  , of the underlying security, the current 

risk-free interest rate, r , and irrespective of the time to expiry, t , and the presumed volatility (either implied or 

historical), the upper bound to the relative value ( , )R   , of the OTM    Symmetric Strangle with (0,0.5)  , 

depends only on   and is given by, 0 < ( , )R     , where   

 
0

( )
:= ( , ) = .lim

z
R

z








  



    (16) 

 Moreover, 0 = 0lim   , and for all (0,0.5)  ,   

 
2

1
:= = > 0.' d

d z
 


   (17) 

The results of Theorem 1 and the bound   in (16) provide a benchmark for assessing the value, in relative terms, of a  
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  Symmetric Strangle under the BSM option pricing model in (3)-(6), as applicable to any security (i.e., independent 

of the current underlying security price  ), to any expiry (i.e., independent of t ), and under any presumed volatility 

(i.e., independent of  ). In fact, if R̂  denotes the market (relative) value of a    Symmetric Strangle (that is,  

the market version of (1)), then, this strangle would be deemed  ’well-priced’ compared to its (relative) price under the 

BSM option pricing model, as long as R̂   . In Figure 2 below, we graph the values of this function,   (in (16) 

or (2)) for all 0 < < 0.5 . 

 

Remark 2:  The results stated in Theorem 1 and their derivations are valid in the BSM ’world’, in which the 

distribution of the asset’s returns assumed to have a constant variability throughout and do not take into account the 

volatility ’skew’ or ’smile’ that is often being observed by the traders across the discretized options’ grid equipped with 

bid-ask price spreads. It surely implies that the BSM pricing model (with all it inputs) undervalues the  -Symmetric 

Strangle, whenever ˆ< R  , where R̂  is its market (relative) value (i.e. the market version of (1)).  

 

Illustration:  As an illustration of it’s usage, consider the market EOD (end of day) market pricing of IBM 

(International Business Machine Corp.) as of May 13th, 2020. We find that the 34 delta symmetric strangle for the 

June 5th, 2020 expiration with the strikes of 1 = $112k  and 2 = $120k  for the sold put and call, respectively, has a 

market mid-price of 0.34
ˆ = $4.60  (along with current ticker price of = $115.73, with = 23t  days to expiration, 

and = 38.32%IV  (average) implied volatility, so that = / 365 = 0.0200576IV ). This results with a market 

relative value of  

 0.34

0.34

2 1

ˆ 4.60ˆ := = = 0.575,
( ) (120 112)

R
k k



 
 

for this 34-delta Strangle in IBM, whereas, by using (2), we calculate under the BSM pricing model a relative value of 

0.34 = 0.548  for this 34-delta strangle. Thus, the BSM pricing model (with its constant variance assumption, etc.) 

under-values this strangle (in relative terms) as compared to its actual market value. Similar result is obtained with the 

relative value of a 21-delta strangle with 100 days to expiration in BA (Boeing Co.), which yields 0.21
ˆ = 0.156R  as 

compared to 0.21 = 0.147 , see Table 1 below. 

 

Figure 2. The relative value   as a function of  . Marked in red is the market relative value (current, as of EOD, 

May, 13th, 2020), 0.34
ˆ = 0.575R , of a 34-delta symmetric strangle with strikes $112 and $120 in IBM (see Example 1 

and Table 1 for more details.) 

 

Also included in the table the market pricing of    symmetric strangles for additional securities, with different  , 

underlying prices, IV  and days to expiration. In all cases listed in the Table, the market (relative) value R̂  exceeded 

that of the corresponding BSM (relative) value  . Thus, in these noted cases, the BSM pricing model (with all its 

inputs) appears to undervalue the strangles (in relative terms) as compared to their market (relative) value. The reader is 
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invited to check the validity of Theorem 1 results and the applicability of the bound   in (16) as a benchmark for the 

market pricing (in relative value) of a  -Symmetric Strangle with any other traded security options at any expiration. 

  

 

Table 1. Oserved market relative values R̂  of the  Symmetric Strangle   

 Ticker        IV   
 Days   

    
 1k    2k   ˆ

 -Price   R̂        

 SPY   281.60  0.3529    37   0.170   250   302   5.19   0.107   0.095    

 LLY   157.93   0.3597  156   0.200   130   185   8.22   0.150   0.133    

 BA   121.50   0.7685  100   0.210   95   175   12.45   0.156   0.147    

 TLT   168.50   0.2029   16   0.255   162   170    1.97   0.246   0.232   

 C   40.60   0.6851  219   0.295    32    52.5   7.05   0.362   0.345    

 IBM  115.73   0.3832    23   0.340   112   120   4.60   0.575   0.548    

 GOOG  1349.33   0.3356   65   0.405  1320 1400  102.65   1.283   1.207    

Description: Values of R̂  are provided for various tickers and durations as were priced on EOD
* 2, May 13, 2020, 

and are compared to the bound   (16) calculated under the BSM option pricing model. 

 

The empirical (market) results displayed in Table 1, illustrate the tremendous practical and strategy implications the 

results of Theorem 1 have. With such theoretical results at hand, retail traders and and market participants are now able 

to quickly assess whether or not the strangle they buy (or sell) is overpriced or under-priced in the market as compared 

to its Black-Scholes price, regardless the market volatility, the duration of the contract or the underlying assest’s price . 

It provides for a common benchmark for assessing and comparing the market (relative) pricing of a major trading 

strategy (namely the   Symmetric Strangle) across various securities and assets, across various durations and 

irrespective of the underlying security-specific volatility (implied or historical). 

4. Strategizing  

One of the appealing aspects of a    Symmetric Strangle is that from the outset, it is a delta-neutral strategy with 

zero directional risk, initially. Moreover a trader that sells such a strangle, for some fixed < 0.5 , at the corresponding 

two strikes k
  and k

 , benefits from a well defined probability of success, that may be calculated under the current 

distribution of the asset’s returns implied by BSM option pricing model in (3) and (6). Specifically, for a given value 

< 0.5  and > 0 , the  initial  probability that the underlying security price would remain, at expiration, between 

1, ( )k k 

 

  and k
  is simply (see Remark 1),   

 ( ) ( ).z z          (18) 

Hence, the expected reward for a trader that sells the strangle for = ( ) ( )c k p k    

    (as credit) and plans to exit 

and buy it back for a fraction (0,1]   of the credit received is  

 ( ) := (1 ) .E          

In relative terms, this expected reward, relative to the present value of the spread between the strikes, becomes   

 
( )

( ) := (1 ) ,
( )

E
E

PV k k


  

 


   

 
    


 (19) 

where   is given in (2). As was mentioned in the introduction and pointed out in Remark 1, for small values of   

(i.e. near expiration) we may approximate the ’success’ probability in (18) as (1 2 )   .  

                                                        
2 Source: EOD market pricing were obtained using the TOS platform of TDAmeritrade 



Applied Economics and Finance                                          Vol. 7, No. 4; 2020 

144 

 

 

 

Figure 3. The expected relative reward function, ( )E   as a function of   with = 0.5 . The maximal value is 

achieved at 
* = 0.2336  at which point, *( ) = 0.05615E  . 

Accordingly, for any given fraction (0,1]   the expected relative reward in (19), under this approximation would be,   

 ( ) = (1 2 (1 )) .E       (20) 

Observe that ( ) 0E    as long as 1/ 2(1 )    and that, upon using (16) and (17), the equation  

 ( ) 2(1 ) (1 2 (1 )) = 0,' 'E              

is seen to have a unique root, 
* , at which point ( )E   attains its maximal value. That is, for a given fraction 

(0,1]  , this root * = ( )h  , must solves the equation   

 2 1
(1 ) ( ) = ,

2(1 )
z z z   


 


 (21) 

at which point * *:= ( ) ( )E E E    . 

In Figure 3 we present, as an illustration, the graph of the relative reward function, ( )E  , for a trader who sells a  
Symmetric Strangle, and wishes, as a matter of strategy, to exit it upon a loss of 50% of the credit received. This case 

corresponds to = 0.5  and results with an optimal choice for   of 
* = 0.2336  for this strategy to yield a 

maximal expected relative reward of *

0.5 = 0.05615E .  

In Table 2, we provide the ’optimal’ values for   as were calculated (as a numerical solution of (21)) for various 

choices of  , along with the corresponding values of the maximal expected reward *E , and the matching initial 

probability of "success" of this 
*   Symmetric Strangle strategy. As can be seen from Table 2, the selling of 

a ’standard’ 16-delta symmetric strangle with its *( ) 0.67    ’success’ probability should be coupled with an exit 

strategy that limits losses at 100% of the credit received may yield a maximal expected relative reward of *

1 = 0.031E . 

In contrast, the selling of a 30-delta symmetric strangle of the lesser ’success’ probability (of *( ) 0.4   ) should be 

coupled with an exit strategy that limits losses at 25% of the credit received, but may triple the maximal expected 

reward to *

0.25 = 0.091E .  
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Table 2. Optimal choice of    

    
 

*   
 

*E   
 

*( )      

 0.25   0.300   0.091   0.400    

 0.40   0.256   0.067   0.489    

 0.50   0.234  0.056   0.533    

 0.60   0.216   0.048   0.567    

 0.75   0.194  0.040   0.611   

 1.00   0.164  0.031   0.670   

Description: The optimal choice for   for the    Symmetric Strangle strategy, calculated for ’exits’ with the 

various fractional loss  . 

 

5. Conclusion 

We presented new measure of the relative value of a  - Symmetric Strangle and provided for its explicit expression as 

calculated under the standard BSM option pricing model. This measure accounts for the price of the strangle, relative to 

the Present Value of the spread between the two strikes, all expressed, after a natural re-parameterization, in terms of 

delta and a volatility parameter. It was shown that under the standard BSM model, this measure of relative value is 

bounded by a simple function of   only and is independent of the time to expiry, the price of the underlying security 

or the prevailing volatility used (either implied or historical) in the pricing model. As was stated in Remark 2, this result 

is only valid in the standard BSM ‘world’ in which the distribution of the asset’s returns assumed to have a constant 

variability throughout. However, we demonstrated how this bound can be used as a useful benchmark to assess, 

regardless the market volatility, the duration of the contract or the price of the underlying security, the market (relative) 

value of the   strangle in comparison to its BSM (relative) price. Moreover, the explicit and simple expression for 

this measure and bound allows us to also provide in detail an exit strategy and the corresponding optimal choice for a 

value of delta. 
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Appendix 

 

In this appendix we provide the proof of Theorem 1 along with an auxiliary result regarding the coordinate-wise 

behavior of ( , )R    as given in (15) over the practical domain  . To begin with, note first that since  

 
2 2/2 /2( ) ( )

and ,
( ) ( )

z zz z
e e

z z

     

 

 

   

  
 

 
 

we may express ( , )R    in (15), entirely in terms of the standard normal pdf  and cdf , as   

 
( ) ( ) ( ) ( )

( , ) = .
( ) ( )

z z z z
R

z z

   

 

     
 

   

      

  
 (22) 

Upon differentiating expression (22) of ( , )R   , with respect to   and with respect to   along with the fact that 

( ) := ( ) = ( )' d
u u u u

du
    we obtain the following results. 

 

Lemma 1 With ( , )R    as defined in (15) above we have,   

 • For each fixed < 0.5  (so that < 0z ), 
2

2
= ( ) 0,

R a
b z d

b





  


  

 • For each fixed > 0 , = ( ) > 0,
R

z a d 



   


  

where, := ( ( ) ( )) > 0d z z      , := ( ( ) ( )) > 0b z z       ,  and := ( ) ( ) > 0a z z       .   

 

Proof of Lemma 1: The proofs of these results, though tedious, are straightforward to establish noting that 

( ) < 0z   and ( ) 0b z d    over  ; the details are omitted.    

 

We conclude with a proof of our main results.  

Proof  of Theorem 1: That ( , )R    is a monotonically decreasing function of   for each fixed (0,0.5)   is seen 

by direct calculation, ( , ) / 0R       (by Lemma 1). The results stated in (16) follow immediately by a 

straightforward application of L’Hopital’s rule to the numerator and denominator that comprise expression (15) of 

( , )R    and noting that it trivially also independent of   and r  by construction. By another direct application of 

L’Hopital’s rule to the quotient ( ) /z z   along with the facts that ( ) = ( ) 'd
z z z z

d
    


  and =1/ ( )'z z   leads 

to the second assertion as well as to the result stated in (17).    
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