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Abstract 

A new practical approach for the analysis of American (bond) options is developed which is a combination of the closed 

form solutions and binomial lattice models. The model is calibrated to the observed term structure of rates and traded 

volatilities and is arbitrage free. The convergence is very fast, but numerically intensive. By extrapolation the near exact 

premium of an American (bond) option can be calculated.  
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1. Introduction 

An American option gives the option holder the right to exercise the option at any time during its exercise period, unlike 

a European option which can only be exercised at expiration. For an asset that doesn’t pay any dividend or has no 

accrued income, an American call option is like a European option. It is never optimal to exercise the option early and 

pay for the underlying asset that pays no dividend with a capital that could earn short term rate until the expiration of 

the option.  Additionally, there is a chance that the asset could sell off below the exercise price by the expiration of the 

option. On the other hand, a put for such an asset can be exercised early if the reward of receiving short term rate on the 

proceeds of the put outweighs the risks of the underlying asset rising above the strike price by the expiration of the 

option.  

Analysis of American options for assets that pay dividend, in particular bond options, is significantly more complicated 

than European options. The difference between short term and long term rates is one of the driving forces for the early 

exercise of an American bond option. During a steep yield curve environment, a call option is more likely to be 

exercised early in order to receive long term rates implied by the underlying asset, instead of investing the capital at 

short term rate and vice versa for a put option. This dynamic reverses in inverted yield curve environment. Additionally, 

a bond is a varying asset as a function of time; its price has a maximum value and its risks and interest rate sensitivity 

fall as it approaches its maturity date.  

In general, models for pricing interest rate options can be classified as short rate and market implied rates models. Short 

rate models, in particular Hull and White (1990) and Black & Karasinsky (1991) appear to be the most prevalent 

models in the marketplace. These models use lognormal distribution of rates. Variants of the short rate models such as 

Ho-Lee (1986) which uses normal distribution for rates are not as desirable, even though interest rate paths can be 

calibrated to price the entire yield curve exactly. The market based models are calibrated in such a way to reproduce the 

observed term structure of rates and traded volatilities. Among them Black, Derman and Toy (1990) and the more 

general model of Heath, Jarrow and Morton (HJM) (1990) which can be formulated using normal or lognormal 

distribution of rates.  

For an American option, the option price and the exercise boundary have to be calculated at the same time and for this 

reason there are no exact or closed form solutions for them. Many analytical approaches to American options are not 

convergent or their convergence is questionable.  For example, the model of Barone-Adesi and Whaley (1987) who 

use the quadratic model of MacMillan (1986) is not convergent, neither are the subsequent extensions (See Ju and 

Zhong (1999)). Likewise, Sullivan (2000) approximation using Chebyshev polynomials that employs discrete exercise 

dates, has unknown convergence. 

Most of the analytical methods for the American bond options have focused on the fixed maturity zero coupon bond 

options at the time of exercise. Alobaidi and Mallier (2017) use Vasicek (1980) interest rate model to derive an 

expression for the behavior of the exercise boundary close to the expiration of American options. Unlike most traded 
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bond options and callable bonds, where the maturity of the underlying bond is known in advance, such options have 

little practical application.  

The biggest effort in pricing bond options has been on the development of numerical methods for their analysis. Among 

the first models, is Brennan and Schwartz (1979) numerical partial differential equation scheme. The binomial lattice 

model was first proposed by Sharpe (1978) and formalized by Cox, Ross and Rubinstein (1979). It is simple and 

straightforward to implement and is used widely for pricing American or Bermudan options.  

Among the most popular methods of valuing risk free American options such as swaptions is the binomial model. The 

convergence rate of binomial model which is of the order of N  is very slow and at the early stages of the tree, it is 

too sparsely populated to accurately account for the early exercise opportunities. This is in particular true for call 

swaptions in a steep yield curve where the forward coupon rate is higher than the spot coupon rate. 

Many other models for the valuation of bond options, such as the popular Black 76 (1976), which is a rate 

implementation of the standard Black and Scholes (1973) model can’t be used for American options. Simozar (2019) 

argues that Black-76 model is not arbitrage free and fails to adjust the discount yield which itself is a function of the 

exercise yield of the option.  Xie (2009) has developed a numerical method for the calculation of the optimum exercise 

of American options using Vasicek (1977) model. However, calibration of the model to replicate the observed term 

structure of rates and volatilities may not be possible. Additionally, Vasicek (1977) model can potentially lead to 

negative interest rates which is not desirable. 

The popularity of binomial models for the analysis of American bond options is due to their flexibility and robustness. 

Binomial models can be calibrated to replicate forward rates, observed volatilities and be arbitrage free at the same time. 

The discount rate at every node of a binomial interest rate tree, is the then prevailing rate at that node. Barone-Adesi 

(2005) has a detailed review of the numerical methods for the calculation of American options. A significant portion of 

methods are for put options on non-dividend paying stocks. Literature on callable bonds, in particular bonds that have 

multiple strike prices, such as bonds that are issued in the high yield market, is very light and sparse. 

Our approach for the calculation of American options is a combination of the closed form solutions and binomial model 

It has the advantages of the binomial models and the accuracy of closed form solutions, if one existed. It always 

converges, can be calibrated to market observed volatilities and can handle varying strike prices. We create layers in the 

exercise period of the option and at each layer we calculate a forward distribution of rates that matches the observed 

market volatility and implied forward rate for that expiration and maturity. This is how the model is calibrated to the 

market observed volatilities and term structure of rates. Next, we map out the exercise boundary by backward induction 

and discount the expected exercised prices at the appropriate discount rate. In short, our model is arbitrage free, 

convergent, very accurate and highly suitable for real market applications.  

Given the complex nature of American bond options, we looked for a widely available market benchmark to gauge the 

effectiveness of our model compared to the existing ones. The difference between the premium calculations of our 

method and those of Bloomberg’s as a representative of the market models, can be of the order of 50% or more. 

2. Probability Distribution 

Our model for American Options has the accuracy of a closed form solution if one existed and uses a manageable 

number of steps. We assume that there exist a Term Structure of Rates (TSR) and Term Structure of Volatility (TSV) 

surface that are both continuous and infinitely differentiable. For non-interest rate options such as stocks or 

commodities, we assume that the term structure of the volatility surface (as a function of the forward time and 

expiration) and the TSR are known. 

Similar to the binomial model, we use multiple layers to evaluate option prices in each layer. Unlike binomial model, 

we use the same number of points in every layer for the analysis of the option. For example, for an option that can be 

exercised between 5 and 10 years from now, we create 21 layers at quarterly intervals and evaluate the option only at 

those layers.  

The first step in analyzing American options is to calculate the arbitrage free probability distribution of rates or asset 

prices at all layers. For bonds, we first calculate the price of a risk-free bond with cash flows ic , at time it  with a 

yield iy  as 

 
y ti i

t i

i

p c e


  (1) 

We assume that forward bond yields (y) in (1) or the forward asset price for non-interest rate securities follow a 

geometric Brownian motion (GBM) with time dependent drift, i.e., 
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Where y  is the drift, y  is the volatility and yB  is a Brownian motion for an interest rate (yield) process. The 

same parameters for a non-interest rate process is denoted by subscript s. By applying Ito’s lemma and solving the 

resulting Black Scholes PDE or simply noting that (2) represents a GBM whose solution is a Geometric Normal 

Distribution (GND), we find the probability density function   as the solution to the diffusion equation as 

 

 

 

 

 

2

2

( ) ( )

2

2 2

( , )

( ) ( )

fn y n y

fd y t Ae d n y

t t t





 

 






 (3) 

For bonds, there are two boundary conditions that need to be met. The first one, the normalization factor, i.e., requiring 

that the sum of all probabilities is equal to one, namely, 
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The second boundary condition is the arbitrage free condition which requires that the expected value of the forward 

price over all probabilities be equal to the forward price; this establishes the drift parameter   for a given time t. 

Thus, 

 

 

 

 

 

2

2

, ,

( ) ( )

1 2
, 2 0

( ) ( ) ( , )

( )

f

f t f f t f

n y n y

f t y

p y p y d y t

p p y e d n y








 












 (5) 

Where fp  is the forward price of the bond at the forward yield fy . For equities or commodities where the primary 

driver of the forward distribution function is price, the value of drift is 
21

2
   . However, for bonds the 

distribution function is a function of yield while the arbitrage free requirement is on price and since price-yield 

relationship is not linear, therefore 
21

2
   . For short term bonds, where the price-yield relationship is almost 

linear, 
21

2
    

In practice, it is easier to work with a Unit Normal Distribution (UND) than with a GND by making a simple 

transformation. Thus, for bonds we can write, 
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With this transformation, the arbitrage free requirement (5), will become, 
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3. Forward Distribution In Binomial Model 

The yield distribution of a bond at time 1t  from a starting yield of 0y at time 0t  and probability 0 1f  , denoted 

by 0 0 0( , , )t y f   is governed by (5) To draw parallels between our model and the binomial model, assume that 

0 0 0( , , )t y f can evolve into only the following two states at time 1t . (See Figure 1) 
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Figure 1. Probability distribution density in GBM 

 

Where 1,ey  is the equilibrium forward yield that can be calculated from the TSR. Every forward yield 1, jy  will 

have an associated forward price 1, jp . Our normalization equation for the binomial will be 

 

 
1, 1, 1a bf f   (9) 

If the yield volatility at time 1t  is 1v , then points a and b should be selected in such a way to get the expected 

volatility, i.e.,  
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Next, we need to impose the arbitrage free requirement, namely, 
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1, 1, 1, 1, 1,a a b b ef p f p p   (11) 

Thus, in the binomial model, there are 3 constraints to be met, but there are 4 variables, namely, 1,af , 1,bf , 1,ay   

and 1,by . For this reason, there are many flavors of the binomial model. One of the popular modes is to assume equal 

probability for points a and b, i.e., 1, 1,a bf f  . Another popular method is to assume that the equilibrium yield 

1,ey is the geometric mean of the yields at a and b, i.e., 
2
1, 1, 1,e a by y y  . Any other combination that meet the above 

3 equations can be used and at the limit, they all converge to the continuous model of the distribution function. See Josh 

(2008) or Chance (2008).  

In our approach, we take the continuous distribution of forward rates or asset prices and break it up into many buckets 

of equal width in the UND space. This is the exact method that is used in the numerical calculation of the distribution 

function using Simpson’s rule. However, we keep the buckets discrete. The weight or probability of each bucket is equal 

to its area or average height or density and we assume that all the weight of the bucket is in its middle. Thus, from our 

initial position of 0 0 0( , , )t y f  we will have n possible paths leading to 1 1, 1,( , , )i it y f points (i=1-n) instead of just 2 

paths. This is how the first layer is constructed. 

4. Multinomial Tree 

The next step is to evolve the distribution from 1t  to 2t using the interlayer volatility. This step requires the 

calculation of the interlayer drift and volatility.  

Consider a non-time varying asset such as a stock or a commodity. If the expected standard deviation of its price and 

drift at forward times 1t  and 2t are 1 1( , )   and 2 2( , )  and in the interval 2 1t t  they are 12 12( , )  , we 

have the following relationships (See Simozar 2019) 

 

 

2 2 2
1 12 2

1 12 2

  

  

 

 
 (12) 

Thus, we can calculate the interlayer drift and standard deviations for non-varying assets. If we use the drift and 

standard deviation of the forward bond at 2t  for calculation at time 1t , then the above equation would be valid for 

bonds as well. However, the forward bonds at 1t  and 2t  are slightly different instruments and the above equation 

will be only an approximation. Considering that we generally use interval spacings that are small compared to the 

maturity of the bond, the volatility of the forward bonds at 1t  and 2t  will be very close and the above approximation 

would be very reasonable. The same approximation is made in calculating the forward step volatility in the binomial 

option pricing model. 

We use the same number of buckets in layer 2. Since the size of buckets in yield space is proportional to the standard 

deviation of the distribution, they will be larger than the buckets in layer 1, however, in UND space, all bucket sizes will 
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be the same. Each bucket in layer 1 is evolved into all the buckets in layer 2, by assuming that its weight is in the 

middle of the bucket plus adjustments (See Appendix). See Figure 2. 

 
Figure 2. Probability distribution density in GBM 

 

The bucket in layer 1 at 1 1, 1,( , , )i it y f is transformed to buckets in layer 2 2 2, 2,( , , )j jt y f  using 

12 12( , )  parameters. However, the buckets in layer 2 have bucket sizes and distributions governed by 2 2( , )  . 

Therefore, we must find the fraction of bucket 1 1, 1,( , , )i it y f that falls into each bucket 2 2, 2,( , , )j jt y f  using 

2 2( , )   distribution. 

In a normal or lognormal distribution, the center of mass of each bucket is a little closer to the center of the distribution 

than the middle point of the bucket that we use. Using the middle point, will cause the distribution to spread out 

gradually over many layers. After about 25 layers, the central point of the distribution loses about 2% of its height due 

to this assumption. This can have a small impact on the price of an option and adjustment to this approximation is 

necessary for very accurate calculation of option prices. Without the adjustment, the methodology will still produce 

significantly more accurate calculation than binomial model.  

5. Exercise Boundary 

The next step is to calculate the exercise boundary at all times during the exercise period of the option. Exercise 

boundary is the point on the map of future rates that the prices of exercised and unexercised options are equal. For 

example, for call options, the American option is exercised immediately, if the rate is below the exercise boundary. We 

calculate the arbitrage free distribution of rates at the expiration date, just as we would a European option. At expiration 

date of the American option or just before maturity of a bond that is callable to maturity, an American option is like a 

European option; if it is in the money, it will be exercised in this layer n.  For this layer we need to calculate the 

forward price of the underlying asset at regular intervals and use numerical integration (Simpson’s Rule) to calculate the 

option value at forward exercise prices.  

Next, we analyze layer n-1 by calculating the forward arbitrage free probability distribution function (5). For every 

point in layer n-1, we calculate the exercised and unexercised prices of the option. The unexercised price is calculated 

between layers n-1 and n, knowing interlayer volatility and drift (12). Each point in layer n-1 is evolved to a distribution 

in layer n. Since we know the option price at every point in layer n, we can discount it by the appropriate interlayer 

discount function using interlayer probability distribution. Not all forward points in this layer that are in the money and 

thus in the exercise zone, are economical to exercise. If the unexercised option value at a given point, in the exercise 

zone is lower than the benefit of exercising, then it is economical to exercise early. For a lattice of m points (m-1 

intervals or buckets), it requires about 
2m operations. Once the exercised and unexercised prices are calculated for 

layer n-1, the exercise boundary can be calculated. It should be noted that the exercised price needs to be calculated 

only if it is positive, but the unexercised price is positive everywhere before expiration date. This process is repeated for 

every layer until the exercise boundary is fully mapped. For bonds, calls are more economical to be exercised on the left 
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side (lower rates) of the exercise boundary and puts on the right side. However, there is no need to calculate the security 

price at all these points. We can use quadratic interpolation to calculate the forward price in layer n. 

The most time consuming part of the calculation is usually the calculation of the security price which needs to be 

calculated at each node of each layer only once. Quadratic interpolation can then be used to calculate it at every other 

point. Thus, the security price calculation that is used for drift calculation can be used for building the multinomial trees 

without any further adjustment. 

Given that at the exercise boundary the prices of exercised and unexercised options are the same, deviations in interest 

rates or security prices in the interlayer intervals will result in small errors. We will review this point in more detail later 

in this paper.  

For options with a single strike price or strike yield, the exercise boundary is a continuous function of time. However, 

for an option with multiple strike prices such as a callable bond that has different call prices at different times, the 

exercise boundary is discontinuous. If the exercise boundary is discontinuous, there are layers where no exercise is 

possible. 

Figure 3 shows the exercise boundary of an American Swaption with expiration of 5 years and maturity at expiration of 

10 years. The left axis is the number of standard deviations in the UND space that defines the exercise boundary and the 

right axis is the equivalent yield. The equilibrium forward yield is about 2% and therefore the boundary’s yield 

approaches 2% at time to expiration approaches zero. The slope of the exercise boundary increases as it approaches zero 

time to maturity and is consistent with the findings of Evan, Kuske and Keller (2002).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Exercise boundary of 5x10 Swaption 

 

Callable bonds are usually different from American Receiver Swaptions, in that there is no expiration date and the 

option is a wasting option if not exercised. For this reason, the incentive to exercise early is significantly higher than for 

swaptions. Some bond options have call schedules, where the call price at earlier dates is higher than at later dates. For 

bonds with a call schedule, the exercise boundary is discontinuous and there are regions where it is not economical to 

exercise at any yield. For example, for a bond that has an exercise price of 102 which falls to 100 in a month, no 

exercise yield is economical, unless the coupon rate of the bond is at least 24%.  We will analyze a bond with the 

following characteristics: 

Coupon Maturity Call 1 Call 2 Call 3 Price

8.375 1/27/28 7/18/23 7/18/24 7/18/25 102.7

104.1875 102.09375 100  
 

Assuming that the volatility of this bond is perfectly correlated with the volatility of Swaptions, we can map out the 

exercise boundary of this bond.  
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Figure 4. Exercise boundary of a Corporate bond with Call Schedule 

Other than the discontinuities which happen just before exercise price changes, the curves are not smooth like Figure 3 

due to coupon effects. The risk profile of a bond changes just before and after coupon payment. For example, the 

duration has a jump increase immediately after a coupon payment and starts declining as it approaches the maturity date, 

resulting in a saw tooth pattern. Similar pattern exists for Swaptions as well, however, the coupon rate is much lower 

and time to maturity is significantly higher and it appears smooth to the eye. Given that the bond trades at a premium, 

there is a large incentive to call the bond early. In Figure 4, the exercise boundary in the range of 1-2 years is at about 

zero Stdev.  

6. Feed Forward Pricing 

The next step in evaluating American options is to work from the first time that the option is exercisable and take out all 

the paths that have led to early exercise and evolve unexercised paths to forward dates. 

In order to calculate the option price, we start with the first layer, i.e., the first time the American bond option can be 

exercised. The buckets that are in the exercise zone are exercised and the present value is calculated based on the 

discount function and their weight. The contribution of these buckets are then taken out of the distribution. The 

remainder of the buckets are evolved to the next layer and the fractions that fall into the exercise zone are exercised. 

The buckets that are exercisable are calculated assuming that the exercise point is in the middle of the bucket. We will 

then make adjustments to the option price considering that the exercise point is continuously spread in each bucket. (See 

Appendix). The present value of each exercisable bucket is calculated using the exercise dependent discount function. 

Since the exercise boundary usually falls somewhere in a bucket, the contribution of the bucket at the exercise boundary 

to the price requires special consideration. 

Table 1. Calculated Swaptions prices and comparison with Bloomberg values – January 3, 2020 

 

 

 

 

 

 

 

 

 

 

 

 

* Source: Bloomberg Finance L. P. 

Table 1 lists at-the-money (ATM) option premiums calculated for swaptions with forward maturities of 10 years and 

expiration dates of 3 months, 1 and 5 years on January 3, 2020 and comparing our values with those of Bloomberg’s. 

C/P A/E Expire Vol Fwd Rate
Fwd 

BBG*
Prem

Prem No 

Adj

Prem 

BBG*

C E 4/3/20 0.3496 1.7594 1.7574 1.1126 1.1124 1.2241

P E 4/3/20 0.3496 1.7594 1.7574 1.1116 1.1118 1.2513

C A 4/3/20 0.3496 1.7594 1.7574 1.1163 1.1162 3.9283

P A 4/3/20 0.3496 1.7594 1.7574 1.1151 1.1152 4.6450

C E 1/4/21 0.3406 1.7898 1.7878 2.1715 2.1656 2.3767

P E 1/4/21 0.3406 1.7898 1.7878 2.1551 2.1646 2.3767

C A 1/4/21 0.3406 1.7898 1.7878 2.2565 2.2540 4.3306

P A 1/4/21 0.3406 1.7898 1.7878 2.2152 2.2195 5.0792

C E 1/3/25 0.3021 1.9982 2.0029 4.4175 4.3036 4.8212

P E 1/3/25 0.3021 1.9982 2.0029 3.9796 4.3013 4.8212

C A 1/3/25 0.3021 1.9982 2.0029 5.7188 5.6871 5.9574

P A 1/3/25 0.3021 1.9982 2.0029 4.7851 4.8971 6.4101
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We used Bloomberg’s valuations as a proxy for the broad conventional models. Our forward rates were slightly 

different from Bloomberg’s, which could be due to the timing of the data capture or to methodology. This should have 

minimal effect on the ATM premiums. We also provide a column for the premiums without adjustment to the discount 

function (See Simozar 2019) for comparison. 

Bloomberg’s premium for American options are not accurate for any expiration. For example, there is no way to justify 

a premium of 4.64 for a three months American put while the European put premium is just 1.25. For five-year options, 

the effect of discount function becomes very significant and none of Bloomberg’s premiums are reliable. By comparing 

the premiums with and without adjustments, we can see that the effect of adjustment is not symmetric, largely due to 

the lognormal distribution of forward rates, where there is no upper bound for rates. Given the low level of rates, the 

effect of adjustments is relatively small. During the steep yield curves of 2010-2016, the typical adjustment for the call 

price was about 10% of its premium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Bloomberg’s option premium 1y x10y put ; used with permission of Bloomberg Finance, L.P. 

 

7. Number of Layers  

While our calculations for every layer of American options are very accurate, our methodology doesn’t account for the 

value of premium for interlayer exercise of the options. As such, the calculated premium is understated. Another way to 

look at the exercise boundary is the point that the marginal time value of the option is equal to the marginal accrual of 

interest rate difference between the underlying and the then prevailing rates. Thus, for a call, just below the exercise 

boundary, the option is already in the money, but not deep enough for exercise. For example, if we use 20 layers for a 

5-year option we would be monitoring the option once a quarter. Using the volatilities and rates in Table 1, we can 

estimate a deviation of 3.14 23.6 / 8 25.9bps  . The expected accrual for this rate change for the second half of the 

quarter will be 25.9 / 8 3.2bps . This is an underestimate of how much a continuously monitored option will be worth. 

The primary contribution to the premium for interlayer exercise is from interlayer volatility which is proportional to the 

square root of interlayer spacing, which itself is inversely proportional to the number of layers.  
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Figure 6. Option premium as a function of 
1/ Number of Layers

 

 

Figure 6 is a plot of the calculated premium of a 5-year call swaption in Table 1 as a function of the square root of the 

inverse of the number of steps. We used 16 layers for calculating premiums in Table 1. Using market volatility and 

considering that the interlayer volatility is not constant and the fact that a bond at a given layer is different from a bond 

in the next layer, the linear fit of the premiums is very good with an 
2R  of 0.994. We can estimate the true premium 

by extrapolation to be about 5.91. If we use just two points on the curve, e.g., 8 and 16 layers and extrapolate the data 

we will get a premium of 5.91 and if we use 8 and 24 points on the curve, we will get a premium of 5.90. 

Similar to binomial option pricing models the convergence rate of the premium is proportional to N . However, 

there is a relatively large difference between our model and binomial tree models. Most of the interlayer contribution to 

our model comes from early exercise, where the exercise boundary is deep in the money and the premium gained for 

early exercise is very large. For binomial trees, the tree is very sparsely populated at the early stages of the tree and such 

gains cannot be easily realized.  

8. Remarks on Bond Options 

In Table 1 we saw that the conventional models overestimate the premiums of American options for risk free bonds. 

Granted that the methods presented in this paper incur a much higher CPU cost, the accuracy that it offers outweighs the 

extra computational time. Even though there are no closed form solutions for bond options, we can achieve comparable 

accuracy by using interpolation as in Figure 6. However, the interpolation gain is only 2-3%, while the conventional 

methods appear to be off by as much as 50-100%. Risk free European options, which are by far the easiest to analyze 

are not immune to corrections; the adjustment resulting from the discount function for the call and put options results in 

a price divergence of about 10% for a 5-year option. 

References 

Alobaidi, G., & Mallier, R. (2017) American Bond Options Close to Expiry. Acta Math, LXXXVI, 2. Retrieved from 

https://projecteuclid.org/euclid.jam/1048560224 

Barone-Adesi, G. (2005). The Saga of the American Put. Journal of Banking and Finance, 29. 

https://doi.org/10.1016/j.jbankfin.2005.02.001 

Barone-Adesi, G., & Whaley R. (1987). Efficient Analytic Approximation of American Option Values. Journal of 

Finance, 42. https://doi.org/10.1111/j.1540-6261.1987.tb02569.x 

Black F., & Karasinski, P. (1991). Bond and option pricing. Financial Analysts Journal. Retrieved from 

https://doi.org/10.2469/faj.v47.n4.52 

Black, F. (1976). The pricing of commodity contracts. Journal of Financial Economics, 3. 

https://doi.org/10.1016/0304-405X(76)90024-6 

Black, F., & Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. The Journal of Political Economy, 81. 

https://doi.org/10.1086/260062 

Brennan, M. J., & Schwartz, E. S. (1979), A continuous time approach to the pricing of bonds. Journal of Banking 

and Finance, 3. https://doi.org/10.1016/0378-4266(79)90011-6 

Chance, D. M. (2008). A Synthesis of Binomial Option Pricing Models for Lognormally Distributed Assets. Journal of 

Applied Finance, 18. https://doi.org/10.2139/ssrn.969834 

https://doi.org/10.1016/j.jbankfin.2005.02.001


Applied Economics and Finance                                          Vol. 7, No. 3; 2020 

65 

 

Cox, J. C., Ross, S. A., & Rubinstein, M. (1979). Option Pricing: A simplified Approach. Journal of Financial 

Economics, 7. https://doi.org/10.1016/0304-405X(79)90015-1 

Evans, J. D., Kuske, R., & Keller, J. B. (2002). American options on assets with dividends near expiry. Math. Finance, 

12. https://doi.org/10.1111/1467-9965.02008 

Heath, D., Jarrow, R., & Morton, A. (1990). Bond Pricing and the Term Structure of Interest Rates. Journal of Financial 

and Quantitative Analysis, 25. https://doi.org/10.2307/2331009 

Ho, T. S. Y., & Lee, S. B. (1986). Term structure movements and pricing interest rate contingent claims. Journal of 

Finance, 41. https://doi.org/10.1111/j.1540-6261.1986.tb02528.x 

Hull J. C., & White, A. (1990). Pricing interest-rate-derivative securities. Review of Financial Studies. A. 

https://doi.org/10.1093/rfs/3.4.573 

Joshi, M. S. (2008). The Convergence of Binomial Trees for Pricing the American Put. A. 

https://doi.org/10.2139/ssrn.1030143 

Ju, N., & Zhong R. (1999). An Approximate Formula for Pricing American Options. Journal of Derivatives, 7. 

https://doi.org/10.3905/jod.1999.319140 

Sharpe, W. (1978). Investments. 

Sullivan, M. (2000). Valuing American Put Options Using Gaussian Quadrature. Review of Financial Studies, 13. 

https://doi.org/10.1093/rfs/13.1.75 

Vasicek, O. A. (1977). An equilibrium Characterization of the Term Structure. Journal of Financial Economics, 5. 

https://doi.org/10.1016/0304-405X(77)90016-2 

Xie, D. J. (2009) Theoretical and Numerical Valuation of Callable Bonds. The International Journal of Business and 

Finance Research, 3. Retrieved from  

http://www.theibfr2.com/RePEc/ibf/ijbfre/ijbfr-v3n2-2009/IJBFR-V3N2-2009-5.pdf 

 

Appendix 

In the bucket approach, we convert lognormal distribution of rates to a unit normal distribution (UND) as follows: 
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(A.1) 

The UND is divided into 80 intervals or buckets (81 points) covering -6σ to +6σ. For the first layer, the probability 

distribution is known analytically from the sigma and drift of the first layer. We take out all the buckets that are 

exercisable on this first layer and evolve the remaining buckets to the next layer, one bucket at a time. The probability 

distribution of the remaining layers, can theoretically be calculated analytically, however, it will become 

computationally prohibitive with multiple layers. However, the total weight of each bucket can be calculated very 

accurately for each layer and then it can be used to evolve the distribution to the following layers. 

In order to calculate the weight distribution of a bucket, we take the bucket plus its two adjacent neighbors and we fit 

their weights to a quadratic equation. If we label the buckets as 1, 2 and 3 and assume that the center of the middle 

bucket is at the origin, with a width of x , the function z(x) represents the weight distribution of the buckets. Using a 

Taylor expansion, we can write, 

http://www.theibfr2.com/RePEc/ibf/ijbfre/ijbfr-v3n2-2009/IJBFR-V3N2-2009-5.pdf
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 (A.2) 

The parameters a, m and c, representing level, slope and curvature can be calculated as follows 
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(A.3) 

For points on the tail of the distribution, quadratic approximation does not work since the weights can be exponentially 

decaying. For example, if the range of weights is a factor of 100, then quadratic fit can result in some points having a 

negative weight which is not possible. For such buckets, the log of weights can be fit to a quadratic equation. This can 

be of significance at the exercise boundary where only part of a bucket is used. If the weights are decreasing or 

increasing almost exponentially, we can use the following method. 
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 (A.4) 

 

The resulting quadratic equation represents the log of weight of a bucket not the function of that weight. Therefore, it is 

not integrable. In order to calculate the area of half a bucket in the interval ( , / 2x x x ), we start from a point that 

the density is negligible, e.g., at 10x x   and work backward as follows. 
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Given, the quadratic fit to the weight distribution, there are two sets of corrections that need to be made, Intralayer price 

correction and Interlayer weight correction. The intralayer correction is used for price calculation by making 

adjustments to the calculated price of the option, given that the bucket approach assumes that the weight and price for 

each bucket is concentrated in its center.  

The interlayer correction is used to adjust for the weight of an unexercised bucket as it evolves to the next layer, 

considering that its weight is not centered at its middle.  

 

Intralayer Correction – We assume that the price distribution, like the weight distribution is quadratic and write it as 

 

2
2 2

0 2 2 22
0 0

2
1 2 2 2

2 2

2
3 2 2 2

1 1
( )

2 2

1
( )

2

(0)

1
( )

2

p p
p x p x x a m x c x

x x

p x p a m x c x

p p a

p x p a m x c x

 
     

 

      

 

      

 (A.6) 

Leading to 
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(A.7) 

The contribution of a bucket to the price of the option without correction is simply its weight multiplied by its price, i.e., 
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The contribution to the price including the adjustment to the second order will be 
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After simplification and calculating the integral, we find 
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Except for the bucket at the exercise boundary, for all other buckets 1x x   and 2x x  . Thus, the adjustment 

can be simplified to 
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Interlayer Correction – In our bucket approach, we assume that the weight of a bucket and the price of the option or 

the forward bond in the bucket are concentrated in the middle of the bucket. However, given the shape of a normal or 

lognormal distribution, the center of gravity of a bucket is not in the middle, but is slightly closer to the middle of the 

distribution than the tails. This will result in a slight flattening of the distribution when all the points in a layer are 

evolved to the next layer. The buckets that are within   lose weight and other buckets gain weight due to the 

change in the curvature of the distribution at  . After about 25 layers the bucket in the middle of the distribution 

loses about 1% of its weight, which is very small, but can have a measurable effect on the price of an option. Making 

adjustments to the weights, resolves this issue. 

The buckets in each layer are structured from its UND, but their breadth is governed by their overall sigma. When 

evolving a bucket from one layer to the next, we have to consider the fact that they have different scaling factors, equal 

to their sigma. 

Now, consider a bucket in layer n-1 which needs to be distributed to a bucket in the next layer n, centered at point b, 

using an interlayer sigma of i . The distribution density at point b (measured relative to the middle of bucket in layer 

n-1) will be 
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The distribution density at point b for a point that is at x, relative to the center of the bucket will be 
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Thus, the total contribution to a bucket in layer n centered at b with a size of u  will be 
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Using a Taylor series expansion of the probability distribution around b and simplifying the result and noting that the 

contribution without the adjustment will simply be, 
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We can calculate the adjustment to the distribution considering that its weight is not all concentrated at its middle, will 

simplify to 
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(A.16) 

Thus, the interlayer adjustment can be written as 
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For buckets that are not on the exercise boundary, this is simplified to 
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Note the sign difference between (A.10) and (A.17) 
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