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Abstract 
In this paper, we explore the valuation performance of Heston and Nandi GARCH (HN GARCH) model on the pricing 
of options of financial stocks listed for AMEX during pre and post financial crisis periods. We find that the GARCH 
pricing model presents better performance than the traditional Black-Scholes model for the out-of-sample option pricing, 
no matter what the moneyness and the time-to-maturity. Specifically, the models show the effects of liquidity is not 
significant. Intuitionally, smaller liquidity tends to exhibit more pricing errors, especially for longer mature options. 
Unfortunately, we cannot get the expected outcomes, which is that the period of post financial crisis tend to have larger 
pricing errors. In sum, except more computational convenience, the HN GARCH model offers another vision of the 
relationship between liquidity and its effect on pricing errors. 
Keywords: GARCH option pricing model, HN GARCH model, liquidity, financial crisis 
1. Introduction 
The Black-Scholes model (1973) assumes that asset prices can be modeled as geometric Brownian motion and follow a 
log-normal distribution with constant volatility. A direct result of these assumptions is that all options on the same asset 
should have the same implied volatility, since they are all based on the same underlying asset. Fama (1965) and 
Mandelbrot (1966), however, found that stock returns tend to have issues of fat-tailed marginal distributions and 
volatility clustering. Moreover, it has been shown in actual practice that Black-Scholes implied volatilities for options 
on the assets are not constant. They actually vary depending on the specific exercise prices and time to maturity of the 
options. It has been conjectured that Black-Scholes model fails to correctly capture the underlying factors affecting the 
option prices due to its assumption of constant volatility. Naturally, this weakness of the Black-Sholes model has been 
suggested as evidence of the existence of stochastic volatility of financial asset prices. In response to this weakness, 
many of the researchers have tried to develop original models to try to capture this stochastic volatility of financial asset 
prices over the last two decades. Hence, it is worthwhile to examine whether these models based on the assumption of 
stochastic volatility of financial asset prices actually improve the performance of the Black-Scholes model. 
Given that volatility is not observable, an alternative way is to use one option implied volatility to price other options. 
Nevertheless, the above way is prone to error, when the option’s volume is low. Therefore, GARCH model is preferred. 
Duan (1995) incorporated GARCH into a discrete-time model and proposed the GARCH option pricing model to 
extend the Black-Scholes model. The model belongs to a family of ARCH models first introduced by Engle (1982) and 
later improved upon by Bollerslev (1986) as the GARCH model. The main hypothesis of the GARCH model is 
conditional heteroskedasticity, with variance determined by a series of parameters and a sequence of random variables 
that are noise. To further capture the negative correlation between returns and conditional volatility, Engle and Ng 
(1993) presented the nonlinear GARCH, or NGARCH model.  
However, there are less closed-form solutions for option prices on most GARCH models. Heston and Nandi (2000) 
developed a closed-form GARCH model for European option. Specifically, their model is suitable for multiple lags in 
the time series dynamics of the variance process and correlation between the returns of the spot asset and variance. 
Based on HN GARCH model in the American Stock Exchange (henceforth AMEX), we compare its pricing errors with those 
of the Black-Scholes model. According to Su, Huang, and Fung (2011) and Su, Chen, and Huang (2010), the GARCH model 
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demonstrates smaller out-of-sample valuation errors compared to the Black-Scholes model with slight modifications. 
In addition to the comparison of the out-of-sample valuation errors of the GARCH model and Black-Scholes model, 
this paper also investigate the influence of the liquidity of the underlying asset on the option pricing error pre and post 
the financial crisis. It is reasonable to consider the liquidity of the underlying asset. The higher liquidity of an asset is 
associated with the least information asymmetry. Thus, the smaller the pricing errors we can expect. The most 
important is that, however, the models presented in this paper show the effects of liquidity is not significant. Generally 
speaking, greater liquidity results in less pricing errors, especially for the long mature options. Unfortunately, we cannot 
get the expected outcomes, which is that the period of post financial crisis tend to have larger pricing errors. 
This paper is organized as follows. In Section 2, we present the data and methodology. Section 3 provides the empirical 
results. Section 4 concludes. 
2. Data and Methodology 
2.1 Data Description 
The sample time series data which has been analyzed in this paper were obtained from Option Metrics in Wharton 
Research Data Services (WRDS). The sample series data consist of time series of reported closing prices of American 
options as well as the stock prices of a total of seven companies. These are Bank of America, Citigroup, Goldman Sachs, 
ING Groep, JP Morgan Chase, Morgan Stanly, and Wells Fargo. Because of the financial industry was the origin of the 
financial crisis, all samples are chosen from the financial industry. Table 1 presents the summary statistics. 
Moreover, the sample data is divided into two parts. The first part is from 06/17/2008 to 09/17/2008, and the other part 
is from 09/18/2008 to 12/18/2008 for a total of 65 trading days respectively. What we use to split these two parts is the 
beginning of the financial crisis, which is thought to be the date of the collapse of Lehman Brothers. To make the 
computations feasible, it is assumed that dividends paid out by these companies are zero and need not be subtracted 
from their stock prices. We use the continuously compounded Treasury bill rates as the risk free rate. 
Table 1. Summary Statistics 

We restrict to only analyze call options in this paper. In addition, an option is sampled when it is suitable for the 
following standards. First, to ensure a certain level of credibility, we eliminate the deeply out-of-money (OTM) and 
in-the-money (ITM) options. That is, we delete the call options with K/S, lower than 0.95 or higher than 1.05. Second, 
to ensure the active trading of the options, we only use those options with volume no less than 100 contracts. 
Therefore, the number of observations is 14024. Further, we divide the sample into ten groups according to their 
moneyness and time to maturity. In the light of moneyness, the sample is cataloged into three parts: ITM 
( 99.0/95.0 <≤ SK ), at-the-money (ATM, 01.1/99.0 <≤ SK ), and OTM ( 05.1/01.1 <≤ SK ). We further 
base on their time to maturity to classify: short-term (not greater than to 30 days) and long term (greater than 30 days). 
Moreover, the daily historical closing stock prices, from 06/17/2007 to 06/16/2008, are used to estimate the parameters 
of the GARCH process. 
2.2 The Model 
This section presents the option pricing process based on the closed form GARCH option valuation model (Heston and 
Nandi, 2000). The HN GARCH model provides a more applicable solution for the real option market instead of slow 
and computationally intensive simulations given by traditional GARCH models. Two assumptions should be made in 
the HN GARCH model. First, the log-spot prices obey a GARCH process. Second, the value of a call option one period 
before expiration obeys the Black-Scholes-Rubinstein (hereafter BSR) formula. We use a BSR formula for the spot 
price follows a conditionally lognormal distribution. BSR follows this up with the following propositions: 

Name of company Average three month 
trading volume(in million)

Market capitalization 
 (in billion) 

Price to earning ratio 

Bank of America 138.34 124.42 N/A 
Citigroup 422.05 133.37 12.97 
Goldman Sachs 4.78 82.61 11.46 
ING Groep 2.07 49.86 14.37 
JP Morgan Chase 29.9 181.68 10.13 
Morgan Stanley 11.61 39.54 9.95 

Wells Fargo 36.06 153.35 13.17 
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Proposition 1:  
Let ( )φf  denote the conditional generating function of the asset price, as the following shows: 

( ) ( )[ ]φφ TSEf t=                   (1) 

This is also the moment generating function of ( )( )TSlog . It should be noted that, while ( )φf  actually depends on 

the parameters and state variables of the model, these are omitted for notational convenience. In addition, ( )φf  will 

also be used to denote the generating function of the risk-neutral process. 
Proposition 2: 
The generating function takes the log-linear form 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) 
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for the single lag (i.e. 1== qp ) version, and these coefficients can be computed recursively using the following 
boundary conditions: 
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Since the generating function of ( )TS  is the moment generating function of ( )( )TSlog , ( )φif  is the 
characteristic function of ( )( )TSlog . The risk-neutral probabilities may then be calculated by inverting the 
characteristic function. This leads naturally to another proposition. 
Proposition 3: 
If the characteristic function of the log spot price is ( )φif , then 
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where Re denotes the real part of a complex number. 
The price of an option is then simply the discounted expected value of future payoff, Max(S(T)-K,0), calculated using 
the risk-neutral probabilities. In other words, the option value may be easily calculated by replacing ( )φif  with 

( )φif *  in the equations above. The value of a European option may then be established through the following 
corollary. 
3. Empirical Results 
The empirical analysis starts with the estimation of GARCH model by Maximum Likelihood Estimation (MLE) with 
time series data on stock returns in section 2. Section 3 follows up with model comparisons between Black-Scholes and 
GARCH for out-of-sample time series data. 
3.1 Estimation 
GARCH model is used to model the evolution of volatility. Thus, all parameters can be estimated directly from the past 
stock prices. The estimation is done with the MLE method used by Bollerslev (1986). In addition, we run the estimation 
twice for an unrestricted model and a restricted model. This estimation is performed on the data of time series of stock 
prices from Jun. 17th, 2007 to Jun. 16th, 2008. Figures 1 and 2 present the annualized volatility of the unrestricted model 
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Stanley, in the period of post financial crisis, are more accurately priced than the period of pre financial crisis, which is 
inconsistent with the rationale in earlier sections. Due to the infrequency trading, the call options with lower liquidity 
behave more like European options, whose volatilities are smaller than American options. 
Last but not least, Wells Fargo features the greatest errors in pricing (as measured by MAE and RMSE) of all the 
companies in the period of pre financial crisis. 
Table 2. The out-of-sample pricing errors proxied by MAE 

Model ITM ATM OTM 
Bank of America BS GARCH BS GARCH BS GARCH

Pre Crisis ToM≦30 1.44 0.006 1.374 0.074 -0.401 -0.026
ToM＞30 1.714 0.004 1.37 -0.044 1.182 0.014

Post Crisis ToM≦30 -0.528 0.02 -1.537 0.039 -0.701 0.054
ToM＞30 1.696 0.004 1.849 0.01 2.126 0.018

Citigroup 
Pre Crisis ToM≦30 -0.264 -0.004 -0.494 0.011 -0.472 -0.017

ToM＞30 -0.13 0.024 -0.189 -0.002 -0.159 0.006
Post Crisis ToM≦30 -0.444 -0.02 -0.625 -0.033 -0.573 -0.043

ToM＞30 -0.408 0.015 -0.411 0 -0.435 0
Goldman Sachs 

Pre Crisis ToM≦30 -0.313 -0.017 -0.344 -0.018 0.054 0.002
ToM＞30 -0.121 -0.001 -0.102 -0.005 -0.101 -0.005

Post Crisis ToM≦30 -0.537 -0.008 -0.633 0.031 -0.636 0.002
ToM＞30 -0.4 0.006 -0.41 0.011 -0.422 -0.007

ING Group 
Pre Crisis ToM≦30 -0.298 0.02 -0.368 0 -0.63 -0.05

ToM＞30 -0.089 0.002 -0.146 -0.017 -0.172 0.025
Post Crisis ToM≦30 -0.546 0.018 -0.597 0.05 -0.775 0

ToM＞30 -0.555 0.012 -0.522 -0.045 -0.655 -0.053
JP Morgan 
Pre Crisis ToM≦30 2.19 0.002 1.457 0.008 1.018 0.012

ToM＞30 1.482 -0.009 2.755 -0.004 2.466 -0.011
Post Crisis ToM≦30 1.006 0.006 0.572 -0.013 1.893 -0.007

ToM＞30 1.84 -0.002 1.678 0.004 1.75 -0.003
Morgan Stanley 

Pre Crisis ToM≦30 -0.416 0.004 -0.464 -0.029 -0.474 0.012
ToM＞30 -0.176 -0.005 -0.16 0.008 -0.153 0

Post Crisis ToM≦30 -0.583 0.01 -0.729 0.005 -0.762 -0.041
ToM＞30 -0.476 -0.011 -0.56 -0.01 -0.568 0.003

Wells Fargo 
Pre Crisis ToM≦30 0.234 -0.513 0.438 -0.573 1.204 -0.692

ToM＞30 -0.282 -0.29 -0.243 -0.3 -0.049 -0.315
Post Crisis ToM≦30 -0.551 -0.018 -0.656 0.029 -0.724 -0.006

ToM＞30 -0.408 -0.006 -0.446 -0.002 -0.474 -0.004
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Table 3. The out-of-sample pricing errors proxied by MPE 
Model ITM ATM OTM 

Bank of America BS GARCH BS GARCH BS GARCH
Pre Crisis ToM≦30 1.546 0.581 1.083 0.338 1.212 0.385

ToM＞30 2.222 1.268 1.884 1.079 2.022 1.123
Post Crisis ToM≦30 1.358 0.549 3.543 1.346 1.795 0.477

ToM＞30 2.439 1.105 2.218 0.786 2.704 0.977
Citigroup 
Pre Crisis ToM≦30 0.485 0.146 0.482 0.1 0.354 0.077

ToM＞30 0.53 0.318 0.507 0.288 0.38 0.258
Post Crisis ToM≦30 0.76 0.145 1.186 0.182 0.658 0.104

ToM＞30 1.245 0.318 1.236 0.321 1.091 0.275
Goldman Sachs 

Pre Crisis ToM≦30 3.736 1.232 2.679 0.842 1.902 0.548
ToM＞30 2.783 2.476 2.153 2.142 2.067 1.892

Post Crisis ToM≦30 5.917 1.078 5.565 0.894 5.351 0.76
ToM＞30 8.366 2.263 7.992 2.154 7.747 2.04

ING Group 
Pre Crisis ToM≦30 0.685 0.205 0.536 0.131 0.448 0.075

ToM＞30 0.277 0.188 0.387 0.28 0.446 0.236
Post Crisis ToM≦30 0.876 0.157 0.599 0.108 0.741 0.096

ToM＞30 1.531 0.282 1.398 0.243 1.581 0.251
JP Morgan 
Pre Crisis ToM≦30 1.557 0.294 1.653 0.262 0.902 0.145

ToM＞30 1.893 0.473 2.208 0.417 1.826 0.349
Post Crisis ToM≦30 1.9 0.327 1.652 0.244 1.441 0.182

ToM＞30 3.004 0.63 2.793 0.567 2.954 0.499
Morgan Stanley 

Pre Crisis ToM≦30 1.478 0.361 1.189 0.268 0.859 0.193
ToM＞30 1.204 0.653 0.967 0.567 0.892 0.51

Post Crisis ToM≦30 1.646 0.273 1.925 0.265 1.728 0.224
ToM＞30 2.477 0.544 2.763 0.517 2.531 0.465

Wells Fargo 
Pre Crisis ToM≦30 3.295 1.443 3.078 1.189 3.136 0.953

ToM＞30 4.768 1.337 4.018 1.169 4.142 1.103
Post Crisis ToM≦30 1.873 0.338 1.718 0.266 1.603 0.226

ToM＞30 2.553 0.658 2.534 0.598 2.444 0.545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Applied Economics and Finance                                          Vol. 4, No. 4; 2017 

167 
 

Table 4. The out-of-sample pricing errors proxied by RMSE 
Model ITM ATM OTM 

Bank of America BS GARCH BS GARCH BS GARCH
Pre Crisis ToM≦30 1.593 0.688 1.176 0.429 1.308 0.445

ToM＞30 2.539 1.446 2.053 1.212 2.194 1.248
Post Crisis ToM≦30 1.523 0.708 2.459 1.104 2.964 0.637

ToM＞30 2.557 1.35 2.294 1.032 3.389 1.311
Citigroup 
Pre Crisis ToM≦30 0.516 0.149 0.538 0.104 0.393 0.082

ToM＞30 0.587 0.331 0.655 0.303 0.429 0.275
Post Crisis ToM≦30 0.894 0.159 1.345 0.198 0.779 0.121

ToM＞30 1.317 0.332 1.338 0.336 1.163 0.29
Goldman Sachs 

Pre Crisis ToM≦30 3.976 1.253 2.904 0.864 2.426 0.597
ToM＞30 3.446 2.604 2.731 2.295 2.774 2.065

Post Crisis ToM≦30 6.513 1.149 5.973 0.949 5.934 0.835
ToM＞30 8.792 2.368 8.352 2.287 8.234 2.177

ING Group 
Pre Crisis ToM≦30 0.862 0.212 0.686 0.139 0.483 0.078

ToM＞30 0.448 0.254 0.508 0.288 0.671 0.25
Post Crisis ToM≦30 1.076 0.184 0.708 0.114 0.936 0.12

ToM＞30 1.661 0.305 1.592 0.26 1.658 0.268
JP Morgan 
Pre Crisis ToM≦30 1.915 0.332 2.119 0.305 1.202 0.181

ToM＞30 2.546 0.546 2.961 0.503 2.684 0.428
Post Crisis ToM≦30 1.993 0.357 1.766 0.275 1.691 0.233

ToM＞30 3.22 0.691 3.002 0.631 3.338 0.574
Morgan Stanley 

Pre Crisis ToM≦30 1.535 0.365 1.229 0.272 0.911 0.201
ToM＞30 1.774 0.682 1.468 0.595 1.48 0.549

Post Crisis ToM≦30 1.882 0.303 2.132 0.292 2.037 0.259
ToM＞30 2.569 0.567 2.84 0.542 2.636 0.489

Wells Fargo 
Pre Crisis ToM≦30 4.526 1.48 5.146 1.234 5.091 1.011

ToM＞30 5.724 1.493 4.619 1.299 5.152 1.237
Post Crisis ToM≦30 1.99 0.35 1.774 0.276 1.718 0.24

ToM＞30 2.696 0.678 2.665 0.621 2.583 0.573
4. Conclusions 
In this paper, we compare the valuation performance of GARCH model on the pricing of options of AMEX financial 
stocks between the pre and post financial crisis periods. The obvious observation is that the GARCH pricing model 
presents better performance than the traditional Black-Scholes model for the out-of-sample option pricing, no matter 
what the moneyness and the time-to-maturity. 
Although the GARCH model outperforms the other model, its valuation errors for ITM options are relatively high, 
especially when the time-to-maturity is more than 30 days. The reason for this inaccuracy might be that the sample 
period is either too long to include noise or too short to capture fully the volatilities.  
The most important is that, however, the models presented in this paper show the effects of liquidity is not significant. 
Generally speaking, smaller liquidity is prone to show more pricing errors, particularly for long term option. 
Unfortunately, we cannot get the expected outcomes, which is that the period of post financial crisis tend to have larger 
pricing errors. This may be that smaller liquidity induces that trading rarely happen. The behaviors of options with 
smaller liquidity are more like European options, Therefore, the HN GARCH model can more accurately model their 
pricing. 
In all, while Heston & Nandi GARCH model provide more computational convenient than other more optimal models, 
it still provides some useful vision of the relationship between liquidity and its effect on pricing errors.  
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