
Applied Economics and Finance 

Vol. 4, No. 1; January 2017 

ISSN 2332-7294 E-ISSN 2332-7308 

Published by Redfame Publishing 

URL: http://aef.redfame.com 

93 

 

Simulation and Calibration of Options Prices under a Levy-Type 

Stochastic Dynamic and Semi Markov Market Switching Regimes 

Processes 

Patrick Assonken
1
, Gangaram Ladde

1
 

1
Department of Mathematics and Statistics, College of Arts and Sciences, University of South Florida, Tampa, USA 

Correspondence: Patrick Assonken, Department of Mathematics and Statistics, University of South Florida, Tampa, 

USA. 

 

Received: September 12, 2016    Accepted: October 17, 2016   Available online: October 25, 2016 

doi:10.11114/aef.v4i1.1870   URL: http://dx.doi.org/10.11114/aef.v4i1.1870 

 

Abstract 

This work mainly highlights the benefits of derivative pricing in a semi Markov switching market. We explore the main 

differences between Markov and Semi Markov regime switching models. The three main problems we deal with are, (1) 

historical parameter calibration through the recently developed LLGMM method, (2) effects of semi Markov 

parameters on option prices and (3) comparison of Heston model, semi Markov regime model and Markov regime 

model calibration performances over both sequential option price calibration and the overall implied volatility surface 

of the market. Employing the LLGMM method, parameters of the spot price process described by a linear Levy-type 

stochastic differential equation under semi-Markov structural perturbations are calibrated to observed prices. From 

Fourier space time stepping and Carr and Madan methods, risk neutral parameters of the spot price are calibrated and 

interpreted. American and European style vanilla and exotic option prices are simulated. The presented results are 

shown in the context of a piecewise constant semi-Markov intensity matrix approximating a Weibull intensity matrix. 

We obtain that under the conditional minimum entropy martingale measure, option prices predictably increase as the 

regime risk increases through the intensity matrix of the semi Markov process. Calibration and simulation results 

demonstrate noticeable effects of semi-Markov parameters on option prices and a demonstrably better calibration fit of 

the Black Scholes model over the entire volatility surface, in a market with semi Markov regimes.  

Keywords: Semi Markov, Regime switching, Option pricing, LLGMM method, Levy processes, Minimum entropy, 

equivalent martingale measure  

1 Introduction 

Stochastic hybrid models have been used in financial modeling by quite a few authors among which, Assonken & 

G.S. (2015); Chourdakis (2005); Hainaut & Colwell (2014); Kloeden & Platen (1992); Ling & G.S. (2010); Siu & 

Ladde (2011). This is in response to the well documented limitations of the seminal stock price model by Black & 

Scholes (1973). The non-normality of log returns is exhibited by a pronounced skewness and fat tails along with 

non-constant implied volatility, therefore contradicting modeling assumptions made by Black & Scholes (1973). 

Moreover, smiles, smirks and skew empirically observed in the option market are unexplained by the Black Scholes 

model. Heavy tailed and asymmetric distributions have been successfully applied as a remedy to the log return 

distribution misfits. However, the skew, smile and smirk are reproduced by exponential Levy models for asset prices 

with relative success for short to medium maturity (Tankov (2003)). A consensual agreement is that volatility is not 

constant as assumed by Black & Scholes (1973). Furthermore, there is strong empirical evidence supporting stochastic 

volatility. Stochastic volatility and local volatility models have provided a better explanation for many stylized facts of 

the derivative market and log return times series. However, stochastic regime switching models with random volatility 

switching from one state to another provide an economically interpretable alternative to stochastic volatility and local 

volatility models. Regime switching models have been first used in Hamilton (1989) in the context of time series in a 

two-state market regime. Since then, a slew of regime switching stock price models have ensued (Assonken & 

G.S. (2015); Bulla (2006); Chourdakis (2002); Hainaut (2010); Jackson et al. (2007); Naik (1993)). However, most of 

the models developed are assumed to have Markov states. The convenience of Markov market states stems from the 

constant conditional intensity matrix of Markov processes which proves to be unrealistic for a market often undergoing 
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structural changes. Indeed, under the assumption of constant conditional intensities matrix, the market has the same 

propensity of switching regime at any given time, regardless of occurring changes. We note that application of Markov 

regime switching models to financial derivatives is still a work in progress, namely, Markov regime switching 

exponential Levy models for asset prices with applications in credit risk are used in Hainaut & Colwell (2014) and an 

option pricing method under Markov regime switching exponential jump diffusion (Costabile et al. (2014)). On the 

other hand, semi Markov regime switching models are a relatively unexplored topic (Assonken & G.S. (2015); Ghosh 

& Goswami (2009); Hunt & Devolder (2011b)). Moreover, simulation methods for option prices from Ghosh & 

Goswami (2009); Hunt & Devolder (2011b) along with continuous and discrete time MCMC calibration method 

formulated by Hunt & Devolder (2011b) for semi Markov Black Scholes models of asset prices are developed. Both 

calibration methods rely on normal likelihood simulation and aren’t extensible to other switching exponential Levy 

models. This is because they either do not have a closed form density function or their known density does not have 

easy-to-simulate-from conjugate priors. This issue is solved by Assonken & G.S. (2015), where a closed form 

expression for the characteristic function of log asset prices is developed. This paved the way for calibration and 

simulation of option prices induced by an arbitrary exponential Levy price process with closed form characteristic 

function. 

In this paper, we explore four problems of interest: estimation of historical parameters of a semi Markov switching asset 

price model via LLGMM approach first developed by Otunuga (2014) and Otunuga et al (2017), estimation of the 

effects of the semi Markov sojourn distribution parameters on option prices, application of Carr & Madan (1999) and 

the Fourier space time stepping algorithm of Jackson et al. (2007) to semi Markov modulated stock price processes and 

comparison of Markov modulated and semi Markov modulated stock price models. 

The paper is organized as follows: in Section 2, we define the model along with related filtrations. We use the LLGMM 

method to estimate the historical parameters of the model illustrated by three case studies in Section 3. Section 4 

highlights the effects of risk neutral semi Markov parameters on option prices and volatility surfaces via simulations 

based on the Carr and Madan method. We also show that we can use the Fourier time stepping method of 

R Jackson (2009) to price American options and exotic options. Both algorithms are shown to blend naturally in the 

semi Markovian regime model due to the piecewise constant assumption imposed on the conditional intensity matrix. 

Section 4 ends with calibrations of Heston model, Markov and semi Markov regime switching Black Scholes models to 

a couple of option data, and we compare the fit of all models through the residual mean square error risk function. 

Section 5 concludes our work with a summary and a few problems encountered along the way, which haven’t yet found 

a satisfying resolution.  

2. Preliminary Notations and Definitions of the Model 

Let T > 0 and T⋆ > 0 be the maturity date of an option contract and the time horizon of the market, respectively. We 

assume that the market is subjected to regime/state structural changes. It is assumed that the market structural states are 

governed by a semi Markov process [0, ]( )t T   . (θn,Tn) is the corresponding Markov renewal process, where Tn and θn 

= θTn are the time and the state of the process at the n-th regime change. We assume that the structural state domain E of 

[0, ]( )t T   is finite, and m = n(E). We also denote τn = Tn+1 -Tn the sojourn time of the semi Markov process. Let 

0( )n n   be a sequence of real nonnegative independent random variables modeling the price jumps at each regime 

change. We assume that the jump in price only depends on the past and current transition states of the semi Markov 

process, namely, 1 ,n nn   



 with density      1, .   0| { , },n n n ng n t max n I T t       denotes last regime change 

prior to or at time t. Let     , ,  ,t sdz ds and dz ds      be a Poisson random measure and its intensity measure, 

respectively. We denote ,     the compensated measure of ψ. G and H are smooth functions defined from ℝ × 

E into ℝ satisfying  
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2 2

| | 1 | | 11 ( , ) 1 1 ( , ) ( , ) , .[( ) ]z z
z

H z j G z j j dz j E 


      
(1)  

Condition (1) ensures that H and G have slow growth enough to allow existence and finiteness of average transformed 

small and big jumps. It also ensures that the average big jump is finite, which will ensure existence of certain expected 

values for some versions of H and G. Such features will be necessary in the remainder of the article as we will apply the 

isometry property of martingales. Let tL
 and tL

 be stochastic processes defined by:  

0 0 0 | | 1
( , ) ( , ) ( , ) ( , , )

t t t

t ss s s sz
L s ds s dB G z dz ds          


     

 

  

0 | | 1
( , ) ( , , )

t

s sz
H z dz ds   


 

 
                   (2) 

And 

( , ) 2

0 | | 1

1
( 1 ( , )) ( , ) ( , ) ( , )

2
[ ]s

t G z

t s s s sz
dL e G z dz s s ds

       


   


         

0
( , )

t

ss
s dB      

+ 
( , ) ( , )

0 | | 1 0 | | 1
( 1) ( , , ) ( 1) ( , , )s s

t tG z H z

s sz z
e dz ds e dz ds

 
   

 

 
 

       ,             (3) 

respectively. The asset price process  
[0, ]

( )
t T

x t


 is described by the solution of a following Levy-type stochastic 

differential equation developed by Assonken & G.S. (2015); Ladde & Ladde (2013):  

 

1

1 1 0

( ) ( ) , ( ) , [ , ),

( , , ), (0) , (0, ).

n

t n n n n

n n n n n

dx t x t dL x T x t T T

x x T T x x x n I











 

   


    

 (4)  

The solution process x defined on each interval [Tn,Tn+1) takes the following form found by Assonken & G.S. (2015) 

and  Ladde & Ladde (2013):  

 

1

1 1

( ) exp , [ , )

( , , ), (0, ).

[ ]n

n

t

n s n n
T

n n n n n

x t x dL t T T

x x T T x n I









 

  

    

  (5)  

Let ( ),  be the reference measurable space.  
0[ , ]

,t t T
  

0[ , ]
,t t T
 and 

 
0
,n n   are filtrations generated by 

the semi Markov process t  , the Levy processes sL
 s ∈ [0,t], ∀j ∈ E = {1,2,3,...,m} and the discrete sequence 

 
0
,n n


 , respectively. We also denote ( )t t n t 

 , Tt t 
 and t t t 

 ,∀t ∈ [0,T⋆]. Let P and Q be 

the historical probability and an equivalent martingale measures as found by Assonken & G.S. (2015), associated with 

the price process  [0, ]( )t t Tx   defined on the measurable space ( ), , respectively.  
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3. Parameter Estimation Via LLGMM 

We recall the definition of the infinitesimal generator developed by Assonken & G.S. (2015).  

Definition 3.1. Let and V represent the infinitesimal generator of the price process x(t) solution of the SDE (4) and a 

function such that 
, ,[ ]V      

 with V continuously differentiable in the first and second variables 

and twice continuously differentiable function in the fourth variable. Let s ∈ [Tn,Tn+1) with nT j 
 . We have,  

2
2 2 2

2

1 1
( , , , ) ( , ) ( , ) ( , )

2 2
[ ]

s s s s s s s s

V V V V
V s y x s s x s x

s y x x
             

   
    
   

 

  

+ 

( , )

| | 1
( , , , ) ( , , , ) ( , ) ( , )[ ]s

G z

s s s s s s s s sz

V
V s y x e V s y x G z x dz

x


    



        



 


   

+ 

( , )

| | 1
( , , , ) ( , , , ) ( , )[ ]s

H z

s s s s s s sz
V s y x e V s y x dz


   



      



   

+ 

, ( ) ( , , , ) ( , , , ) ( | , ) .[ ]
s

s

z

j s s s s s s sz
j

y V s y j x e V s y x b z j dz


        








  

(6) 

We establish two difference equations that are needed in the LLGMM estimation method.  

Lemma 3.1. Let 
, ,[ ]V      

 be continuously differentiable in the first and second variables and 

twice continuously differentiable function in the fourth variable 1 0 1 1( ) : ...n

n n

Mn

M k k n M nt T t t t TP 

      
 is a 

partition of the time interval [Tn,Tn+1), where θn = j. The conditional expectation and variance of V, associated with a 

discretized scheme of the transformed stochastic differential equation:  

 
( , , , ) ( , , , ) ( , )s s s ss s s s s

V
dV s y x V s y x s x dB

x
       


 


 

  

 + 

( , )

| | 1
( , , , ) ( , , , ) ( , , )[ ]G z j

s s s s s sz
V s y x e V s y x j dz ds       




   

 + 

( , )

| | 1
( , , , ) ( , , , ) ( , , ),[ ]H z j

s s s s s sz
V s y x e V s y x j dz ds       




  
(7) 

are:  

 1 11 1( , , , ) | ( , , , )[ ]
k k k k kk t t t k t t kE V t y j x V t y j x t
      

 
(8) 

 
= 

1 1 1 1

2

1 1( , , , ) ( , , , ) |[ [ ]| ]
k k k k k kk t t k t t t tE V t y j x E V t y j x
        

 
(9) 

Proof. We apply Euler-Maruyama discretization process as formulated by Kloeden & Platen (1992), to the transformed 

Levy-type stochastic differential equation (7) and obtain:  
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 1 1 11( , , , ) ( , , , ) ( , )
k k k k k kk t t k t t k k t t

V
V t y j x V t y j x t j t x B

x


  


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
 

  

 + 

( , )

| | 1
( , , , ) ( , , , ) ( , , )[ ]

k k k k

G z j

k t t k t t k
z

V t y j x e V t y j x j dz t

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 + 

( , )

1
| | 1

( , , , ) ( , , , ) ( , , ) at .[ ] n
k k k k

H z j n

k t t k t t k k Mz
V t y j x e V t y j x j dz t t P 


  

 
              (10) 

Now we apply the conditional mean to the numerical scheme (10) and have:  

1 11 1( , , , ) | ( , , , )[ ]
k k k k kk t t t k t t kE V t y j x V t y j x t
      

 
(11)  

1 1 1 1 1

2 2

1 1( , , , ) ( , , , ) | ( , )( ( )| ) [[ ] | ]
k k k k k k k k kk t t k t t t t t k t t

V
E V t y j x E V t y j x E x j t B

x


     


    


 

 

+ 

( , ) 2

1
| | 1

( , , , ) ( , , , ) ( , , )[[ [ ] ] | ]
k k k k k

G z j

k t t k t t k t
z

E V t y j x e V t y j x j dz t 

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+ 

( , ) 2

1
| | 1

( , , , ) ( , , , ) ( , , )[[ [ ] ] | ]
k k k k k

H z j

k t t k t t k t
z

E V t y j x e V t y j x j dz t 

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+ 
1

( , )

1
| | 1

2 ( , ) ( , , , ) ( , , , ) ( , , )[[ [ ] ]| ]
k k k k k k k

G z j

t k t k t t k t t k t
z

V
E x j t B V t y j x e V t y j x j dz t

x
 

 



  

   
 

+ 
1

( , )

1
| | 1

2 ( , ) ( , , , ) ( , , , ) ( , , ) .[[ [ ] ]| ]
k k k k k k k

H z j

t k t k t t k t t k t
z

V
E x j t B V t y j x e V t y j x j dz t

x
 

 



  

 
 

(12)  

ψ and B are independent martingales. Hence, the products involving both have zero expectations. We also note that 

products involving the compensated Poisson measure ψ for large and small jumps vanish as they never jump, 

simultaneously. From Ito isometry, (12) becomes:  

 1 1 1 1

2 2

1 1 1( , , , ) ( , , , ) | ( , )( ( )| ) [ ]
k k k k k k kk t t k t t t t t k k

V
E V t y j x E V t y j x x j t t

x


     


    


 

  

 + 

( , ) 2

1
| | 1

( , , , ) ( , , , ) ( , )[ ]
k k k k

G z j

k t t k t t k
z

V t y j x e V t y j x j dz t 


  
   

 + 
( , ) 2

1
| | 1

( , , , ) ( , , , ) ( , )[ ]
k k k k

H z j

k t t k t t k
z

V t y j x e V t y j x j dz t 


    
(13) 

This establishes the results.  

The following remark describes the jump integral estimation problem.  

Remark 3.1. (8) and (9) form the building blocks of the estimation procedure that is utilized to estimate the drift and 

diffusion coefficients. It is therefore possible that due to round off, discretization and computational errors, have 

negative values. Hence, it is critically important to choose an efficient numerical estimation methods of the Levy 

integrals. We chose to estimate Levy integrals via Monte Carlo integration method. We first note that compound 

Poisson processes have independent and identically distributed (iid) jump sizes. Hence, jumps sizes of Levy integrals 

are iid. We can apply the following Monte Carlo estimation scheme defined in Robert & Casella (2013):  

( )
( ,)

1

1
( ) ( , ) ( ) ( ),

( )
[ ]

n j
j

k
z

k

g z j dz E g z g z
n j






  
 

 
(14)  
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where g is a ν(j,)-integrable real valued function, and 
( )

1( )n j

i iz 
 is an iid sample of Levy jump sizes when the market is 

in state θt = j. n(j) denotes the number of Levy jump corresponding to the j - th regime.  

In the following Lemma, we present a particular case of interest along with an explicit formula for parameter estimates 

and a recursive formula for price simulation updates.  

Lemma 3.2. (i) If H(z,j) = G(z,j) = z,∀z ∈ ℝ,∀j ∈ E and V (t,yt,j,x(t)) = ln(x(t)), then the transformed stochastic 

Levy type differential equation, and the conditional expectations of Euler-Maruyama type discretization scheme in 

Lemma 3.1 reduce to:  

 
( , , , ) ( , , , ) ( , )s s s ss s s s s

V
dV s y x V s y x s x dB
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
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
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 1 1

2 2 2
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z
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(ii)  

At time tk, we consider the sub-partition 
,

, 1 1{ , ,..., }
n k k k

n k

M m n m n m ntt tP    
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n

n

MP   consisting of the past mk 

consecutive data values of the price process xt. We assume Δtk = Δt, μ(j,t) = μ(j) and σ(j,t) = σ(j). We denote 

,
ˆ

k k

j

t m  and ,
ˆ
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j
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,
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, respectively. Explicit 
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j

t m  and ,
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k k
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  (iii)  

We denote 
1
]ˆ |[

k k kt t tx xE


   the estimated conditional mean asset price. The following recurrence relation 

holds:  
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Proof. Under the assumption H(z,j) = G(z,j) = z,∀z ∈ ℝ,∀j ∈ E, using V (t,yt,j,x(t)) = ln(x(t)), and applying Lemma 

3.1, (8) and (9) reduce to (16) and (17), respectively. (ii) is a direct consequence of part (i). Summing up (18) and (19) 

over the sub partition 
,

,n k

n k

M mP
 we obtain:  

1

( )1

| | 1

1

1
ln( ) | 1 ( )
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[ ] [ ]

k k k

k

n jk

t t k k z k

i k m k

E x m z m j t
n j


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



  

    
 

(21)  
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 

         (22)  

Solutions of algebraic equations in (21) and (22) establish (18) and (19), respectively. For (iii), we consider n ∈ I(1,M) 

and tn-1,tn, points of the partition PM such that Tk-1 < tn-1 < tn < Tk where θTk-1 = j for some k ∈ I(1,∞). By Levy 

Kintchine formula Øksendal & Sulem (2005), we have:  
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Hence, at each time step tn, the simulated conditional mean observation is computed recursively as follows:  

1

( )
2

| | 1

1

1
垐 垐exp ( ) ( ) 1 1 ,

2 ( )
[ [ ]]k

n n k

n j
z

t t k z

k
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n j
 

 




        (23) 

where n(j) is the size of the data when the market is in regime j, hence proving the lemma.  

3.1 Parameter Estimation for Three Real Data. 

We assume the regime switching times observable. Although semi Markov jumps β, are not expected to stand out by 

their size, large jumps have empirically been associated with local structural changes through clustering Bulla (2006) 

and will therefore be chosen as jump times. These jump times could be used to estimate the sojourn time parameters of 

the semi Markov process; however, we focus on estimating the price jump distribution parameters and the parameters of 

the Levy distributions in between jumps. The IBM, Bank of America Corporation and BNP Paris Bas data were 

collected over a period of 20 years and six months (daily except for the weekends and market holidays) from January 

2nd 1994 to July 11th 2014. Structural changes were identified in each data set and the corresponding jumps were 

considered semi Markov market price jumps. Based on Lemma 3.2, we estimate the parameters of model (4) between 

jumps using the LLGMM algorithm developed in Otunuga (2014) and Otunuga et al (2017). The fit of the LLGMM is 

presented by the first columns of Figures 1, 2 and 3. Another feature of the LLGMM mentioned in Otunuga (2014) and 

Otunuga et al (2017), is the more obvious randomness in the volatility as opposed to that of Garch (1,1). The same 

conclusion is reached in the context of semi Markov exponential Levy asset prices as shown in the second columns of 

Figures 1, 2 and 3. As noted in Remark 3.1, jumps are independent and so are log jumps. Estimation of the parameters 

of the distribution of β could be performed by maximum likelihood.  
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Figure 1. The First Column Exhibits the Fit of the LLGMM Simulated IBM Stock Prices against Historical Prices. The 

Second Column Illustrates a Comparison of LLGMM and Garch (1,1) Annual Volatilities. 

 

Figure 2. The First Column Shows the Fit for the LLGMM simulated BAC Stock Prices Against Historical Prices. The 

Second Column Exhibits the Performance of the LLGMM and Garch (1,1) Annual Volatilities. 
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Figure 3.The First Column Exhibits the Fit of the LLGMM stock of Bank National de Paris (BNP) against Historical 

Prices. The Second Column Illustrates A Comparison of LLGMM and Garch (1,1) Annual Volatilities. 

Table 1. IBM, BAC and BNP Data Parameter Estimates and Simulation Results IBM: Overview of a few LLGMM 

Parameter Estimates and Simulated Values.  

       

Index: tk  Data: ytk  Estimate: ŷk  Error: |ytk -ŷk|  Volatility: sk  Drift: (j)  Sample: k:  

       

11  167.73  169.19  0.70  0.000033  -0.013  2  

12  169.72  168.82  0.90  0.000404  -0.002  2 

13  164.90  166.98  2.08  0.000434  -0.011  3  

14  165.45  165.71  0.27  0.000257  -0.008  5 

15  167.19  166.87  0.32  0.000026  0.007  2  

16  169.02  168.68  0.35  0.000000  0.011  2 

17  169.35  168.97  0.38  0.000240  0.002  6  

18  169.55  169.77  0.22  0.000029  0.005  3 

19  168.03  169.12  1.08  0.000052  -0.004  2  

6043  15.73  15.60  0.12  0.000259  0.009  2  

6044  15.59  15.59  0.00  0.000170  -0.001  296  

6045  15.65  15.64  0.01  0.000156  0.003  4  

6046  15.80  15.75  0.06  0.000019  0.007  2  

6047  15.71  15.72  0.01  0.000116  -0.002  100  

6048  15.75  15.75  0.00  0.000136  0.002  14  

6049  15.57  15.67  0.10  0.000049  -0.005  3  

6050  15.43  15.51  0.08  0.000003  -0.010  2  

       

 

 

BAC: Overview of a few LLGMM Parameter Estimates and Simulated Values.  
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Index: tk  Data: ytk  Estimate: ŷk  Error:|ytk -ŷk|  Volatility: sk  Drift: (j)  Sample: k:  

       

11  14.98  15.35  0.22  0.000427  -0.018  2  

12  15.04  15.13  0.09  0.000684  -0.015  2 

13  14.98  14.97  0.01  0.000380  -0.011  3  

14  15.05  14.99  0.06  0.000023  0.002  3 

15  15.05  15.03  0.02  0.000011  0.002  2  

16  15.35  15.18  0.17  0.000202  0.010  2 

17  15.37  15.34  0.03  0.000177  0.011  2  

18  15.35  15.35  0.01  0.000127  0.000  15 

19  15.23  15.27  0.05  0.000025  -0.005  2  

6043  5.10  5.04  0.05  0.000000  0.029  2  

6044  5.14  5.14  0.00  0.000207  0.019  2  

6045  5.24  5.24  0.00  0.000104  0.019  3  

6046  5.24  5.24  0.00  0.000650  0.000  4819  

6047  5.21  5.23  0.02  0.000015  -0.003  2  

6048  5.33  5.31  0.02  0.000194  0.015  7  

6049  5.44  5.42  0.02  0.000000  0.022  2  

6050  5.40  5.42  0.02  0.000324  -0.001  2156  

       

BNP: Overview of a few LLGMM Parameter Estimates and Simulated Values.  

       

Index: tk  Data: ytk  Estimate: ŷk  Error: |ytk -ŷk|  Volatility: sk  Drift: (j)  Sample: k  

       

11  51.40  51.60  0.09  0.000078  -0.008  3  

12  50.89  51.01  0.12  0.000014  -0.012  3 

13  49.89  50.28  0.39  0.000049  -0.015  2  

14  51.00  50.36  0.64  0.000883  0.001  2 

15  50.22  50.22  0.00  0.000155  -0.003  14  

16  49.99  49.99  0.00  0.000111  -0.005  14 

17  50.16  50.08  0.08  0.000252  0.001  4  

18  50.38  50.30  0.08  0.000000  0.004  2 

19  50.49  50.49  0.00  0.000001  0.003  3  

3626  21.93  22.05  0.11  0.000202  -0.008  2  

3627  21.73  21.87  0.14  0.000102  -0.008  3  

3628  22.56  22.19  0.37  0.001114  0.014  2  

3629  22.42  22.36  0.06  0.000696  0.007  3  

3630  22.14  22.16  0.01  0.000017  -0.009  2  

3631  22.92  22.46  0.46  0.000697  0.013  4  

3632  23.43  23.11  0.32  0.000082  0.028  2  

3633  24.10  23.78  0.32  0.000041  0.028  3  

       

4. Option Pricing 

We develop option pricing based on Carr and Madan method and the FST method. We first recall the following 

definitions from Assonken & G.S. (2015) useful in the remainder of this section:  

Definition 4.1. Let S denotes a continuous function defined on ℝ+
 × ℝ+

 into ℝ representing the payoff of a contingent 

claim; Q is a risk neutral probability measure of the price process x defined by (4) with respect to the historical 

probability measure P; K is a nonnegative real number denoting the strike price of a derivative contract with maturity T; 
Tx

 denotes the asset price value at maturity; C is the Q-risk neutral option price function defined on [0,T] × ℝ+
 × ℝ+

 

× [0,T] × E × ℝ+
 into ℝ+

 and V denotes the discounted option price process defined by  

   0, , , , ,  , , , , , .

t

ur du

t t t t t tV t T K y x e C t T K y x 

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The Fourier transform and the inverse Fourier transform of an integrable function f, are interchangeably denoted 

( )f  or  f̂  and 
1

( )f


 or f , respectively. Let N(t,A,B) be a stochastic process defined on [0,T] × B(ℝ) ×P(E
2
) 

into [0,∞) as:  

and N(t,A,B) stands for the number of regime switches in B with corresponding log price jumps ln(βn) ∈ A by time t. 

The compensators       0 ,, , ,{  ,} |t

z A i j st A i j b z i j y dzds     of N(t,A,{(i,j)}) are derived in Assonken & 

G.S. (2015).  

We model asset prices with the semi Markov switching exponential Levy process in (5), where L
θ
 defined in (2) is 

based on H(z,j) = G(z,j) = z. Options are priced based on the risk neutral theory. The martingale probability measure 

chosen for pricing purpose is the conditional minimum entropy martingale measure (CMEMM) P
α⋆ 

with density process 

expressed in Assonken & G.S. (2015) as the following Esscher transform:  
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From Assonken & G.S. (2015), for ∀t ∈ [Tn,Tn+1),∀n ∈ I(1,∞), the risk neutral conditions satisfied by the Esscher 

parameter process (αt
⋆)t∈[0,T], are as follows:  
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(25)  

The risk neutral pricing formula for European call options is described by:  
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where k = ln(K). Given the known closed form expression of the characteristic function of log prices Assonken & 

G.S. (2015), one can apply Carr and Madan formula Carr & Madan (1999):  
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where ϒ is the characteristic function of the modified option price  
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is the characteristics function of the log prices developed in Assonken & G.S. (2015):  
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and M is an m × m matrix function with components  1 ,)( pq p q mM      are defined by:  
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(29)  

M is assumed to satisfies the Lie bracket condition Magnus (1954)  

 
[M(u,t1),M(u,t2)] = 0,∀t1,t2 ∈ ℝ+. (30)  

μ satisfies the martingale condition in (25). We next explore the effects of parameters on option prices and implied 

volatilities. By developing a closed form solution to a PIDE which will allow us to apply the FST algorithm, hence 

paving the way for the pricing of exotic and American options R Jackson (2009) in the context of asset price model (4). 

The option price is the inverse Fourier transform of ϒ:  

( , , , , , ) ( , , , , , ) .
2

k
iuk

t t

e
C t T k y j x e t T u y j x du






   (31)  

The Fourier time stepping method from R Jackson (2009), is an option pricing method of vanilla and exotic option 

contracts based on the inverse Fourier transform. The FST has been used to price options when the market is subjected 

to Markov regime changes, Jackson et al. (2007); Momeya (2012); R Jackson (2009). We investigate an application of 

the FST method to semi Markov regimes with jumps at regime changes. We assume in this subsection that the asset 

price process in (5) is defined under a ( , )P  equivalent martingale measure Q.  

Lemma 4.1. Let S be a random variable representing the payoff of a general European style contingent claim with 

maturity T and strike price K in Definition 4.1; let Q and be the risk neutral measure and the infinitesimal generator 

defined in Definitions 4.1 and 6. Let C be the Q-risk neutral option price of a contingent claim.  

(i)  

Then, for θs
-
 = j, the Q-risk neutral option price C of a European contingent claim with maturity T, strike price K 

and payoff S satisfies the following PIDE:  
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(ii)  
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has Fourier Transform (with respect to ln(x)):  
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and the Fourier transform of option prices in individual regimes are:  
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Proof. (i) is a direct consequence of the PIDE derived in Assonken & G.S. (2015) with μ, H and G replaced by 
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 We prove (ii) using properties of the Fourier transform. 

Using the change of variable x = ln(x), assuming S,C ∈ L
1
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In vector form, (36) becomes:  
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With the matrix 
( ( , ))m mM w y   defined by its elements:  

which proves (ii). Such a system of PIDE does not in general admit classical solutions as many payoff functions or 

derivative instruments are continuous but not differentiable. The solutions considered for this type of PIDE are weak 

solutions in the sense of viscosity, which are proven to exist in Momeya (2012) in the Markov regime switching case. 

We assume in our case that the conditional intensity matrix is a piecewise constant function of the backward recurrence 

time. Hence, PIDE (32) has a unique viscosity solution and is solved in Assonken & G.S. (2015) yielding the general 

solution:  

hence,  
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Which proves (iii).  

Remark 4.1. We note that for any t2 > t1 we have:  
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(40)  

Remark 4.2. We recall the discretization necessary for implementing the FST algorithm, R Jackson (2009). First 

partition the time space [0,T] in N subintervals with 
,

0( )t n N

n ntP 
 . Discretization of the log stock price space (-∞,∞) is 

done by approximating the log price domain by a bounded domain [xmin,xmax] and set 
,

0( )Mx n

n nxP 
, xi = xmin + iΔx 

where Δx = max minx x

N


 As noted by R Jackson (2009), it is sometimes preferred to discretize either ln(x∕x0) or ln(x∕K) 

with K the strike price of the option contract depending on whether the pricing is needed around the strike price or not. 

The frequency domain [0,wmax] is partitioned with  
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Next lemma describes the basic difference between option prices in semi Markov regimes and Markov regimes and 

shows that it boils down mainly to the difference in integrated conditional intensities.  
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characteristic function of option prices and the characteristic function of spot prices in Markov switching market 

regimes.  
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4.1 Effect of Parameters on Option Prices. 

Simulation of option prices is performed by computing the inverse Fourier transform of (27). We use Simpson rule of 

integration, with upper limit of integration in w being a. Moreover, the frequency space is divided into N subintervals of 

equal lengths; the log strike k ranges from -b to b divided into N subintervals of equal lengths. Inverting the Fourier 

Transform of could be done quite efficiently by FFT or even by FRFT as suggested in Chourdakis (2004). Let’s use the 

notation: wj = (j - 1)η with 

a

N
 

 ku = -b + λ(u - 1) with 

2b

N
 

. To match the Discrete Fourier Transform with the FFT 

requires one to impose the condition 

2ab

N
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(42)  

The presented condition generates a tradeoff between precision of the integral approximation and step size of the log 

strike partitions. However the fractional Fourier transform (FRFT) allows to use independent log strikes step size and 

integration grid precision Chourdakis (2004). Under the risk neutral measure, we consider a couple of semi Markov spot 

price log-jump densities bi,j, when the market switches from regime i to j, and we denote them κi,j with:  
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with (44)  

εi,j > 0,pi,j ∈ [0,],∀i,j ∈ I(1,m). (45)  

We consider the following partition 0 = a0 < a1 < ... < aM-1 = T⋆ of [0,T⋆] and for convenience we denote aM = ∞. We 

assume that the conditional intensity of the semi Markov process θt is a piecewise constant approximation of Weibull 

intensities. This is guided by a couple of motivations: first its flexibility and then the necessity of Lie bracket condition 

(30). On the one hand, Weibull intensities are quite flexible as they can simulate increasing, constant and decreasing 

rates. On the other hand, the Lie bracket condition is satisfied piecewise, since the λi,j are piecewise constant. The 

piecewise conditional intensity approximation of Weibull intensities relative to the partition (a)k=0
M-1
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     Three notable sets of parameters are absent from 

most option price formulas whenever the market is subjected to Markov regime changes: the backward recurrence time, 

the semi Markov sojourn time distribution, and the price jumps associated with regime changes, respectively. We will 

examine the added flexibility of stock price models under semi Markov regimes due to the extra parameters and the 

impact of each of the first two parameters on option prices and implied volatilities. We first make a couple of 

observations necessary to shed more light on the simulation results. If the intensity function is a continuous function of 

the backward recurrence time, from the derivative of the matrix exponential under the Lie bracket condition 

Magnus (1954), from (27) and (31) we have:  
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where the difference of matrices in (46) is performed component-wise and yields,  
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where ,p q
E is the expected value with respect to kp,q. (47) shows an interesting feature of option prices in semi Markov 

market regimes. If the rate matrix (λi,j(y))m×m is monotonic component-wise, the backward recurrence time effect on 

option prices is most significant for long range maturity options. Assuming the intensity functions λi,j have finite limits 

when the backward recurrence time grows to infinity, we have  

lim ( , , , , ) 0, , .
y

C
t T k y x i j E

y


  

  
(50)  

Hence, the semi Markov conditional intensity matrix is asymptotically constant, which implies that asymptotically, semi 

Markov market regime prices are identical to Markov market regime option prices. Examining Figures 6, 7 and 8 shows 

that irrespective of the model, option prices from prices processes in Markov market regimes can be sandwiched 

between semi Markov market regimes with shape parameter ϑ above and below 1. More importantly, the specific 

observation that prices from semi Markov market regimes with ϑi < 1 and ϑi > 1 are higher and lower than Markov 

prices, respectively is consistent with the underlying mathematical and economic theory. Indeed, our price model 

accounts for two sources of risk, the Levy and the semi Markov switching risks. The former is hedged against by the 

conditional minimum entropy martingale measure as the Levy jump process is turned into a martingale, and the latter 

isn’t considered hedgeable and directly affects option prices. Hence, the higher the regime switching risk the larger the 

option price. From (45), choosing ϑi < 1 (resp. ϑi > 1) implies a decreasing (resp. increasing) transition rate, which 

translates in a decreasing (resp. increasing) regime switching risk. Simulations for Figures 6 and 7 are performed with y 

= .1 year and ϑi < 1, hence, λi,j(y) is largest for ϑi < 1, which justifies why prices for ϑi < 1 lie above prices 

corresponding to ϑi = 1 and ϑi > 1,respectively. Simulation of Figure 8 was performed with y = 1.1 year. It shows that 

option prices are higher for larger shape parameters. This is in agreement with (45) as it shows that λ is higher for 

higher values of ϑi. One of the most documented shortcomings of Levy models for price processes is their inability to 

capture long term implied volatility smiles, Mitra (2009). Markov switching Levy price models succeed in slowing the 

dampening of the implied volatility smiles through the conditional intensity rate matrix, Mitra (2009). In our context, 

the conditional rate matrix is time dependent and could be affected by y, α and ϑ, hence offering more control than 

Markov market regime models over long term smiles. Figure 15 shows that, irrespective of the Levy process used, long 

term smiles an smirks which often vanish at T = 1 year in Markov regimes Bollen (1998), are still persistent at T = 2 

years when market regimes are semi Markovian. In addition, Figures 16, 17 and 18 show that the backward recurrence 

time, the shape and the scale parameters do have a prominent effect on the implied volatility surface. The three rows of 

Figure 9 display three different effects of the backward recurrence time on the difference in prices between all market 

regimes, based on three different values of the shape parameter ϑ. The first and the third row were simulated based upon 

ϑi < 1,∀i ∈ E and ϑi > 1,∀i ∈ E, respectively. Option prices are decreasing in the first row and increasing in the 

third row in all market regimes. However, in each regime, prices decrease or increase at different rates, hence affecting 

the price differences between market regime prices. One therefore observe either an exacerbation or a reduction of 

differences in regimes as evidenced in the first and third row. The second row corresponds to ϑi = 1,∀i ∈ E and shows 

no change in option prices as the price model reduces to Markov market regime price model which is independent of y. 

Indeed, from (45), when ϑi = 1,∀i ∈ E, λi,j will reduce to a mere constant and will therefore be free of y. Similar 

observations are made in Figures 10 and 11. One also note from Figure 12, 13 and 14 that y, α and ϑ, respectively, affect 

in-the money, at-the-money and out-of-the-money options prices and leave deep in-the-money (low call strikes relative 

to the spot price)and out-of-the-money (high call strikes relative to the spot price) option prices relatively unchanged. 

This stems from (26), where the payoff vanishes or grows substantially causing the option price to vanish or grow as 

well irrespective of the market regime when the log strike k grows or decreases relative to the spot price respectively.  

4.2 FST Pricing of Vanilla and Exotic Option Contracts  

We first consider the pricing of two vanilla option contracts: single asset European option contracts and single asset 

American option contracts. We recall that American option contracts can be exercised any time before expiration of the 

contract, unlike European option contracts which are settled at maturity. It has been shown Elton et al. (2009) that it is 

not optimal to exercise a non-dividend-paying American option contract before maturity. Hence, American and 

European call options contracts have the same price provided that the underlying asset does not pay dividends, 

Grabbe (1983). One will therefore be concerned only with pricing and comparing prices induced by Carr & 

Madan (1999), and the FST numerical methods, R Jackson (2009), respectively. The FST pricing of European option 

contracts requires one time-step despite the assumption of time dependent conditional intensity matrix. It is based on 

(40) applied at (t,y,x) as follows:  
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Simulation parameters used for pricing purpose are as follows: m = 3 market states, interest rate r = .05, spot price S = 

100, σ = (.3,.5,.7), α = (-3,2,1;2,-6,4;.5,1,-1.5), ϑ = (5,3,.3), ϵ = (0,.2,.1;.4,0,.1;.1,.3,0) and the jump and drop 

probabilities p = (0,.2,.1;.25,0,.3;.1,0,0). We notice from Figure 4 that SMBS call option prices obtained from FST and 

Carr and Madan are identical up to the third decimal as is the case with call option in Markov regime markets 

Momeya (2012). However, the error plot shows that Carr and Madan prices are consistently slightly larger than FST 

prices. As for the pricing of American options in semi Markov markets, (40) allows us to use the FST method, 

R Jackson (2009), thus far applied to Markov regime markets. The FST is applied based on the discretization scheme 

presented in Remark 4.2. American put option prices are larger than their payoff, as they can be either exercised or held 

at each time step. The option holder always chooses the alternative netting the larger benefit. Such a maximum 

condition is enforced in the design of the pricing algorithm as follows:  
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which is the holding price of the option at time tn, while the price of the option at the same time is  

 
( , , , , ) max ( , , , , ), ( , , , , ) ,( )n n n n nt T K y x t T K y x T T K y xC C C

 

where the maximum is applied component wise.  

 

 

 

 

 

 

 

 

Figure 4. The left-hand side plot presents comparisons of Semi Markov Back Scholes FST and Carr and Madan prices 

of European option in every state of the market while the right-hand side plot exhibits error differences in each regime. 

We simulate prices of European style Digital and asset-or-nothing exotic option prices. We recall that at expiry, digital 

call option contracts pay $1, if the spot price is at least at large as the strike and nothing otherwise. Digital put options 

however, pay nothing if the spot price is larger than the strike and $1 otherwise. Asset-or-nothing option contracts are 

essentially the same as digital option contracts with the only difference that they pay the asset price worth or nothing. 

Their respective payoff functions can be expressed as follows:  
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The pricing of this style of path-independent exotic option contracts in semi Markov regime switching could be done 

using the FST method with one single time step. The first row of Figure shows that the effect of the backward 

recurrence time on European vanilla observed in the preceding section carries over to American and exotic option 

contracts.  

 

 

 

 

 

 

 

 

 

 

Figure 5. The First Row Captures the Effect of Backward Recurrence on American Style Put, Digital Put and 

asset-or-nothing Put Option Prices While the Second and Third Rows Present all Three Put and call Option Prices at 

each Market State. 
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Figure 6. Comparison of Option Prices in a Markov Switching Black Scholes Model and a Semi Markov 

Switching Black Scholes (SMBS) Model. 

 

Figure 7. Comparison of Option Prices in a Markov Switching Merton Jump Diffusion Model and a Semi 

Markov Switching Merton Jump Diffusion (SMMJD) Model. 
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Figure 8. Comparison of Option Prices in a Markov Switching Normal Inverse Gamma Model and a Semi 

Markov Switching Normal Inverse Gamma (SMNIG) Model. 

Figure 9. Effects of the Backward Recurrence Time on Option Price. The First, Second and Third Rows are Simulated 

with ϑi,j < 1,∀i,j ∈ E, ϑi,j > 1,∀i,j ∈ E and ϑi,j = 1,∀i,j ∈ E, respectively. 
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Figure 10. Effects of the Scale Parameter α on Option Prices C. 

Figure 11. The Effects of the shape Parameter on option Prices. The shape Parameter Vector in the Simulation is ζkϑ 

where ζk ∈{.25,.5,.75,1}. 
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Figure 12. The Effects of the Backward Recurrence Time yt on option Prices C from the Standpoint of the strike Price 

K of the Option and the Model used (SMBS, SMMJD or SMNIG). Effects on Out of the Money Options (Orange), at 

the money (Red) and in the Money (Blue) are Compared. 

 

 

 

Figure 13. The Effects of the Scale Parameters α on Option Prices C is Noticeable for All Three Models Regardless of 

the option’S Moneyness. Effects on Out of the Money Options (Orange), at the money (Red) and in the money Options 

(Blue) are Compared. 
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Figure 14. Effects of the Shape Parameters ϑ on Option Prices Care Noticeable for All Three Models and 

Regardless of the Option Moneyness. Effects on Out of the Money Options (Orange), at the money (Red) and in 

the money (Blue) are Compared. 

 

Figure 15. Implied Volatility Surfaces Induced by Option Prices Generated By SMBS (First Row), SMMJD 

(Second Row) and SMNIG (Third Row). Column 1-4 Correspond to Market Regimes 1-4, Respectively. 
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Figure 16. Effects of the Backward Recurrence Time yt on the Implied Volatility. The Models Simulated are as 

follows: SMBS (first row), SMMJD (second row) and SMNIG (third row). Column 1-4 correspond to Market 

Regimes 1-4, Respectively. 

 

Figure 17. Effects of the Shape Parameter ϑ on the Implied Volatility. The models Simulated are as follows:  

SMBS (first row), SMMJD (second row) and SMNIG (third row). Column 1-4 correspond to Market Regimes 

1-4, Respectively. 
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Figure 18. Effects of the Scale Parameter α on the Implied Volatility. The models Simulated are as follows:  

SMBS (first row), SMMJD (second row) and SMNIG (third row). Column 1-4 correspond to market Regimes 

1-4, Respectively. 

4.3 Calibration 

In this section, we estimate the risk neutral parameters inducing option prices closest to observed market option prices 

in the least square sense. The Conditional Minimum Entropy Martingale Measure (CMEMM) is the risk neutral 

measure used for simulation purpose. Hence, the martingale condition (25) holds. The sojourn time distribution of the 

semi Markov process (θs)s∈[0,T] is assumed to be piecewise exponential with intensity function defined in (45). The jump 

distribution at a regime switch is defined in (43) and (44). Option prices induced by Levy processes are well known to 

fit market prices better Tankov (2003), than BS induced option prices. It is therefore more appropriate to isolate the 

effects of market regime by calibrating regime switching BS parameters to market option prices. On the other hand, in 

Subsection 4.1, we have concluded that the effects of the backward recurrence and sojourn time distribution parameters 

increase as time to expiry goes up. Hence, our choice of the time to expiry T = 1.2 years. We will use 4 data sets to 

calibrate semi Markov regime switching Black Scholes models. We will show that in our framework, calibration results 

provide a fit at least as good as Markov switching models with the added advantage of a more insight into the economic 

interpretation of market regimes. Data of interest are in-the-money and at-the-money European call option contract 

quotes on the Dow Jones Industrial Average Index (DJX) and the NASDAQ index(NDX), both collected March 2008 

and March 2015, respectively. Data is presented in Table 3. We note that in-crisis DJX quotes of 2008 have been used 

in Deville (2007) to calibrate standard exponential Levy processes and in Momeya (2012) to calibrate Markov regime 

switching exponential Levy processes whereas post crisis data have been retrieved from the website 

www.optionseducation.org. The sum of squares (SS) and root mean square error (RMSE) are reported in Tables 4 and 5. 

Markov switching models are known to improve the fit of exponential Levy models discussed in 

Chourdakis (2005); Elliott & Osakwe (2006); Naik (1993). It appears from Figures 19 and 20 that SMBS fits the market 

data at least as well as Markov switching BS and from 19 and 20 visibly better. Such a feature is hardly unexpected as 

the theoretical set up developed in Assonken & G.S. (2015) and the corresponding estimation techniques parallel and 

extend the results of Chourdakis (2005); Elliott et al. (2005); Hainaut (2010); Momeya (2012); showing that Markov BS 

model estimation methods are nested inside SMBS. Furthermore, the parameter estimates of the sojourn time 

distribution of the semi Markov process shed an additional ray of light on the market regimes behavior. Although risk 

neutral parameters are a reflection of market-makers perception of the future, one can still glean a decent insight on the 
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market behavior through calibrated parameters. One notices that calibrated 2008 DJX Markov regimes have two very 

similar regimes with nearly identically low volatilities (17.5% and 17.6%), which reflects the market’s widespread 

panic observed at the end of the year, hence suggesting that Markov regime models support a one state market. 

However, semi Markov parameters calibrated to the same data rather contend that α2 and ϑ2 are much higher than α1 and 

ϑ1, hence showing that the market will spend much more time in regime 2, the regime with the highest probability of 

price jumps or drops (regime 1, = .258), which is in line with the sell-off observed throughout 2008 when the Dow 

Jones Industrial Average dropped by nearly 20% from June 2007 to June 2008. Post crisis Markov and semi Markov 

market state parameter estimates in Table 4 present the same conundrum as in-crisis parameter estimates. Indeed, 

Markov market model parameters describe a market with volatility non-reflective of the easing of the mood observed in 

the market. In fact, Markov market regime model supports evidence that volatility is higher in the post crisis market and 

the regime risks are similar. Another lingering effect of the financial crisis that has not been captured by Markov regime 

models is the remnant and even mounting fear of a market crash or correction which became even more acute since the 

DJIA and NASDAQ have reached all-time intraday highs May 19 2015 and April 23 2015, respectively. Both market 

features are captured by semi Markov parameters which provide a more intuitive interpretation of future behavior of the 

market regimes and crash fears. In fact, a look at the last line of Table 4 shows that volatility has decreased (.143 < .173 

and .044 < .141) while most of the remaining fear in the market is centered around unexpected crashes (  1 = 18%,  1 

= .477). When the market is in state 1 seldom does it switch to state 2 as ϑ1 < ϑ2 and α1 < α2. However, the switching 

rate from state 2 to state 1 grows as ϑ2 is bigger than 1. Hence, the market is expected to have short stays in state 2 

which has low volatility (.044 < .144) and low probability of drop or jump (.028 < .477) and longer stays in the first 

state. This is also in line with the notion that the 2008 financial crisis has lingering effects and market makers expect 

significant market corrections and are incline to overreacting to new information. Similar observations are made from 

Table 5.  

Table 2. European Call Option Quotes Written on the DJIA and NASDAQ during and after the financial crisis. Deep 

out-of-the-money options have been weeded out as they are of value close to zero. The spot prices are as follows: Dow 

Jones Industrial average, $122 and $180 for the 2008 and the 2015 data sets. Nasdaq Index $1775 and $4323 

        

2008 DJX quotes 2015 DJX quotes 2008 NDX quotes 2015 NDX quotes 

        

Strikes  Option prices  Strikes  Option prices  Strikes  Option prices  Strikes  Option prices  

        

98  24.43  50  129.85  1400  334.95  4050  339  

99  23.40  55  124.85  1425  311.55  4075  319.1 

100  22.50  60  119.875  1450  288.35  4100  299.35  

101  21.55  65  114.9  1475  265.5  4125  280.15 

102  20.63  70  109.9  1500  242.6  4150  261.3  

103  19.68  75  104.925  1525  220.5  4175  242.95 

104  18.75  80  99.95  1550  198.95  4200  224.9  

105  17.83  85  94.975  1575  178.45  4210  217.9 

106  16.90  90  89.95  1600  158.55  4220  210.85  

107  15.98  95  85.05  1625  139.60  4225  207.4 

108  15.10  100  80.1  1650  121.5  4230  204  

109  14.23  105  75.15  1675  104.45  4240  197.1 

110  13.33  110  70.225  1700  88.45  4250  190.4  

111  12.45  115  65.325  1725  73.8  4260  183.7 

112  11.63  120  60.425  1750  60.4  4270  177.7  

113  10.78  125  55.575  1775  48.45  4275  174.4 

114  9.95  130  50.75  1800  38.05  4280  171.2  

115  9.18  135  45.95  1825  29.2  4290  164.75 

116  8.40  140  41.25  1850  21.65  4300  158.6  

117  7.68  145  36.55  1875  15.65  4310  152.35 

118  6.93  150  32.025  1900  10.95  4320  146.25  

119  6.23  155  27.475  1925  7.45  4325  143.2 

120  5.58  160  23.125  ...  ...  4330  139.7  

121  4.95  165  18.925  ...  ...  4340  134.45 

122  4.35  170  15.1  ...  ...  4350  128.65  

123  3.80  175  11.375  ...  ...  4360  123.05 

124  3.25  180  8.075  ...  ...  4370  117.35  

125  2.74  185  5.275  ...  ...  4375  114.35 

126  2.28  ...  ...  ...  ...  4380  111.95  
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127  1.90  ...  ...  ...  ...  4390  106.65 

128  1.52  ...  ...  ...  ...  4400  101.1  

        

Table 3. This Table reports calibration results of model parameters using option contracts on the Dow Jones Industrial 

Average(DJX). We assume the market has two regimes namely, E = {1,2} and at inception of the contract, the market has 

been in its current state for y = 1.2yrs. Only call options with maturity T = 47 days are used for illustration. 

              

Market 

type  

Model 

Type  1
   

      

2  1  2  1  2  1p̂
 

       

2p̂
  1̂  2̂   SS  RMSE  

              

In-crisi

s 

Market 

Markov 

BS  1.735  20.525  1  1  0  0  0  0  .175  .176  3.73  .2454  

 
             

 

SMBS  .501  10.957  4.038  12.724  .038  .016  .258  .08  .173  .141  3.72  .2449  

              

Post 

crisis 

Market 

Markov 

BS  3.54  20.025  1  1  0  0  0  0  .25  .224  24  .65  

 
             

 

SMBS  1.061  9.651  2.058  6.794  .186  .143  .477  .028  .143  .044  21  .61  

              

Table 4.This Table Reports Calibration Results of Model Parameters using option Contracts on the NASDAQ (NDX). We 

Assume That The Market Has Two Regimes Namely, E = {1,2} And At Inception Of The Contract, The Market Has Been 

In Its Current State for y = 1.2yrs. Only call Options with Maturity T = 47 Days are used for Illustration. 

              

Market 

type  

Model 

Type  1
   

      

2  1  2  1  2  1p̂  

       

2p̂
  1̂  2̂   SS  RMSE  

              

In-crisi

s 

Market 

Marko 

BS 5.8  58.5  1  1  0  0  0  0  .206  .268  400  3.02  

 
             

 

SMBS  14.402  18.389  24.306  7.166  .012  .017  .096  .102  .003  .196  384  2.95  

              

Post 

crisis 

Market 

Marko 

BS  11.68  44.493  1  1  0  0  0  0  .172  .159  993  4  

 
             

 

SMBS  10.32  45.85  3.25  12.73  .062  .015  .194  .038  .047  .018  384  2.49  
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Figure 19.Calibration Results of the Markov and Semi Markov Regime Switching Models to NDX Observed Prices in 

2008 with the Financial Crisis in Full Swing. 

 

Figure 20. Calibration Results of the Markov and Semi Markov Regime Switching Models to NDX Observed 

Prices in 2015 Post Financial Crisis. 

4.4 Comparison with Heston Model 

In this section, we veer away from sequential calibration of option prices for each market maturity as performed in last 

section. We rather perform a full implied volatility surface calibration which we compare with the implied volatility 

surface generated by Markov regime switching Black Scholes and Heston models. The parameters of interest in Heston 

model as in most literature are V 0 the initial spot price volatility, κ the speed of mean reversion of the spot price 

volatility, θ the long-term spot price volatility and ρ the correlation of the Brownian motions driving the spot price and 

the Brownian motion driving the mean reverting volatility of the spot price. We recall that Heston volatility and Black 

Scholes models are two amongst the most used market models by practitioners in the financial market. Two of the main 

attractions of both models is their relative tractability as far as option pricing and the clarity of the economic 

interpretation of their calibrated parameters as well as their calibration performances relative to more complex models 
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(Levy models for instance). We consider a full implied volatility surface of the semi Markov Black Scholes model, the 

Markov Black Scholes model and Heston model for a data set of option prices on the NASDAQ index quoted under the 

handle NDX and obtained from the website optioneducation.org. A summary of the calibration process is given on 

Table 6. It appears from rows 1, 2 and 4 of Table 6 that the semi Markov Black Scholes regime switching model fits a 

volatility surface as well and even slightly better than the Heston model (RMSE are 3.8 vs 4.6) and even better than 

Markov regime Black Scholes models (RMSE 3.8 vs 7.1). A closer look at the reason why the semi Markov Black 

Scholes outperforms Heston volatility surface is because of its ability to reproduce more accurately short term option 

prices as evidenced by Figure 21. Given that the basic Black Scholes model only supports flat volatility surfaces, one 

can attribute the added flexibility of the volatility surface generated by the semi Markov Black Scholes model to its 

switching nature which is in turn modeled as a semi Markov process. One can note the negligible contribution of the 

extra jump component at regime switches as the optimum parameters of the calibration algorithm leaves all four jump 

parameters equal to 0 and hence with no effect of option prices. Despite this encouraging model fit diagnostic of the 

semi Markov regime switching model, one cannot be oblivious to the lack of efficiency of its calibration algorithm 

compared to Heston and the Markov regime Black Scholes. Much research has been devoted to successfully improving 

on the efficiency of the Heston calibration model leading to efficient algorithm while the relative novelty of Semi 

Markov regime switching models in the derivative market is relatively unexplored, hence offering a decent research 

avenue. All algorithms used in this sections were implemented in MATLAB version R2016a and the global 

optimization tool was extensively used to avoid the additional bias of initial guesses in the comparison. The genetic and 

the simulated annealing algorithms were used to obtain an initial guess and find an optimum solution respectively.  

Table 5. This table reports calibration results of model parameters for the Markov regimes Black Scholes (M), the semi 

Markov regimes Black Scholes (SM) and Heston models (HES) using option contracts on the NASDAQ (NDX) across 

the whole implied volatility surface (IVS) and short maturity options. We assume that the market has two regimes namely,  

E = {1,2} and at inception of the contract, the market has been in its current state for y = 1.2yrs. 
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Figure 21. Comparison of Short Term NDX Prices Observed (August 2016), Generated from SMBS and Heston 

models. Both Figures Represent Option Prices Vs Strike prices 

 

Figure 22. Implied Volatility Surface of NDX Observed Prices with the semi Markov Regime Switching Black 

Scholes Model in August 2016 as the Market Still Recovers from the 2008 Financial Crisis Assuming the Market in 

Regime 2. 
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Figure 23. Implied Volatility Surface of NDX observed Prices with the Semi Markov Regime Switching Black Scholes 

Model in August 2016 as the Market Still Recovers from the 2008 financial Crisis Assuming the market in regime 1 

along with Market Volatility Prices. The market Implied Volatility Surface is Blue-Green for short Maturities and the 

SMBS implied Volatility Surface is Yellow for Short Maturities. 

5. Conclusion 

In this paper, we have extended the ubiquitous Markov market regime model to a semi Markov market regime model in 

the context of option pricing. It allows a more accurate description of the risk neutral market regime dynamics as it 

assumes a time dependent conditional intensity of state changes. The main drawback is the increased complexity of the 

partial differential equation satisfied by the option price which translated in longer CPU times of calibration algorithms. 

We considered semi Markov processes with piecewise constant conditional intensity matrices, which allowed us to use 

Carr and Madan and the Fourier time stepping methods for option simulations and calibrations. An analysis of the semi 

Markov parameters effects on option prices shows that semi Markov parameters influence option prices to a visible 

extend, hence legitimizing the use of semi Markov regimes in derivative pricing. We performed a fit comparison of 

models with semi Markov and Markov markets regimes and showed that Black Scholes model under semi Markov 

regimes shows a slight improvement in sequential calibration (for each maturity) over Markov regime switching models 

and a substantial improvement in the calibration of full implied volatility surface over both Markov regime switching 

and Heston models. As previously mentioned, the runtime of the calibration algorithm is slower than Heston and 

Markov regime models, and every regime switching model (Markov or semi Markov) induces an incomplete market. 

Incompleteness of the market renders the risk neutral pricing argument more complex as there exist more than one risk 

neutral measures. This brings up the issue of choice of the risk neutral measure. In this article we used the minimal 

entropy martingale measure which is heuristically the risk neutral measure closest to the historical measure probability 

measure in the sense of Kulback Leibler distance, which minimizes the distance between the risk neutral and the 

historical view of the market. Another useful risk neutral measure is the minimal martingale measure which allows the 

best (with respect to certain risk functions) replication of option contracts for portfolio risk hedging purpose. Future 

research may consider the development of a minimal martingale measure for semi Markov regime switching models 

along with improving optimization of the calibration algorithm in semi Markov regimes.  
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