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Abstract 

Linearity can be used to introduce qualitative analysis in portfolio optimization using very specific heuristics which in 

some cases carries enough information to anticipate the entire (qualitative) rank of solutions. This result is shown in the 

first part of our study. In the second part we show that correct analysis of optimal portfolios, and in particular those 

minimizing portfolio variance, requires complementary quantitative analysis with qualitative analysis as not all efficient 

portfolios have the same return-to-risk quality, and those minimizing variance may not minimize risk. In this section, 

we also introduce some notes of caution on the application of heuristics when applied to portfolios calculated in 

non-standard ways. The third and last section extends the literature by critically reviewing different ways in which 

qualitative heuristics can complement portfolio selection methods while also reviewing existing, full-fledged qualitative 

portfolio optimization methodologies. 

Keywords: Portfolio analysis, mean-variance, qualitative analysis, heuristics. 

1. Introduction 

This paper focuses on developing qualitative portfolio analyses. It has been motivated by Barone-Adesi‟s (2007) 

interesting contribution, and also by our own current research program.  

Barone-Adesi (2007) stresses the importance of linearity in portfolio optimization and how it may be exploited to 

develop heuristics with practical investing value. Heuristics are decision rules that allow individuals to make complex 

judgments more simply (Tversky and Kahneman, 1974). In fact, Hambrick and Mason (1984) and Mintzberg, 

Rasinghani, and Theoret (1976) note that decisions may vary with the characteristics of the decision maker.  

Barone-Adesi‟s specific contribution centers on the analysis of the properties of certain optimal portfolios (single-index, 

equally weighted portfolio) and their corresponding linear heuristics. His more general contribution, however, is about 

adding flexibility to current portfolio optimizations by better use of their implied heuristics.  This is most interesting 

because heuristics may carry qualitative information that is generally neglected by existing approaches. We reasoned 

that a portfolio manager‟s mindset or heuristic may influence or restrict the ultimate decision taken among multiple 

choices.  Barone-Adesi‟s contribution could not be timelier. Currently, there are several intense and multidisciplinary 

research streams converging on investing: enhancing decision making with all possible available information (finance 

and economics), understanding choice and its psychological aspects (psychology), developing methodologies and 

processing tools to encompass information of a different nature (computer science), and building optimization 

procedures that are best suited to process that information (operations research).  

It is easy to appreciate that advancement in investing requires the integration of quantitative and qualitative information, 

not only because of its interdisciplinary foundations, but also because investing decisions are entirely forward-looking 

and information about the future is never complete and is made up of multiple and various components. Take, for 

example, the case of venture capital and initial public offerings. The experience in recent issues such as that of 

Facebook and Groupon reveals that something has changed compared to the times of Netscape (IPO, 1995), when 

numbers were weighted heavily in pre-IPO analyses; and also from those times at the end of the dot.com boom of the 

1990‟s, when companies were taken public with little or no track-record (e.g., Webvan, 1999; Pets.com, 2000; 

eToys.com, 2001). Lack of track-record means some quantitative indicators are simply not available. Further, the 

intense process of change suggests indicators (e.g., number of times mentioned in the press) that may help investors 

decide their strategies. 
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Consider the case where two ventures may be pitched to private investors and each of them may include the same 

amount of quantitative forecasts; yet, investors may base their decisions on qualitative elements and prefer one to the 

other. Prior research lends support to this argument. For example, Khan (1987) found that VCs tend to be intuitive 

decision makers. Zacharakis and Shepherd (2001) found that VCs (venture capitalists) tend to be overconfident and this 

over confidence tends to decrease their decision making accuracy. Shepherd, Zacharakis and Baron (2003) found that as 

VCs become experienced beyond a certain point, their decision accuracy tends to diminish, possibly due to the further 

engraining of their mindset due to prior successful experiences. Their findings imply the existence of a firm-level 

heuristic. Heuristics at the firm level may be viewed as the dominant logic of the firm (Prahalad and Bettis, 1986), that 

is, a mind set, or a conceptualization of the business. 

In our study, we will clarify, complement, and extend Barone-Adesi‟s line of research on linear heuristics and portfolio 

optimization, which shows that linearization may be helpful even in nonlinear cases. In the first section of this note we 

will clarify mean-variance portfolio optimization and, specifically observe why one security is preferred over another, 

and why certain optimal weights are larger than others. In this section we will also face the issue of non-negativity on 

optimal weights: In other words, why some securities will never be chosen in the optimization. In the second section of 

the paper we complement Barone-Adesi‟s analysis by focusing on three key items. First, we will show what exactly 

happens along the so-called efficient frontier, which represents all the portfolios worth being considered by the investor. 

Very importantly, we show why and how some of these portfolios are qualitatively better/worse than others. Second, we 

will note that some caution is needed when deriving useful heuristics. The last section closes the study by enumerating 

areas and procedures of great promise, not only to develop qualitatively-oriented heuristics, but also to take portfolio 

analysis on the whole to higher levels of application. In this pursuit we highlight two particular items: 1) portfolio 

metaheuristics, and 2) relational equations possibilistic modeling. Our analysis strengthens Barone-Adesi‟s argument to 

further study the potential of linear-heuristics, and it also suggests that other approaches of wider scope are also capable 

of enhancing research, individual decision making, and general investment practice.   

We foresee two types of readers of this article. One may have a general acquaintance with portfolio theory and focus on 

the qualitative analysis perspectives. The other reader may be a specialist in portfolio optimization and quantitative 

methods. We will try to present our research in a logical, non-mathematical, and practical manner that will lead the first 

reader through our exposition while also providing to the second reader, we hope, new practical insights.  

2. Detail and Clarifications on Mean-Variance Portfolio Optimization 

Portfolio optimization is one of the gems in financial decision-making. It reflects many years of integration of different 

tributary areas such as demand analysis, markets, macroeconomics, decision making and risk tolerance, and 

optimization. Markowitz (1952) and Roy (1952) represented the first analyses that were comprehensive enough to 

reflect the extant knowledge capable of practical application. Markowitz (1952) was particularly successful at 

communicating the major components of portfolio selection and providing a reasonable way to proceed. Briefly put, the 

return on each investment (especially stocks) could be taken as a random variable exhibiting critical statistical 

regularities –i.e., mean, representing expected returns; and variance, representing risk. The investor would then proceed 

as follows: 1) obtain closing prices for some securities, 2) compute returns and their means and variance-covariance 

numbers, and 3) find the portfolio that provides the investor‟s desired return-to-risk ratio. This was more easily said 

than done during the 1950‟s. A great deal of research was needed to find the appropriate optimization algorithm (using 

nonlinear programming), and the computing power for a modest 25-security portfolio could only be found at 

state-of-the-art astronomical research facilities, (Markowitz 1959, p. 383). In retrospective, Roy (1952) seems as 

interesting as Markowitz (1952); The author used closing prices rather than returns, as well as a number of practical 

features (e.g., a safety price-margin). But his analysis also revealed an intimidating analytical instrument, while 

Markowitz opted for a graphical discussion of his method that made it appear far more comprehensible.  

Additional detail on the genesis and evolution of portfolio theory can be found in Rubinstein (2002). Two excellent 

overviews are those of Constantinides and Malliaris (1995) and Steinbach (2001); the former focuses on financial 

theory, the latter on mathematical and analytical aspects. Fabozzi, Gupta, and Markowitz (2002) evaluate the many 

challenges and decisions we must make when applying portfolio optimization portfolio (e.g., number of securities, 

frequency, data length, and so forth). Tarrazo (2014) studies mean-variance analysis and each of its constitutive parts to 

clarify what optimizations do, which is still unclear for many researchers, students, and actual investors. This is the case 

because, throughout its history, portfolio theory has been hard to understand, perhaps due to the following reasons: 1) 

the problem carried unnecessary analytical burden because of what Steinbach (2001) called “inessential generality” 

(e.g., inequalities rather than equalities, restrictions that end up being non-binding at the optimal), 2) it used constructs 

that complicate matters further (e.g. utility theory), and 3) mathematical programming was being used to find solutions. 

As Geoffrion (1976) has noted, although mathematical programming finds solutions but it does not explain how optimal 

solutions are obtained. Knowing what portfolio optimization does, however, is unavoidable, if we want to enhance 
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current portfolio optimizations with qualitative analysis. In other words, it is not possible to ascertain the value of any 

addition to portfolio selection if we do not know how solutions are obtained using current methods.  

Tarrazo (2014) demonstrates how portfolio optimization boils down to a straightforward arbitrage rule set in a linear 

decision framework. The linear rule can be thought of a very special “heuristic” because, in some cases, it perfectly 

anticipates the order of the optimal solution (qualitative rankings), and in all cases helps the optimization effort. Exhibit 

I presents an example of portfolio optimizations. The top of the exhibit shows the simultaneous equation system, 

representing the first order conditions (FOC) of the optimization of the objective function in portfolio optimization, both 

of which are represented by equations (1) and (2).  

Objective function:   F(x) = - ½ x’ A x + x’ b             (1) 

First order conditions:   A x = b               (2) 

Where, x is a vector of portfolio weights, A is the variance-covariance matrix, and b is a vector representing mean 

returns. These variables have dimension n at the beginning of the optimization, and k (k ≤ n) when the optimization is 

completed successfully. Portfolio figures are calculated by first computing optimal portfolio weights wi* = xi*/Σxi*, 

which insures Σ xi* = 1 (full investment assumption); after which one calculates portfolio returns, rp = w‟ b, and 

portfolio variance, varp = w‟ A w. 

Equations (1) and (2) represent the algebraic approach to portfolio optimization, where the magnitudes of interest are 

captured by a quadratic equation (x‟ A x is the quadratic form associated with the quadratic equation). Mathematical 

programming is not needed because optimization of the quadratic equation maximizes the return-to-risk ratio (rp/varp) 

of the portfolio, as is desired in portfolio optimization; in other words, when utility is used explicitly.  It can be shown 

that the normalization rule applied to xi* that provides Σwi* = 1 embodies financial arbitrage, which is a critical 

component of the model. Arbitrage trading ensures that a portfolio can never be more valuable (in return-to-risk terms) 

than its constitutive parts, be they securities or other portfolios –i.e, in rp = w‟ b, note that rp 1 = Σwi*ri which, in turn, 

requires 1 = Σwi*, a linear rule. The optimization implies and requires the investor to be sensitive to both returns and 

risks, and it is optimizing in a market where those components are arbitraged effectively. There is no way to get 

additional returns in certain positions without bearing the additional, corresponding risk. The critical concept of market 

efficiency requires both investors and markets to play their parts each time an investment decision is made.  

In Exhibit I, the lines beneath the variance-covariance matrix show optimal portfolio weights, and optimal portfolio 

figures. A portfolio of m initial securities can be optimized in several ways, as explained in Tarrazo (2014). In early 

textbooks, it was explained as a solution to a simultaneous equation system, A x = b, where A is a m-by-m 

variance-covariance matrix, and x and b are m-by-one vectors for the unknown optimal weights (x*) and stock returns. 

These are the inputs appearing in the first block in Exhibit I. The solution x* = A-1 b gives a vector that may include 

negative values. Actual optimal weights are computed by dividing each xi* /Sum(xi*), e.g., 1.64 = 11.23/6.83, where 

1.64 is 164%. By the way, 6.83 is a very important number that happens to express both the return-to-risk ratio of the 

portfolio and that of each individual security ri/Ci. This is a consequence of linearity, see Tarrazo (2014). 

Note that negative values for xi* indicate the securities are sold short and, therefore, bring on financing that is used in 

the securities held “long”. Eliminating short-sales, and drying their financing, is easy and can proceed in two ways: a) 

Basis Reduction Method: one can start with the whole set of stocks m and sequentially eliminate the securities with 

negative weights, which took three optimizations as shown in the last block (left-hand side) in the Exhibit I; or b) 

Selective Basis Addition: Start with the two securities with the highest return-to-risk ratios  (MCD and IBM) and go on 

adding one security at a time; keep the security if its optimal weight is positive, and rejects otherwise. This method took 

three optimizations, which are shown in the last in the last block (right-hand side) in Exhibit I. See Tarrazo (2014) for 

further detail. Normally, the analysis stops there but, carrying it a bit further we notice two additional items that are very 

important for the purposes of this study. First, note that the ranking of optimal portfolio weights follows the 

return-to-risk ranking of individual securities (shown to the right of optimal portfolio weights). Note also that the 

optimal, no short-sales (wi > 0), portfolio could have been calculated by any of the following sequential procedures:  

a) “Basis reduction” (BR). Run the full-dimensional optimization and then successively eliminate those securities 

with negative weights. 

b) “Selective basis addition” (SBA) procedure. Start with the two highest securities ranked in terms of their 

return-to-risk ratio (ri/stdi), and then we successively “try out” the rest of the securities having a positive return. 

If they receive a positive weight keep them in the optimization; otherwise, discard them forever and try the next 

security with a positive return.  
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Exhibit I. Mean-Variance Optimization. 

Variance-Covariance matrix (A), and returns vector (b): 

 

Optimal results, short sales (wi < 0) allowed A x = b, x* = A-1 b: 

 

Alternative sequential approaches to find the optimal, no short-sales (wi > 0), portfolio: 

 

These results reveal two important findings highlighting the capacity of linear heuristics and that of the return-to-risk 

heuristic in particular.  

1) When the portfolio as a whole has a positive return, securities with negative returns cannot be part of that 

portfolio. At the optimal, each security has the same contribution to the optimal portfolio. In other words, the 

ratio of marginal returns-to-marginal variance is the same for each security. This ratio of marginal values is 

represented by ri/ci, where ci = Ai w*, and Ai is the row corresponding to the “ith” security in the variance 

covariance matrix A. B. This is known in demand theory in microeconomics as the equality of weighted 

marginal utilities (i.e., price-to-marginal utilities). Because of linearity, this is also the return-to-risk ratio for the 

portfolio as a whole. In our data, 6.832433 = ri/Ci = rp/pvar, and this ratio would also be related to the value of 

the Lagrangian multiplier, 1/λ1, had we used that particular optimization procedure. The insight is that, as long 

the portfolio return is positive (its variance will always be positive for a non-trivial portfolio), only securities 

with positive returns will be considered for inclusion in the optimal portfolio. (What about the case of having a 

negative portfolio return? –Save your money and effort, and don‟t invest.) 

MCD IBM HPQ KO PFE GE Returns

MCD 0.002337 0.000917 0.001509 0.001356 0.001494 0.002187 0.016911

IBM 0.000917 0.003591 0.002336 0.001217 0.000315 0.002359 0.009801

HPQ 0.001509 0.002336 0.004872 0.001488 0.001697 0.003797 0.010851

KO 0.001356 0.001217 0.001488 0.00241 0.001117 0.002856 0.005473

PFE 0.001494 0.000315 0.001697 0.001117 0.004184 0.003008 -0.00709

GE 0.002187 0.002359 0.003797 0.002856 0.003008 0.010211 -0.01148

x w ri/stdi ri/Ci = 1/λ1

MCD 11.23754 1.644735 0.349792 6.832433

IBM 0.833271 0.121958 0.163552 6.832433

HPQ 2.487044 0.364006 0.155465 6.832433

KO -0.00273 -0.0004 0.111483 6.832433

PFE -4.36001 -0.63813 -0.1096 6.832433

GE -3.36268 -0.49216 -0.11358 6.832433

Sum 6.832433 1

Basis reduction (BR) Selective basis addition (SBA)

Opt 1 Opt 2 Opt 3 Opt 1 Opt 2 Opt 3

MCD 1.644735 0.910016 0.874922 0.874922 0.910016 1.247012

IBM 0.121958 0.166776 0.125078 0.125078 0.166776 0.248015

HPQ 0.364006 -0.07679 -0.07679

KO -0.0004 -0.49503

PFE -0.63813

GE -0.49216

Sum 1 1 1 1 1 1

rp 0.043129 0.01619 0.016021 0.016021 0.01619 0.020809

pvar 0.006312 0.002072 0.002046 0.002046 0.002072 0.00304

pstd 0.079451 0.045517 0.045233 0.045233 0.045517 0.055139

rp/pstd 0.542843 0.355695 0.354195 0.354195 0.355695 0.377394

rp/pvar 6.832443 7.814468 7.830387 7.830387 7.814468 6.84438
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2) Note the power of the return-to-risk heuristic, according to which the data was ranked and allows such a clear 

appreciation of which securities will come at the top, the most valuable investments under the mean-variance 

criterion.  

And these two findings, in turn, hint at the two major pay-offs of the effort made up to this point. The first one concerns 

the power of linear heuristics in portfolio optimization, which substantiates Barone-Adessi‟s confidence in these 

constructs. Note that, in general, the term “heuristic” is often used in the sense of an approximation. However, the 

return-to-risk heuristic is sometimes powerful enough to identify optimal securities in mean-variance analysis. Another 

potential linear heuristic, ri > 0, is a necessary but not sufficient condition for observing a positive weight, as is the case 

with the securities HPQ and KO. In the example presented in Exhibit I, the return-to-risk heuristic (ri/stdi) was able to 

anticipate exactly the qualitative ranking in the optimization.  These effects can also be observed in larger samples, as 

we will show in the next section.  

The second pay-off from the analysis presented in this section has a major scope. A qualitative portfolio model could be 

constructed by following the characteristics of mean-variance analysis. First, one would identify an indicator reflecting 

a key characteristic sought after for each of the objects of choice. This indicator should be positive, the larger value 

reflecting a better choice. The collection of values for each indicator would form a vector playing the role of b. The 

entries of the matrix A could be made up by the range of this particular indicator for each of the objects of choice (main 

diagonal), and how the range of each indicator affects the range‟s other indicators (off-diagonal elements). As noted 

earlier, the entries on the vector b should be strictly positive, and the entries in A should be such that A is positive 

definite (every major determinant positive). A better way to state the requirements for A and b, is that A should be 

quasi-diagonally dominant, which means that one can find optimal weights for which A w is diagonally dominant.  It is 

well-known that when securities are not related, covariance terms (off-diagonal elements in A) equal zero, and the 

optimal weights are simply a weighted average of the linear return-to-risk heuristic: wi* = ri/vari / (Σri/vari). 

Quasi-diagonal dominance allows the linear risk-to-return heuristic to suffice to establish its rank in the optimal solution 

without being thwarted by covariance-effects. In other words, the optimization is ultimately dictated by the linear 

heuristic bi/aii. 

This section has presented material from several of the areas tributary to portfolio optimization (finance, optimization, 

and linear algebra). For further detail, the reader is referred to Tarrazo (2014) which focuses on the properties of the 

optimization, and also Tarrazo (2009), which studies the power of the heuristic ri/stdi to anticipate and enhance 

portfolio optimization, and where detail concerning the selective basis addition algorithm and other sequential 

procedures can be found. The relationship between positive returns and positive portfolio weights is analyzed in Tarrazo 

(2008a), and exploited in subsequent studies by this author (2012, 2009), and Tarrazo and Ubeda (2012).  

3. Qualitatively Different Portfolios and Development of Heuristics 

In this section, we will complement the material presented in three ways: first, by further exploring valid portfolio 

optimizations beyond that of the “tangent” portfolio; second, by suggesting some ways that may result in more useful 

heuristics; and, third, by commenting on actual portfolio optimization results.  

3.1 Qualitative Differences Along the Efficient Frontier 

In the previous section, we focused on a portfolio with special characteristics: the portfolio that has the highest 

return-to-risk ratio (rp/pvar). It implements arbitrage; it is not dominated by any other portfolio, and it can be shown to 

have optimal predictor properties, Tarrazo (2014). Notwithstanding, since the beginning of portfolio optimization, 

researchers have studied other valid portfolios which investors could consider. These are portfolios that are not 

“dominated” by other portfolios –no other portfolio has better returns with equal or lower risks, or lower risk for the 

same level of returns. These portfolios form the so-called “efficient frontier”, which ranges from the portfolio with 

minimum variance to that with maximum return.  

Exhibit II shows optimal weights and portfolio figures for the efficient frontier using the example from the previous 

section. The portfolio with the minimum variance is p1. The portfolio with the maximum return, and also the maximum 

variance, is p6. The portfolio maximizing the return-to-risk portfolio is found between these two “extreme” portfolios. 

Exhibit III depicts the evolution of optimal weights as we transition from p1 towards p6 (it makes more sense to 

transition from p6 to p1). A key effect is that the number of securities also varies as we create higher return-to-risk 

portfolios. In other words, qualitatively better portfolios include less securities but of a higher quality (higher individual 

return-to-risk), given the portfolio optimization values. Furthermore, the quality quickly downgrades as we move 

downwards to the minimum variance portfolio. This yields a key insight: qualitatively, the minimum variance portfolio 

may not be the minimum risk portfolio. At this point, we have reached the theoretical nucleus where the practical import 

of portfolio theory resides: the best portfolio should be one that maximizes the return-to-variance portfolio (p5, rp/pvar 

= 8.038518), while having enough securities to offer diversification, but without adding securities of a lower quality. 
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The reader may also have anticipated the next two critical questions: 1) how many securities make up a diversified 

portfolio? And, 2) can portfolio theory be implemented? 

The answer to the first question ranges from 15 securities to 100 securities as the minimum required; statisticians and 

hedgers argue for the larger number on the bases of statistical reliability of estimates, or on the basis of better risk 

management, respectively. But the investor interested benefiting from portfolio theory may also face limitations 

concerning the investing budget, which is the case of small (household) investors. For example, placing about $20,000 

in 15 securities would amount to a minimum of funds of about $300,000. Responding to the second question requires a 

look at actual investing-grade optimizations, which we shall do next. 

3.2 Actual Investment Optimizations 

One way to facilitate finding optimal positions is to make sure one has not only enough securities to find diversifying 

behavior (not all securities going up or down at the same time), but also that they are economically different (different 

sizes, different growth patterns, different industry, markets, and sectors, and so on). The reader may have noted we are 

handling suddenly qualitative matters. We have to do so because, unfortunately, the numbers are insufficient to guide 

optimal investing behavior.  

Exhibit IV presents portfolio optimizations for the stocks of the “Dow Jones Industrial Average” (DJIA) for three 

different periods, which includes 30 securities. Another recommended “hunting ground” for securities is the “Standard 

& Poor‟s 500 Industrial Average” (S&P500), which includes 500 securities. However, the correlation between these 

indices is very high –e.g., it reached 98.18% for the 6/1/2010-5/31/2005 period. Furthermore, the DJIA attracts a great 

deal of attention for investors because it is easier to follow 30 than 500 companies, see for example Siegel (2005). In 

addition, as noted earlier. We must also consider that individual investors have a limited number of funds to invest, 

which reduces the number of different positions they can have. 

When we try to apply portfolio theory to actual data we notice at least the following points: 

a) The optimization is very influenced by the sample period. We have followed an unwritten rule of five 

years-worth of monthly data, but there is little guidance beyond this, see Fabozzi, Gupta, and Markowitz (2002).  

b) The optimal tangent portfolio may not promise much diversification. For instance, the “1998-2003” and the 

“2005-2010” optimization yield tangent portfolios of only two securities. The “2003-2008” period optimization 

appears much more promising in providing some diversification but, on closer inspection, we see that four stocks 

command nearly 60% of the investing funds (58.3% exactly, on MCD, JNJ, CVX, and BA).  

c) The horizontal line in each of the three blocks divides those stocks with a positive average return and those with 

a negative one. We can appreciate how many securities with positive returns are not included in the optimal 

(tangent) solution, which seems to exhibit “winner takes it all” lopsided proportions. This means that a heuristic 

of simply “accumulating securities with positive returns” may not help much.  

d) Very importantly, we do observe the power of the individual return-to-risk heuristic to rank-predict optimal 

positions. The rule-of-thumb of investing in the top five securities in terms of their “ri/stdi” gets the 67.34% top 

accumulated portfolio weights in the “2003-2008” and the 100% in the other two periods. (By the way, the 

heuristic return-to-variance, ri/vari, is the appropriate one to use for both individual securities and portfolios.) 
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Exhibit II. Efficient Frontier. 

 

 

 

 

 

 

 

 

 

 

 

Inspection of optimizations with potential actual investing values reveals that the individual return-to-risk heuristics 

does summarize and carry much of the theoretical content of portfolio optimization. But it also needs to be 

complemented with qualitative analysis –perhaps other linear, qualitative heuristics-- to enhance practical application of 

the theory. Our analysis, however, does provide some note of caution on how to get started in this respect.  

3.3 A Note of Caution on the Construction of Heuristics 

It is clear that portfolio theory does not offer a clear, identifiable set of rules to follow. Much critical detail in its 

implementation is left to the investor (sample selection, number of securities, frequency, and so on.) It seems prudent to 

try to build on the most solid foundations available, or else we risk not being able to explain results. Our analysis 

suggests building upon the following three items: 1) the tangent portfolio, 2) the individual return-to-risk heuristic, and 

3) in the context of a number of securities small enough for the investor to be able to evaluate the resulting optimal 

portfolio weight in terms of economic and company fundamentals.   

  

min variance tangent max return

p1 p2 p3 p4 p5 p6

MCD 0.301646 0.398803 0.495959 0.597122 0.76117 1

IBM 0.25153 0.249257 0.246984 0.244901 0.23883

HPQ 0 0 0 0 0

KO 0.271769 0.236473 0.20118 0.157977 0

PFE 0.175056 0.115467 0.055877 0 0

GE 0 0 0 0 0

sum 1 1 1 1 1 1

(Monthly)

rp 0.78% 0.97% 1.15% 1.34% 1.52% 1.69%

pvar 0.001566 0.001584 0.001637 0.001727 0.001892 0.002337

pstd 3.96% 3.98% 4.05% 4.16% 4.35% 4.83%

rp/pstd 0.19744 0.242807 0.284506 0.321534 0.349697 0.349792

rp/pvar 4.989577 6.101252 7.030778 7.736716 8.038518 7.235335
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Exhibit III. Securities and Qualitative Effects 

 

 

In the literature, many results have been calculated in ways that may raise more questions than they solve:  

1) Using samples containing hundreds (and hundreds) of securities. What fundamental follow-up can you apply to 

evaluate the quality of portfolio weights? What type of investor would spread their funds in such a way? 

2) Calculating non-optimal portfolios. For example, portfolios where securities are assigned equal proportions have 

attracted many researchers. In this case, however, unless some initial criteria to select the securities has been 

implemented, it seems the analyst is simply throwing away not only what the individual return-to-risk heuristic 

has to offer, but also the value of numerical optimization,.  

3) Applying non-standard computations, in some cases authors replace actual, observed values with artificial ones 

generated by, for example, simulation. This is equivalent to replacing market-made uncertainty with one 

man-made. 

4) Focusing on the minimum variance portfolio instead of the tangent portfolio. As we have shown, the 

minimum-variance portfolio is qualitatively the worst of all acceptable portfolios. It is not an optimal predictor 

because it neglects returns (one only optimizes the quadratic form G(x) = -1/2 x‟A x, when minimizing the 

variance of the portfolio).  
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Exhibit IV. Optimizations, Dow-Jones Industrials Average.  

 

Unfortunately, it is not uncommon to find cases where the concurrence of all 1-4 instances make the corresponding 

results hard to assess, as studied in Tarrazo and Ubeda (2012). 

Two other notes of caution related to single-index models, especially when the optimization carries crippling 

assumptions. Single index models compute optimal security weights by first computing their regression numbers again 

an index. The theoretical support comes from what is known as the Capital Asset Pricing Model, see Barone-Adesi 

(2007). It should be clear that using an index extracted from the sample data would provide exactly mean-variance 

6/1/2010-5/31/2005 4/1/2008-3/31/2003 11/3/2003-12/01/1998

sorted NSS sorted NSS sorted NSS

Ticker ri/stdi tangent Ticker ri/stdi tangent Ticker ri/stdi tangent

1 MCD 0.349792 0.874922 MCD 0.422509 0.203917 MMM 0.261209 0.820107

2 IBM 0.163552 0.125078 UTX 0.379721 0.084 C 0.154224 0.160004

3 HPQ 0.155465 CVX 0.37362 0.116184 CAT 0.106454 0

4 KO 0.111483 XOM 0.32892 0.011961 UTX 0.096706 0

5 TRV 0.105293 CAT 0.322833 0.086492 AA 0.095815 0

6 CVX 0.09833 BA 0.317197 0.112493 AXP 0.074469 0

7 UTX 0.095426 HPQ 0.287006 0 WMT 0.068275 0.002498

8 PG 0.084841 T 0.256979 0.048972 JNJ 0.063278 0

9 T 0.077528 PG 0.241008 0.02235 XOM 0.055344 0

10 MRK 0.072305 KO 0.210102 0 BA 0.038652 0

11 DIS 0.067789 JPM 0.204281 0.055069 MO 0.036374 0

12 MMM 0.058056 DIS 0.190007 0 PG 0.031413 0.017391

13 CAT 0.051682 GE 0.17703 0 HPQ 0.020182 0

14 JPM 0.030403 AXP 0.146239 0 INTC 0.014146 0

15 WMT 0.029817 JNJ 0.135872 0.150697 IBM 0.002148 0

16 XOM 0.029685 BAC 0.131659 0.01768 IP -0.00982

17 VZ 0.026016 AA 0.129226 0 GE -0.01169

18 CSCO 0.022831 IBM 0.122984 0 HD -0.01277

19 JNJ 0.016389 MMM 0.116577 0 DD -0.02044

20 KFT 0.014402 DD 0.095524 0 GM -0.02099

21 BA 0.011325 VZ 0.083618 0 MSFT -0.0364

22 MSFT 0.001698 MSFT 0.082953 0 HON -0.03644

23 DD -0.00291 INTC 0.050069 0 JPM -0.03657

24 AXP -0.00955 HD 0.032792 0 DIS -0.03945

25 INTC -0.03481 WMT 0.009282 0.090185 KO -0.06381

26 HD -0.04247 MRK -0.03431 0 MCD -0.06783

27 BAC -0.08715 AIG -0.04532 0 MRK -0.08187

28 AA -0.09757 GM -0.05196 0 SBC -0.10922

29 PFE -0.1096 PFE -0.06166 0 EK -0.12969

30 GE -0.11358 C -0.08424 0 T -0.26613

monthly rp 0.016021 0.014226 0.016352

pvar 0.002046 0.000575 0.003744

pstd 0.045233 0.023975 0.061189

rp/pstd 0.354195 0.593362 0.267228

rp/pvar 7.830387 24.74924 4.367219

yearly

rp 19.23% 17.07% 19.62%

pvar 0.024553 0.006898 0.04493

pstd 15.67% 8.31% 21.20%

rp/pstd 1.226968 2.055466 0.925704

rp/pvar 7.830387 24.74924 4.367219

mdeterm 1.38E-82 7.55E-06 -2.44E-85 1.80E-34 9.31E-71 1.06E-09

emax = norm (k) 0.1072 0.0041 0.0242 0.0087 0.108146 0.01127

emin 0.000165 0.001864 5.16E-05 0.00035 0.000401 0.002958

cond(k) = emax/emin 651.6525 2.1991 469.2584 24.8673 269.7937 3.809661
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weights, and that only an index bringing outside-the sample information would provide different weights. It turns out 

that the index usually used is the S&P500, but it is always unclear how it is related to what the sample is, or should be. 

Therefore, there is a school of thought (Roll‟s Critique), that argues that the contribution of the single index model to 

portfolio theory is untestable because its evaluation amounts to a joint-test of both mean-variance and the efficiency of 

the index itself. In addition, the initial regressions of the index on the securities to get the initial betas ignores the 

error-covariance structure (σeij, i ≠ j), only recognizing the individual security variance and its covariance with the 

market. The intention may be good (highlight the relation of the security with the index), but the action is still entirely 

arbitrary. The problems compound when multi-index models are contemplated.  

In sum, we believe the best way to set out to enhance portfolio theory is to focus on mean-variance analysis in the three 

aforementioned cases –tangent portfolio, individual return-to risk heuristic, and a reduced number of securities (perhaps 

no more than 30). 

4. Further Detail and Promising Perspectives 

In this section we want to extend the analysis presented thus far to point out promising perspectives in enhancing 

portfolio selection with qualitative analysis. We will briefly comment on three of such perspectives, which we will 

organize in terms of comprehensiveness, reach, and scope.  

4.1 Linear, Qualitative-But-Measurable Heuristics  

Research on these is already at the implementation stage, and there are mutual funds and exchange-traded funds 

offering investing strategies built with fundamental analysis heuristics. These heuristics try to sidestep the vagaries of 

stock-market numbers and link the quality of the stock to the quality of the company which, in turn, is linked to key 

economic or company data; see for example, Arnott, Hu, and West (2008). According to our analysis, this effort should 

also benefit from being applied to exchange-traded-funds, which, invest in a reduced number of securities (40-60) 

compared to mutual funds.  

4.2 Portfolio Metaheuristics  

The mean-variance model does not include critical factors that go beyond the statistics-plus-numerical-optimization 

procedures described in the first section. When we try to help specific investors, or even to improve upon the model, we 

need to proceed via qualitative methods. Di Tollo and Roli (2008) suggest using “metaheuristics”, which are ways to 

widen the conceptualization of each item in the original model (variables, objectives, constraints) to enhance the model 

–i.e., more robust, wider applicability, more practical. These authors understand “metaheuristics” as strategies based on 

approximate algorithms applied in problems needing combinatorial optimization and which, otherwise, would be 

unsolvable. Metaheuristics, for example, could help investors to decide when to exit the stock market (sell partially or 

completely) their portfolios. Martellini and Urosevic (2006) show that the static mean-variance model may not provide 

the best portfolios when the investor faces uncertain time-horizons. Portfolio theory says little about optimal revision 

policies –a related problem to timing investment exits. 

4.3 Decision Heuristics  

To the „technical” component of investing one must add the “human” component. Investors, and especially small 

investors, have to deal with many decision making challenges because they have limited budgets, alternative uses for 

those funds, and limited knowledge. Simon (1955) completed early pioneering work in heuristic problem solving 

particularly as it related to operations research. Tversky and Kahneman (1974) further explicated heuristic models to an 

individual dimension, defining them as simplifying mechanisms for complex decisions. Shrivastava and Lim (1984) and 

Stubbart and Ramaprasad (1990) focus on identifying simplifications and biases in executives' maps of their industries.  

Individual biases are a product of each decision maker‟s cognitive structure.  Cognitive structures are necessary to 

prevent decision makers from becoming paralyzed by the need to analyze extensive data (Weick, 1979; Hogarth, 1980; 

Daft and Weick, 1984). Further, Janis (1989) asserts decision makers often take shortcuts. One of these relates to simple 

decision rules -- relying on existing procedures or a well-known analogy. These analogies may, of course, be based on 

comfortable heuristics that may be identified by predominant metaphor usage.  These shortcuts limit the 

comprehensiveness of the decision process.  Janis‟ notion of simple decision rules and incrementation support the 

notion of the influence of heuristics in decision making which may be partly responsible for the nature and quality of 

decision making.  

The investing problem is one of the most complex ones faced by individuals in our modern societies, thus, often leading 

to the conscious or unconscious development of decision heuristics. In addition to security selection, it is related to 

many other critical decisions such as health, health care, housing, care for dependents, retirement preparation and 

management, and so on. The problem is also overwhelming for even finance professors, as noted sharply by Doran and 

Wright (2010), among others. Herbert Simon (see 1955, for example) noted that decision makers were likely to find it 

difficult to use some models that, nonetheless, appear very reasonable in textbooks and theoretical research. Simon 
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argued for a “bounded rationality” approach that was, not only more realistic but also better suited to computer 

processing. Some of the research spawned from Simon‟s work focuses solely on the many ways in which people err 

when making decisions. More constructively, other research strands try to ascertain how to help decision makers by 

recognizing the “fast and frugal” way by which individuals try to adapt to an increasingly more difficult environment 

(more information to process, more choices that are more difficult to evaluate, more to lose, and so on); see, for instance, 

Gigerenzer (2000, p. 166 and ss., 2001, and 1999), and Baker and Nofsinger (2002). 

Exhibit V. Suitability, Characteristics, and Relational Equations  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4 Relational Equations  

Exhibit V illustrates how this approach operates. Suppose there are three subjects to be taught (economics, finance, 

accounting), three textbooks available (economics, finance, accounting), and three potential professors (economist, 

finance, and accounting). Obviously, as the problem is described, it seems best to relate each one of the elements in 

each set in the order they appear within the brackets. Notice now matrixes can be used to represent the items (elements) 

of each of these three groupings (sets). Multiplying matrices N * T, we would have a matrix NX representing the first 

relation, NX = R1 (needs, texts). Multiplying X * P, we would have a matrix representing the second relationship of 

interest, XP = R2 (texts, professors). Multiplying NX * XP we would have a matrix relating subjects to be taught 

directly to professors, NP = NX * XP, capturing the third relationship of interest R3 (subjects, professors). Identity 

matrices represent the simplest case imaginable in assignment problems (perfect matching). Matters get more 

interesting when subjects do not perfectly match teaching materials or available faculty. For example, consider 

interdisciplinary subjects (financial economics, personal financial planning), or whether some faculty can teach more 

than one subject, or whether the teaching materials overlap. These cases would be represented by the off-diagonal 

elements in each of the matrices. The analysis is very flexible, and the entries can also reflect negative values (negative 

student reactions to a professor teaching outside his/her area of expertise). Furthermore, the analysis can be applied to 

the “demand for characteristics” case, in which consumer‟s ultimate goals are certain characteristics, totally or partially 

present in the intermediate goods purchased Lancaster (1966). Smith (1974) applies suitability analysis to household 

financial planning. In this case the groupings are Age groups = {25, 35, 45, 55, 65}, Characteristics = {liquidity, income, 

appreciation, safety}, and Assets = {savings account, corporate bonds, stocks, real estate}. The corresponding 

multiplication matrices would be as follows: M1 = (age groups, security characteristics), M2 = (characteristics, assets), 

and M3 = M1 * M2, which would indicate the asset portfolio mix for each group.  

Tarrazo (1999, 1997) reformulated Smith‟s (1974) analysis using the methodology of fuzzy sets and, more specifically 

applying it as a relational-equations-possibilistic model (REP). This methodology has been developed to process 

concepts whose adequacy/possibility are a matter of degree. In some cases, a deviation from a given amount may not 
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matter much because the sets and elements need not be as precise as in calculus. The key relationships are specified at 

the level of “sets” not “variables”: R1= (age groups, security characteristics), R2 = (characteristics, assets), and R3 = 

M1 ● M2, where the operator “●” represents a logical rule (maxi-min, for example) rather than an arithmetic rule. The 

end result is a set of coefficients capturing both qualitative relationships and quantitative intensity, and yet maintaining  

the linear framework of conventional portfolio models. This methodology makes information exchanges very efficient, 

and it is easy to modify to include different aspects of the decision. It is also very well suited to integrate “expert” 

assessments. REP and other (granular computing) tools to integrate qualitative and quantitative information making use 

of intervals, which for Tarrazo (2008) can be taken as the bridge between words and numbers and the language of 

strategy.  (The qualitative side of this bridge may include work such as Cannice and Bell (2010) which examined the 

use of metaphors by venture capitalists. From a systematic collection and classification of venture capitalists‟ utterances 

of metaphor which acted as unconscious „tells‟, the study authors constructed a typology of VC decision maker types – 

ranging from a Darwinist whose frame of reference is that „only the strongest will survive‟ to the Priest – who looks for 

„meaning in new ventures‟.) 

In sum, these four approaches all aim at enhancing quantitatively-based decision making with qualitative elements. 

Nofsinger (2011), for example, concludes that the ways to avoid investing decision-making errors by 

behavioral/cognitive biases are the following: 1) understand the biases, 2) know why you are investing, 3) have 

quantitative investment criteria, 4) diversify, and 5) control your investment environment. The disappointments, 

frustration, thoughts of what might have been, and regrets, which are also part of investing may only be addressed with 

qualitative knowledge, see Acker (1997). 

From time to time there are areas of science that benefit enormously from a focus on certain problems. That seems to 

have been the case with the fruit fly in biological research, and with chess in artificial intelligence. It seems plausible 

that further research integrating qualitative and quantitative elements could enable portfolio selection to play a similar 

role in the advancement of investing, in particular, and of decision making in general.  

5. Concluding Comments and Areas of Further Research 

This study set out to contribute to what we believe to be a very advantageous way to enhance portfolio selection –its 

implicit linear heuristics. We did so by clarifying, complementing, and extending a timely contribution in this effort.  

We first clarified how portfolio optimization works, and the role played by a critical linear heuristic --the individual 

return-to-risk ratio. Then, we proposed a very straightforward way to build qualitative analogs to the standard, 

quantitative-only, mean-variance portfolio optimization –that is, by replicating its numeric properties with qualitative 

indicators. Then afterwards, we focused on the qualitative elements already present in portfolio choice that, nonetheless, 

are overlooked in the current, quantitative-only approaches. Because of quality issues, the minimum-variance portfolio 

is most likely not to be the minimum-risk one. We also noted that some approaches to implementing portfolio heuristics 

may be more productive than others. Specifically, we advocated for adding qualitative elements to the clearest and more 

transparent implementations of the theory –tangent portfolios in mean-variance analysis, calculated in the most standard 

way, and applied to rather small portfolios. In the last section we surveyed and explored additional ways in which 

portfolio selection can be enhanced with qualitative elements.  

In general, qualitative-quantitative integrations are needed in situations where information is most scarce (e.g., venture 

capital, initial public offerings); in forward-looking decisions, where all that matters is set in the uncertain future (e.g., 

retirement planning); and in decisions where strategy, which normally requires the integration of words and numbers, is 

the key.  We also contend that portfolio heuristics may be exposed unconsciously through metaphorical tells that 

individuals and managers may use. We expect an exploration into the metaphorical tells of portfolio heuristics may be a 

fruitful area of further investigation. These days it seems investing is no longer possible without using qualitative 

guidance. Perhaps it never was possible. The difference is that nowadays, as indicated in this study, we have the tools, 

models, and methodologies to benefit from qualitative information and reasoning.  
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