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Abstract 

Frequency Selective Surfaces (FSSs) are spatial filters that are largely employed in radomes for radars and antennas 

where high performance is necessary. FSS can be categorised in terms of their frequency behaviour. Band-pass FSS 

structures are able to let the electromagnetic wave pass in certain frequency ranges and shield others, which are 

especially suitable for out-of-band stealth of radomes. The properties of frequency selectiveness of these screens are 

used at microwave and infrared wavelengths. By tuning the electrical size and geometry of the unit-cell (patch or 

aperture) different frequency behaviours of the structure are generated. Although their analysis and simulation is 

significantly simplified with the approximation of infinite and planar array, in some real applications FSS are required 

to be conformal to limited non-planar structures. The literature on the problem of characterizing finite-size and curved 

FSS has been sparse and more focused on the single application rather than on a unified approach. In the aim of 

synthesizing valuable techniques, this paper reviews significant research results on truncated and curved FSS which 

were presented in the dedicated literature. 

Keywords: microwave engineering, frequency selectiveness, RADAR, periodic structures, floquet’s theory, method of 

moments, asymptotic boundary conditions. 

1. Introduction 

Frequency selective surfaces (FSS) have been studied for the last five decades and comprehensive books have been also 

published (Munk, 2000) and (Wu, 1995). FSS have evolved from simple canonical forms to the complex geometries 

known today. This evolution has been driven primarily by increasingly stringent performance requirements of recent 

applications. The progress of frequency selective surfaces was also motivated by the significant improvements in the 

methods of analysis, from the computing capacity and on the manufacturing technology. Moreover, being FSS part of 

the broad family of artificial materials (Ruvio& Leone, 2014), new research efforts have been dedicated to this topic. 

The frequency selective surfaces can be fabricated as planar two-dimensional periodic arrays of metallic elements with 

special geometric shapes, or may be created by periodic openings in a metal screen. The transmission and reflection 

properties of these surfaces are dependent on the operating frequency and may also depend on the polarization and the 

angle of the electromagnetic plane wave impinging the material (angle of incidence). These structures are used when it 

is required that in some frequency band a surface is fully opaque (stop-band) and in other bands the same surface allows 

the transmission of the electromagnetic wave. This behaviour can be very advantageous, for instance, in space 

applications for a telescope or satellite in orbit. 

In passive planar FSS the power is supplied from a plane wave that affects the structure, while in the active ones each 

element has its own power source. In the passive array case with elementary dipoles, the incident wave will be partly 

transmitted in the forward direction (Et) and partly reflected in the specular direction (Er). Under resonant condition and 

without grating globes, the amplitude of the transmitted wave (Et) is minimum and the reflected wave is (Er). If we 

define a reflection coefficient (Γ=Er/Et), we have the maximum value of this coefficient, for a specific frequency. It is 

possible to make a complementary structure, through openings in a metal plane. In this case, we have the maximum 

value of the transmission coefficient, for a specific frequency. Therefore for an array of dipoles the behaviour of the 
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structure is similar to a reject-band filter, while for an array of slots it is similar to a pass-band filter (Figure 1). 

Figure 1.Basic operating principles of strip- and slot-based FSSs 

To understand the physical principle underlying the FSS, it is possible to use a circuit analogy, through the use of 

LC-elements. For example, if we consider a row of two-dimensional array of dipoles, each element of this structure can 

be shown schematically by means of a series of dipoles LC, in which the inductance L is the self-inductance of each 

dipole, and the capacity C represents the gap between an element and the next. By suitably dimensioning the individual 

elements is possible to obtain that the reactive part of this series LC vanishes and the impedance of the dipole will be 

the minimum. If this condition is verified and the FSS structure is hit by an electromagnetic wave, a maximum possible 

interaction is obtained. 

In order to achieve a filtering behavior which is independent on the angle of incidence of the wave and its polarization it 

is necessary to create structures that have more complex geometries than dipoles and slots. Shapes as crosses, “y” and 

rings are used. Moreover, to improve the frequency selectivity, layered structures are often used. 

2. Recent Research Trends 

Typical FSS applications are also desired in the design of hybrid radomes shielding antennas from external weather 

conditions. They can also lower the Radar Cross Section (RCS), outside of the frequencies of interest. If we consider, 

for example, an antenna mounted on the nose of an airplane, one FSS disposed on the surface of the radome allows to 

scatter the incident radiation that operates outside the band of interest in the bi-static direction, with the consequent 

result of a return very low in the direction of backscatter. A similar FSS application is in the design of band-stop filters. 

An example of this application is related to the realization of a hybrid radome applied on a shipboard radar antenna. 

A recent solution to reduce the Radar Cross Section of a Microstrip Antenna using an FSS is presented in (Genovesi, 

Costa, & Monorchio, 2012). The goal is accomplished by replacing the solid ground plane of the device with a hybrid 

structure comprising a suitable FSS. For this purpose a microstrip line with characteristic impedance equal to 50 Ohm 

has been printed on the top of an FR4 dielectric slab. On the opposite side of the FR4 slab, three different grounds have 

been printed: (a) a solid ground plane, (b) an FSS ground, and (c) a hybrid ground comprising a PEC area beneath the 

microstrip line surrounded by FSS unit cells. The simulated and measured results has shown that the antenna with the 

hybrid ground planeis characterized by a strong RCS reduction within the transmission band of the FSS since the 

incoming signals passes unaltered through the multilayer. The RCS reduction in the same frequency band is preserved 

also for oblique incident angles since the frequency response of the FSS is characterized by a high angular stability. The 

proposed design does not affect the in-band performance of the radiating device allowing, at the same time, to decrease 

the out-of-band radar signature of the target. Therefore, it represents the best solution among the investigated ones. The 

joint study of the response of the FSS for plane waves and for quasi-TEM waves has revealed a suitable and efficient 

approach to provide a fast design of a low-RCS antenna, avoiding time-consuming full-wave simulations. 

Measurements on a real prototype con firm the validity of the proposed design. 

FSSs find also application in the integration of circuit analog absorbers. These genarally consist of crossed elements 

made of a resistive material backed by a ground plane. These surfaces are similiar to the classical Salisbury screen, but 

they are superior to them. In fact periodic surfaces exhibit a reactive component that, to a large extent, can be designed 

to produce a larger band with particularly when more layers added. Periodic meanderlines can be used for this purpose 

(Figure 2). If the structure is hit by an incident wave with an E-field aligned with the meanderline, the structure will act 

like a shunt inductance over an equivalent transmission line; whereas an E-field perpendicular with the meanderline will 

see a capacitive load. If an incident wave is linearly polarized and tilted 45°, it may be decomposed into vertical and 

horizontal components where the former is delayed and the latter advanced. If after passing through the polarizer, the 

net difference between the two components is 90°, they will recombine into a circular polarized wave. Cascading two or 
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more polarizer sheets can improve the bandwidth and adding dielectric slabs can improve the angle of incidence 

stability.The PEC ground plane can be replaced by a high-impedance surface (HIS),then a phase delay greater than 180 

degrees can be obtained and the physical thickness can be reduced (Seman, Cahill, & Fusco, 2009).The absorbing 

bandwidth of the Salisbury screen can be increased by employing more resistive sheets spaced approximately quarter 

wavelength apart, often referred to as a Jaumann absorber (Chambers& Tennant, 1994) or by placing dielectric slabs 

above and below the resistive sheets (Munk, B.A., Munk, P. & Pryor, 2007).These structures are, however, unsuitable 

for deployment in applications where the major design driver is to reduce physical thickness. Recently, it was shown 

that an analysis of the absorbing structure by a simple equivalent circuit that allowed a detailed explanation of the key 

parameters for the design of the absorber. The authors quantified the relationship between the surface resistance of the 

ink-film composing the screen and the reflectivity bandwidth (Costa, Monorchio, & Manara, 2010).The work described 

in this paper was motivated by the need to widen the absorption band of the Salisbury screen absorber. The resistive 

Salisbury screen was replaced by a high-impedance surfaces (HIS) comprising lossy frequency selective surfaces (FSS) 

such as a periodic array of conductive patch elements. The structure under analysis was described by means of an 

equivalent circuit approach. 

 

Figure 2.FSS-based absorber 

Improved manufacturing techniques and the exploration of higher regions of the spectrum have facilitated more 

sophisticated FSS designs. Multifractal geometries were proposed for the integration of dual/wide band FSS for 

applications in S- and X-band (Braz & Campos, 2014). By combining Koch curve with Sierpinski Carpet, resonance 

and bandwidth can be easily controlled. Good broadband behavior in combination with a high degree of miniaturization 

was achieved by interleaving bundles of small square patches (Semyoung, Hanjun, Joo-Ho & Gil-Young, 2014). With 

the research advancements in new materials and manufacturing techniques FSSs for the terahertz spectrum have been 

recently proposed. At THz frequencies, the thicknesses of commercially available substrates are comparable to the 

free-space wavelength. As a result, the substrate plays a critical role in determining the transmission characteristics of 

THz multilayer FSS structures. Proper coupling method between FSS structures should be chosen to avoid unwanted 

substrate resonances or Fabry-Pérot resonances, which otherwise degrade the transmission characteristics of the 

cascaded FSS structure. A cascaded structure was proposed to avoid multiple reflections within the substrate (Vegesna, 

Zhu, Bernussi, &Saed, 2012). The transmission response is improved by introducing an extra transmission zero at a 

frequency location lower than the resonant frequency, thereby achieving high roll-off rate for the lower side of the stop 

band, and to suppress unwanted resonances, thereby increasing the rejection bandwidth of the filter. The electric 

properties of vanadium dioxide (VO2) and sapphire substrates have been successfully employed for the manufacturing 

of FSS structures for the THz spectrum (Zhao, Lee, Zhu, Nazari, Chen, Wang, Bernussi, Holtz, & Fan, 2012) and (Chen, 

Zhu, Zhao, Lee, Wang, Bernussi, Holtz& Fan, 2010). An innovative reconfigurable THz FSS polarizer was integrated 

by combining VO2 patches with metallic resonators (Vegesnaa, Zhuab, Zhaoab, Fanab, Bernussiab & Saeda, 2014). 

Vanadium dioxide behaves as an insulator at room temperatures and as a metal at high temperatures with a 

characteristic insulator–metal transition temperature of ~68 °C. VO2properties were also used to realize a reconfigurable 

single- to dual-polarized bandpass FSS structure at 0.5 THz.Other innovative nano-structure that found application in 

the design of FSS structures which operate in the THz spectrum are the single-walled carbon nanotubes (SWCNTs) 

(Ren, Pint, Arikawa, Takeya, Kawayama, Tonouchi, Hauge, & Kono, 2012). The authors presented a terahertz polarizer 

built with stacks of aligned exhibiting ideal broadband terahertz properties: 99.9% degree of polarization and extinction 

ratios of 10–3 (or 30 dB) from ∼0.4 to 2.2 THz. Compared to structurally tuned and fragile wire-grid systems, the 

performance in these polarizers is driven by the inherent anistropic absorption of SWCNTs that enables a physically 

robust structure. Supported by a scalable dry contact-transfer approach, these SWCNT-based polarizers are ideal for 

emerging terahertz applications. 

One of the challenging problems encountered while designing FSSs is to simultaneously achieve a wide bandwidth, as 

well as stability with respect to waves with different polarizations and angles of incidence. In the recent past, several 
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techniques have been applied to control the bandwidths of FSSs, which includes choosing certain element shapes and 

three-dimensional layouts to provide large angular stability (Hu, Zhou, Wu, Zhou, & Yin, 2009) and (Yang, Gong, 

Zhang, Zha & Ling, 2009). In (Wu, Zhang, Xu, Yang & Lin, 2014) a 3-D FSS structure made of honey-combed spiral 

metallizations shows very good stability across the operating bands for WiFi, Blue Tooth and WLAN communications. 

High degree of miniaturization in combination with good angle stability is reported in (Li, Zhang, Yang, &Wu, 2012). 

Its first layer is inductive to generate band-pass behavior, while the second layer is capacitive-designed so that the 

miniaturization characteristic can be further improved. Compared with the traditional single-layer structure, the profile 

of the FSS proposed is relatively small with the cell’s dimension of only 0.0814× 0.0814. 

More recently all-dielectric FSS structures have been also proposed in the literature (Yu, Qu, Xu, & Wang, 2011). In (Yu, 

Qu, Wang, Huang & Wang, 2014) it is presented the design of FSS made entirely by dielectric materials. 

High-permittivity materials have plasma liquid property as the metal and this property is used to design FSS with good 

band-pass characteristics. 

3. Grating Lobes 

An issue related to the FSS is the undesired generation of grating globes, the spatial replication of the main lobe. If we 

consider one dimensional periodic structure with inter-element spacing Dx and with an incident plane wave at an angle 

of incidence η, it is clear that each element will be delayed in phase by β Dx sin η with respect to its neighbor. However 

in the forward as well as the specular directions, the same element will be ahead in phase or we will always obtain plane 

waves that can propagate in these directions (Figure 3a). There are possibily other directions where propagation can 

take place as illustrated in Figure 3b. 

Here the incident wave is the same as before and a possible grating globe direction is denoted by ηg. From Figure 3b we 

see that the total phase delay of an elementis going to be β Dx (sin η + sin ηg),whereβ = 2π / λg and Dx is the 

interelement spacing. If this delay is equal or a multiple of 2π, all signals from the elements will be in phase in the 

direction ηg, satisfying the following condition: 

βDx (sin η + sin ηg) = 2πn       (1) 

In other words, if the phase delay of the two collinear points, which distance is Dx, is2πn in the ηg direction a grating 

lobe will occur with a consequent degradation of the FSS performance. Since grating lobes are only a function of 

frequency and element spacing, it is not possible to avoid grating lobes at all frequencies. It is mostly important to be 

aware of their presence at the edge of the operating bandwidth in the design of the FSS structure. 

 

 

 

 

 

 

 

                             (a)                               (b)                                                                  

Figure 3. Grating lobes condition 

4. Frequency Selectiveness 

When designing a band-pass filter and band-stop FSS the choice of the cell-unit is crucial. Some elements are inherently 

more broad banded or more narrow-banded than others. Also the bandwidth of an FSS can in general be varied 

significantly by variation of the inter-element spacings Dx and Dz: a larger spacing will in general produce a narrower 

bandwidth and vice versa. Howewer two aspects must be observed closely: the grating globes and the variation of the 

first resonant frequency with angle of incidence and polarization. The elements are arranged into four categories: 

1. Center connected or N-poles, such as the simple straight element, three-legged element; anchor elements; the 

Jerusalem cross and the square spiral. 

2. The loop types such as the three- and four-legged loaded elements; the circular loops; and the square and 

hexagonal loops. 

3. Patch types of various shapes. 

4. Combinations of the previous categories. 

The simplest geometry of the first group to analyse is the simple straight element, so-called Gangbuster surface first 
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presented in (Kornbau, 1984). It consists of these elements arranged into a bidimensional array, which presents the 

maximum interaction with an incident plane wave when the length of the elements is approximately λ/2. The 

interelement spacings Dx and Dz can modify the bandwidth response, showing a broadband response if Dx and Dz are 

reduced and the resonant frequency remains essentially constant while the onset of grating globes is delayed. The 

drawback of this simple geometry is the dependancy from the polarization, in fact this structure interacts only with 

polarization parallel to the structure itself. Obviously it is possible to handle an arbitrary polarization using two of these 

surfaces twisted 90° with respect to one other. 

Another geometry of the first group is the unloaded tripole array, which have the advantage of a larger bandwidth. 

Another advantage respect to the straight element is the lower cross polarization, although it is more complicated to be 

manufactured. The combination of complex unit-cells leads to so-called super-dense surfaces, which are discussed in 

detail in (Schneider, 1992). It is possible to modify this structure, adding an end capacity, resulting into the anchor 

element. It naturally leads to smaller elements resulting in significantly smaller interelement spacing. 

Into the second category we find the loop types, which can have different shapes, for example the three legged and the 

four legged loaded element. They have the advantage to control bandwidth by modification of the load impedance 

ZL=j1/2 Z0 tan(βl), related to the length l of the leg of the element. However, the major advantage of the three legged 

elements is into the better displacement on the surface, resulting into considerably smaller inter-element spacings Dx, Dz. 

Into the third group we find the solid interior elements of simple shapes such as squares, hexagons and circular disks. If 

we consider a periodic surface of square apertures, this class of surfaces leads to element dimensions close to λ/2, 

resulting into a larger inter-element spacing leading to angle of incidence sensitivity and early onset of grating globes. 

 

 

 

 

 

 

 

 

Figure 4. Examples of FSS unit-cells 

5. Modelling Period Structures 

There are basically two ways to determine the scattering and impedance properties of periodic structures: 

1. The mutual impedance approach, sometimes called element to element approach, which is closely associated with 

the Method of Moments (MoM). 

2. The plane wave expansion or the spectral approach. 

Let us focus our attention to the first method. If we consider a finite array structure, this is not a periodic structure any 

longer. However, it may be a realistic approximation of a periodic structure provided that all inter-element spacings are 

the same, Dx as well as Dz. Let us now assume that this array is actively fed by voltage generators V1…V9 as shown in 

Figure 5.The current I2 in antenna 2 will produce a field at antenna 1 which in turn results in an impressed voltage 

defined as –Z1,2I2 where Z1,2 is the element mutual impedance between antennas 1 and 2. If antenna 1 also has a 

generator impressing the voltage V1 at its terminals, then the total impressed voltage will be (V1 - Z1,2I2). According to 

Ohm’s law, this total impressed voltage must be equal to the self-impedance Z1,1 plus the load impedance ZL1, 

multiplied by the current I1: 

𝑉1 = (𝑍1,1 + 𝑍𝐿1) ∗  𝐼1 + 𝑍1,2 ∗  𝐼2          (2) 

We can rewrite the previous expression for the multi-element case: 

 

𝑉1 = (𝑍1,1 + 𝑍𝐿1) ∗  𝐼1 + 𝑍1,2 ∗  𝐼2 + 𝑍1,3 ∗  𝐼3 + ⋯ +  𝑍1,9 ∗  𝐼9 

𝑉2 = 𝑍2,1 ∗  𝐼1 + (𝑍2,2 +  𝑍𝐿2) ∗ 𝐼2 +  𝑍2,3 ∗  𝐼3 + ⋯ +  𝑍2,9 ∗  𝐼9 

⋮ 

𝑉9 = 𝑍9,1 ∗  𝐼1 + 𝑍9,2 ∗  𝐼2 + 𝑍9,2 ∗  𝐼2 + ⋯ + (𝑍9,9 + 𝑍𝐿9) ∗  𝐼9 

 

 (3) 

We can notice that the mutual impedance terms into the previous expression are not the same as for the two-element 
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case, because the shape of the current distribution I(z) may change due to the presence of the other elements. All the 

mutual impedance terms are time-consuming to evaluate, because they are obtained by a numerical integration. If the 

structure under investigation is very large, the impedance matrix will soon grow to be a computationally heavy size. 

Let us now extend the previous formulation to a single infinite case, where the array is infinite into the vertical direction 

(z-axis). We will require the inter-element spacings in the z-direction to be the same (Dz) for all the columns; however, 

the spacings in the horizontal plane along the x-axis need not be uniform. 

 

 

 

 

 

 

 

 

 

Figure 5. Array of radiating elements 

If this structure is exposed to an incident plane wave propagating in the�̂� direction: 

 

 

it will induce the currents I
(1)

, I
(2)

 ,. .., I
(Q)

 in the arbitrarily chosen reference elements of columns 1, 2, ...Q, respectively. 

Furthermore the element currents in a particular column will have the same amplitude as that of its reference element 

and a phase matching the phase velocity of the incident signal in the z-direction 

𝐼𝑞𝑚 = 𝐼𝑞𝑒−𝑗𝛽𝑚𝐷𝑧𝑠𝑧 ,           𝑞 = 1 … . 𝑄, (5) 

Where m is equal to the element number in the z-direction with m = 0corresponding to the reference element in the 

respective column. With this equation, we can simplify the previous equation of the multi-element case as: 

𝑉(1) = (𝑍1,1 + 𝑍𝐿1) ∗  𝐼(1) +  𝑍1,2 ∗  𝐼(2) + ⋯ + 𝑍1,𝑄 ∗  𝐼(𝑄) 

𝑉(2) = 𝑍2,1 ∗  𝐼(1) + (𝑍2,2 + 𝑍𝐿2) ∗  𝐼(2) + ⋯ +  𝑍2,𝑄 ∗  𝐼(𝑄) 

⋮ 

𝑉(𝑄) = 𝑍𝑄,1 ∗  𝐼(1) + 𝑍𝑄,2 ∗  𝐼(2) + ⋯ + (𝑍𝑄,𝑄 + 𝑍𝐿𝑄) ∗  𝐼(𝑄) 

(6) 

where the term 

𝑍𝑞,𝑞′
= ∑ 𝑍𝑞,𝑞′𝑚

∞

𝑚=−∞

𝑒−𝑗𝛽𝑚𝐷𝑧𝑠𝑧 (7) 

is called the array mutual impedance. This term is made of a sum of element mutual impedances Zq,q’m. Although this 

formulation leads to some reduction in computational time, it should be emphasized that the evaluation of the array 

mutual impedances Z
q,q’

based on equation (7) is still time-consuming. This occurs simply because they rely on 

evaluating element mutual impedances. In addition, the infinite series (7) is in general very slowly convergent and 

requires the incorporation of many elements, namely high values of m. But there is an alternative approach based on the 

evaluation of the array mutual impedance between two columns with co-linear elements located in a cylindrical 

coordinate system using another infinite series with Hankel functions of second kind of order 0. 

This single infinite scenario can be easily extended to a double infinite case, giving an infinite × infinite periodic 

structure, as long as we keep the inter-element spacings Dx and Dz constant. If this configuration is exposed to an 

incident plane wave propagating in the direction �̂�, then the amplitude of all the element currents will be the same, 

while their phases will match the phase of the incident field. Formally, for the element current in column q and row m 

we have: 

𝐼𝑞𝑚 = 𝐼𝑞𝑒−𝑗𝛽𝑚𝐷𝑥𝑠𝑥𝑒−𝑗𝛽𝑚𝐷𝑧𝑠𝑧 (8) 

 

�̂� = �̂�𝑠𝑥 + �̂�𝑠𝑦 + �̂�𝑠𝑧 (4) 
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As in the single infinite case above, this is a direct consequence of Floquet’s theorem (Floquet, 1883). 

6. Curvature and Truncation Effects 

Frequency Selective Surfaces (FSSs) are spatial filters that are largely employed in radomes for radars and antennas 

where high performance is necessary. FSS can be categorised in terms of their behaviour in frequency. Band-pass FSS 

structures are able to let the electromagnetic wave pass in certain frequency ranges and shield others, which are 

especially suitable for out-of-band stealth of radomes. The properties of frequency selectiveness of these screens are 

used at both microwave and infrared wavelengths for the design of components in reflector antenna systems (O’Nians 

& Matson, 1966) as well as components in optical systems (Ulrich, 1967), respectively. FSS screens are practically 

made of arrays of conducting patches, or arrays of apertures within a conducting flat or curved surface. By tuning the 

electrical size and geometry of the unit-cell (patch or aperture) different frequency behaviours of the structure are 

obtained. However, more diverse spectral response may be achieved by using multiple layers of the arrays and array 

substrates combined into multi-layered structures. 

The FSS integrated for many practical applications are electrically large - on the order of 100 wavelengths per side. Due 

to the necessity of large size, planar FSS may be ideally modelled as infinite planar periodic arrays of passive elements. 

When illuminated by a plane wave, currents are induced and scattered fields are generated with a periodicity equal to 

that of the FSS structure. The occurrence of this periodicity allows the Floquet’s modelling of the scattering problem. As 

the response of the full structure can be expressed in terms of the single periodic cell, the analysis is significantly 

reduced. Large FSS screens that would imply to an excessive computational burden are therefore remodelled by infinite 

arrays which are compatible with the Floquet’s condition and easy to study. The reflection and transmission coefficients 

of planar and electrically large screens present good agreement between measurements and analytic prediction based on 

the infinite model formulation.  

However for smaller or curved FSS screens effects due to an alteration of the periodicity cannot be disregardable and 

the infinite planar model results may strongly disagree from measurements on the physical structure. This situation is 

the most common in reality when the FSS is used as a radome or as a parabolic sub-reflector in large antenna systems. 

Non-zero curvature and finite size of the FSS screen alter the periodicity of the unit-cells with a consequent divergence 

from Floquet-based anaylsis. Moreover, alteration of periodicity precludes the possibility of the analysis based on the 

characterization of a single periodic cell with dramatic consequences on the computational burden. For instance, to 

quantify the computational efforts required of surface sizes on the order of ten to 100 wavelengths on a side, the number 

of elements would be on the order of 100 to 10000 (assuming one element per square wavelength). As the size of each 

unit-element is still on the order of a wavelength, any full-model formulation would require a number of unknown basis 

functions (perhaps five to 50 depending on the geometry) to approximate the current on a unit-cell, with the overall 

number of functions becoming quite large. Hence, an accurate analysis and solution of the fields scattered becomes 

overbearing, if not impossible. 

Although FSS structures have been widely documented in the last 60 years, dedicated literature on either planar or 

curved truncated periodic surfaces has been relatively scarce and sparse. Kastner and Mittra (Kastner & Mittra, 1984) 

introduced iterative solutions to scattering equations modelling the finite screen with arbitrarily shaped bodies. In 

particular, the spectral domain approach was combined with the conjugate gradient (CG) method to derive the solution 

of a finite-sized FSS screen that requires a large number of unknowns for its numerical modelling. Because the number 

of basis functions used in the analysis is limited to what can be practically computed, the anaylsis may be considered 

approximate for surfaces generally used in practice. Curved surfaces have been extensively used in practice (Dick, 

1981), (Agrawal & Imbriale, 1979), although limited attempts have been made to analyze the effects of curvature with a 

rigorous approach. 

Cwik and Mittra (Cwik & Mittra, 1988) investigated the curved strip grating of one-dimensional truncation and 

proposed rigorous numerical solutions as well as local planar approximations. Therefore, the combined effects of 

truncation and curvature of periodic surfaces were examined. Initially, equations were outlined for surfaces which are 

finite and curved in two dimensions (presenting a local periodicity), as well as infinitely periodic in one dimension but 

truncated and curved in the second. By removing this periodicity, a truncated strip grating results and the scattered 

fields as well as an associated reflection coefficient were calculated. These numerically rigorous calculations were 

compared against two approximate solutions. The comparison is meant as a check of the approximate solutions with an 

eye toward using them in the analysis of surfaces which are finite and curved in two dimensions. 

Although the calculation of finite curved surface of arbitrary elements is not both accurate and fast so far, several 

attempts have been made. Philips et al. have put forward two methods based on Pocklington’s equation (Philips, Parker 

& Langley, 1995). They applied this method on finite arrays of dipoles arranged on a cylindrical surface with different 

radii of curvature and illuminated by an incident (TM) plane wave field arbitrary to extract frequency selective 

characteristics and evaluate the effect of mutual coupling on the transmission characteristics of the arrays. The same 
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authors also proposed a technique based on ray tracing to investigate an FSS surface embedded in a curved dielectric. 

The FSS was treated as an infinitesimally thin interface with known complex reflection and transmission coefficients 

subjected to multiple interactions with rays internally reflected within the dielectric.The transmission properties of such 

arrays were studied as the curvature increases for the case of paraboloids illuminated by plane waves, and also when 

enclosing a finite aperture-type antenna.  

In recent years, some alternative methods using hybrid volume-surface integral equation were presented. A hybrid 

volume-surface integral-equation approach to analyze the transmission and reflection characteristics of finite and curved 

FFS structures was introduced (Yu & Lu, 2005). The hybrid integral equations were obtained using the surface- and 

volume-equivalent principles with two advantages: the capability of modelling arbitrarily shaped FSS structures in 

detail; the multilevel fast multiple algorithm to speed up the solution process. From the analysis of the scattering 

characteristics and frequency responses of several finite-sized FSSs, important effects due to the non-zero curvature 

were characterized. In particular, it was shown that by reducing the radius of curvature, amplitude variation, frequency 

shift and bandwidth change in the reflection and transmission responses occurred.  

Stupfel and Pion considered the time-harmonic electromagnetic scattering problem from a finite planar or curved 

infinitesimally thin FSSs which are made of unit-cells simplified exclusively by electric conductors and free-space 

(Stupfel & Pion, 2005). In order to avoid the meshing of these cells and accelerate processing, the problem was 

addressed in terms of an integral equation formulation in conjunction with approximate impedance boundary conditions 

(IBC) which are assigned to the sheet that models the FSS. The impedance in the IBC model is originally derived from 

the exact reflection coefficient calculated, for the fundamental Floquet mode, on the infinite planar FSS illuminated by a 

plane-wave with a certain incidence. When the curvature of the FSS diverges from zero and/or the direction of the 

incident wave is unknown, higher order IBCs were proposed. These modes remain valid for a large angular range and 

can be implemented in standard MoM formulation. Finally, the impedance is approximated by its truncated Fourier 

series that considerably enhances the accuracy of the results although at the cost of a denser mesh. 

A useful investigation on non-planar arrays was carried out by Šipus et al. (Šipus, Lanne & Josefsson, 2006) and (Šipus, 

Burum, Skokic & Kildal, 2006). Although selectiveness in frequency was not the targeted application, the analysis of 

circular cylindrical arrays of waveguide elements and of spherical arrays of microstrip antennas introduces suitable 

techniques for the investigation of curved FSSs structures. The analysis method is based on the modal solution, hence 

on the superposition of one-dimensional spectral solutions and on the MoM. The modal approach requires the 

summation of a large number of terms in the Fourier series or vector-Legendre transformations for structures with large 

radii and the occurrence of highly oscillating integrals. Asymptotic formulas are used for calculating the Green’s 

functions with a suitable definition of the integration contour for calculating the inverse transformation into the spatial 

domain.  

Bosiljevacand Šipus also presented a hybrid approach for the analysis of different curved antenna arrays or 

reflecting/transmitting surfaces that finds immediate application for the analysis of FSSs structures (Bosiljevac & Šipus, 

2008). The approach is based on a rigorous spectral domain technique and a MoM which are then combined with an 

appropriate asymptotic method in order to accelerate the computational duration of the problem. Merging of the two 

methods is achieved by applying asymptotic extraction in the calculation of the reaction integrals of the MoM matrix. 

This combination offers the accuracy of the spectral domain method and the speed of the asymptotic approach. 

Meng et al. proposed a numerical method which is based on the combination of the mutual admittance approach as well 

as the spectral domain method of finite planar FSSs to solve curved slot arrays problems (Meng, Lu, Wu & Huang, 

2009). This method is employed to study the effects of non-zero curvature curved effects on one-dimensional truncated 

slot arrays by focusing on the magnetic current distribution, scattering patterns and transmission characteristics. 

The solutions of finite curved FSSs are all with respect to local planar approximation method, which are limited and 

only in some certain ranges could the obtained results agree well with that of experiments. On the other side, most 

studies are mainly involved in the calculation methods of curved FSS and transmission characteristics. Few analyses are 

carried out to study the mechanism of curved effects on FSS arrays. 

7. Numerical Methodologies 

The study of FSS can be essentially reduced to a problem of scattering by a conductor body, and for this purpose, for several 

years the MoM technique - also known as a method of weighted residuals (Harrington, 1993) -has been used. This method is 

typically used as the reference against which the new frequency-domain integral equation approaches are compared in terms 

of accuracy, CPU-time and memory. In the conventional implementation of the MoM, a typical sampling rate of /10 is 

employed for the discretization, along with the subdomain basis functions, such as Rao-Wilton-Glisson (RWG) (Rao, Wilton 

& Glisson, 1982) or rooftops (Glisson & Wilton, 1980), used to represent the induced currents. The total number of 

sub-sectional basis functions employed to cover the target surface determines the size of the system matrix that is needed to 

solve for multiple right-hand sides, each of them corresponding to a different excitation. However, due to a fine discretization 
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of the object geometry (typically 10 ×  in the conventional MoM), the matrix size becomes large relatively quickly as the 

object size becomes electrically large, and this, in turn, places a heavy burden on the CPU, both in terms of solving time and 

memory. 

In the past, the use of asymptotic high-frequency techniques (Kouyoumjian, 1965; Knott, 1985) was the only viable option for 

addressing such large problems. However, several techniques have recently been developed to ease the computational burden 

imposed on the conventional MoM. One of these techniques is based on a strategy that utilizes a domain-decomposition 

scheme and reduces the number of unknowns by replacing the subdomain-type basis functions with a set of macro-basis 

functions. Some significant works that fall in this category can be found in (Li & Chew, 2007; Kron, 1953; van de Water, de 

Hon, van Beurden, Tijhuis & de Maagt, 2005; Laza, Matekovits & Vecchi, 2005; Matekovits, Vecchi, Dassano & Orefice, 

2001). 

The Characteristic Basis Function Method (CBFM) (Prakash & Mittra, 2003; Pelletti, Bianconi, Mittra, & Monorchio, 2013; 

Pelletti, Bianconi, Mittra & Monorchio, 2013b) works with a set of high-level basis functions, called CBFs, which are defined 

over relatively large domains, though they are expressed in terms of the conventional subdomain functions. The CBFs are 

tailored to take into account the geometrical properties of the surface upon which they are defined; hence, these bases are not 

limited to a predetermined and/or fixed shape, e.g., planar facets. The underlying objective of the CBFM is the reduction of 

the number of unknowns that arise from the discretization process when applying the conventional MoM. Their use leads to 

manageable-sized matrices, called reduced matrices, which are amenable to direct solution in many cases, without relying 

upon iteration or preconditioning. An important consequence of this is that multiple right-hand sides can be handled efficiently. 

Furthermore, for very large problems, the reduction achieved in the number of unknowns translates into significant CPU-time 

saving if an iterative solution process is utilized afterwards to solve the reduced matrix. 

Table 1.Summary of notable numerical techniques for FSS simulation 

Numerical technique Description Pros Cons 

    Finite Element Model Most general, handles complex 

material and geometries, volume 

mesh and field equation, 

numerically exact solution 

Can handle complex geometries 

and inhomogeneus medium 

It is necessary to discretize 

(mesh) the entire volume under 

investigation 

Integral Equation (Method of 

Moments) 

Efficient solution for open 

radiation and scattering 

problems, currents solved on 

surface mesh, efficient with 

structures are primarily metallic 

It is necessary to discretize only 

the regions where the metal 

objects are present. Good for 

electrically large objects. 

Not possible to simulate 

complex geometries and 

inhomogeneus medium and 

broadband analysis 

MoM with Charateristic Basis 

Function 

Evaluation of the independent 

Charateristics Basis Functions 

using an SVD operation on the 

evaluated currents induced by a 

few incident plane waves. 

Reduced size of MoM Matrix; 

this results in a strong 

compression of the MoM matrix, 

which allows an iteration-free 

(e.g., LU decomposition) 

solution also for electrically 

large problems 

It is necessary a preliminary step 

to calculate the orthogonal 

CBFs, calculated through an 

SVD operation, that increases its 

computational burden if the 

electrical size of the blocks 

increases 

Equivalent LC circuit for 

multi-layered non resonant FSS 

(Monorchio&Manara 2012) 

Evaluation of the equivalent LC 

parameters, for using the 

generalized transmission line 

model 

Can be employed for a 

preliminary 

and fast analysis of 

frequency-selective surfaces 

after a trivial 

pre-processing to determine the 

lumped parameters. It is non 

necessary to do a 3D Full 

analysis to predict the frequency 

response of the structure 

It would 

be of particular usefulness in the 

design of complex structures, 

where the frequency-selective 

surface is only one of the 

building 

blocks 

Equivalent LC circuit for 

multi-layered non resonant FSS 

(Jayaprakash&Kavitha 2014) 

Evaluation of the equivalent LC 

parameters, for using the 

generalized transmission line 

model 

It is non necessary to do a 3D 

Full analysis to predict the 

frequency response of the 

structure 

The reliability of the results 

depends on the accuracy of the 

calculation of the parameters of 

the equivalent LC structure 

More recently, a computationally efficient FSS analysis based on equivalent-circuit models was proposed (Costa, 

Monorchio & Manara, 2012). The transmission and reflection properties of the FSS are evaluated through a first-order 

circuit approach based on computed lumped parameters of the most common FSS unit-cells. First, the L and C 

parameters representing a given FSS unit-cell are derived only one time at normal incidence and stored into a database. 

Secondly, the stored LC-equivalent circuits are perturbed to take into account the presence of arbitrarily thick dielectric 

slabs in the FSS structure, an arbitrary incident angle, or if a different periodicity with respect to the reference 

periodicity is adopted. The perturbed lumped parameters are then included in an equivalent transmission line for 

computing the response of generic frequency-selective-surface configurations with no additional computational effort. 

Another efficient technique to derive the response charateristics of periodic arrays, made by very thin wire and arbitrary 
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3-D type of elements is presented in (Mittra, Pelletti, Arya, Bianconi, McManus, Monorchio & Tsitsas, 2012) and it is 

based on a generalised version of the waveguide simulator (WGS) approach. With this procedure it is possible to 

overcome the difficulty encountered with a Finite Method to compute the scattered field, because a reduction of the 

time-step in the simulation of the periodic structures is not demanded with an increased angle of incidence. 

Another efficient technique to analyse a multi-layered non-resonant FSS comprising of metallic grids and patches, is 

proposed in (Jayaprakash&Kavitha, 2014). With this approach it is not necessary to do a full 3-D EM analysis, because 

the structure is analyzed with an equivalent cascaded transmission line model. The equivalent circuit parameters (LC) 

estimated for the free standing metal layers based on a semi-analytical approach were found to differ from the analytical 

equations by a constant correction factor. The performance of the proposed cascaded transmission line model obtained 

using the estimated equivalent circuit parameters for the individual metal layers agreed very well with 3-D simulations. 

This method was shown to work for both single and multi-layered miniaturized FSS. Table I finally summarizes the 

most notable numerical techniques for the simulation of FSS structures in terms of pros and cons. 

8. Conclusions 

Significant research outcomes on FSS in the last 50 years have been here reviewed. A special focus is dedicated to the 

analysis and characterization of curved and finite-size structures. In fact, when periodicity is altered by truncation 

and/or non-zero curvature of the FSS, Floquet’s theory cannot be rigorously applied and computationally heavy 

alternatives need to be carried out. Although this is a very common scenario, the literature dedicated to this particular 

aspect of FSS theory is sparse and lacks of a unified approach. This review paper groups together the most significant 

research paper on this topic in order to categorize valuable formulations and numerical solutions. 
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