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Abstract 
This paper describes improvements in predictive quality to the original Wilcox k-ω turbulence model. A major 
disadvantage in the near-wall formulation of this model is usage of the large eddy inverse time-scale, ω ~ ε/k, even 
though small, dissipative eddies popular the immediate vicinity of walls. The present work suggests a correction to this 
problem through a realizable constraint introduced by the Kolmogorov time-scale. A second realizability constraint, the 
Schwarz condition, limits eddy viscosity magnitude in flow zones involving large normal strain gradients. Several 
examples demonstrate the improvements enabled due to these corrections, particularly in transonic and impinging flows 
where significant normal strain gradients occur. 
Keywords: Turbulence model, realizable time-scale, Schwarz condition 

Definitions /Abbreviations 
Ak                                0.0266 
c                                 chord length [m] 
C                                 realizability coefficient (eq. 6)  
Cf                                skin friction coefficient 
Cp                                pressure coefficient 
Cµ                                0.09 
D                                diameter [m] or diffusivity coefficient (context dependent) 
D/Dt                              material derivative 
e                                 total energy [j] (eq. A2-6) 
f, g, h                             fluxes in x, y, z directions (eq. A1) 
gi                                gravitational acceleration in i direction [m/s2] (eq. A14)                              
h                                 channel height [m] 
k                                 turbulence kinetic energy [(m/s)2] 
ℓ                                 length-scale [m] 
M                                Mach number 
p                                 pressure [pa] 
q                                 dependent variable vector (eq. A1) 
Pk                                turbulence production [m2/s3] (eq. 4) 
R                                 gas constant [n m/(kg mol k)] (eq. A6) 
Re                                Reynolds number 
Rt                                turbulence Reynolds number (eq. 6) 
S                                 mean strain [s-1] (eq. 6) 
T                                 temperature [K] 
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Tu                                turbulence intensity (Tu = (√2k/3)/U∞) 
u, v, w                            Cartesian mean velocity components [m/s] 
u’, v’, w’                          Cartesian fluctuating velocity components [m/s] u u                               Reynolds stress tensor [(m/s)2] 
uτ = (τ/ρ)w

1/2                       friction velocity [m/s] 
x,y,z                             Cartesian streamwise, normal and transverse coordinates [m] 
y+ = yuτ/νw                        turbulent inner layer nondimensional coordinate 
α                             ω-eq. source term coefficient (eq. 5) or angle-of-attack [deg.] (context dependent) 
β                                ω-eq. sink term coefficient (eq. 5) 
γ                                ratio of specific heats (eq. A6) 
δ                                boundary layer thickness [m] 
ε                                turbulence kinetic energy dissipation rate [m2/s3] 
δij                               Kronecker delta 
ω                                turbulence inverse time-scale [s-1] 
κ                                thermal conductivity coefficient [w/(m k)] (eqs. A7-9) 
µ                                dynamic molecular viscosity [kg/(m s)] 
µt                                dynamic eddy viscosity [kg/(m-s)] 
ν =µ/ρ                            kinematic molecular viscosity [m2/s] 
ρ                                density [kg/m3] 
σk , σω                            turbulent diffusion coefficients (eq. 5) 
σi                               turbulence and species transport scalars (eqs. A2-9) 
τ                                time-scale [s] or viscous stress [pa] (context dependent) 
ψ                               source term vector (eq. A14) 
Ω                               turbulence and species source terms (eq. A14)  
subscripts 
∞                               evaluated at freestream 
CL                              along the center-line 
i                                inflow station or inviscid (context dependent)  

i or j                             Cartesian component in the i- or j-direction 
i,j                               j-direction derivative of the i-component 
t or T                            turbulent 
v                               viscous 
w                               evaluated at the wall   
x                               based on streamwise direction 
0                               stagnation or reference conditions (context dependent) 
1                               evaluated at the 1st off-wall centroid 
1. Introduction 
Wilcox’s popular version of the k-ω turbulence closure (Wilcox, 1988) has been a standard model choice in almost 
every commercial CFD solver as well as in several NASA codes and in-house flow solvers of many private companies. 
The Wilcox k-ω turbulence closure excels in predicting wall-bounded flows (Wilcox, 1988 and Wilcox, 1998), 
including those involving separation bubbles (Wilcox, 1998), but proved less than adequate in predicting hypersonic 
flows (Rumsey, 2009) and those involving impingement (Chima, 1996). Rumsey (2009) points out that the original k-ω 
model (Wilcox, 1988) performs progressively worse in wall-bounded flows – particularly for cold walls – as the Mach 
number increases in the hypersonic flow regime. A detailed assessment of this closure is found in Speziale, Abid & 
Anderson (1990) who show that “the modeled form of the ω equation that is used in the literature is incomplete - an 
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exact viscous term is missing which causes the model to behave in an asymptotically inconsistent manner.” Speziale et 
al. propose to include this viscous term and, by introducing a wall damping function with improved asymptotic behavior, 
their k-τ model (where τ = ω-1 is the turbulent time scale) is proposed and demonstrated to be computationally robust 
while yielding improved predictions for turbulent boundary layers.  
The present work points out that propositions like the above-mentioned k-τ closure still do not address the fundamental 
flaw in the near-wall formulation of the original Wilcox k-ω model (Wilcox, 1988), namely applying the large-eddy 
time-scale in near-wall regions where it does not belong. In order to improve predictive performance of this model, 
realizability constraints must be added to its formulation; one is the Schwarz condition relating Reynolds shear stresses 
to their corresponding normal counterparts, the other being imposition of a limit that prevents near-wall time-scales 
from plunging below the corresponding Kolmogorov scale.  This paper shows that inclusion of these realizability 
constraints does improve the k-ω model’s performance in some flow situations where the original closure exhibits 
weaknesses.  
In the next sections the new model formulation is introduced, followed by several flow examples and concluding with a 
summary of main findings. 
2. Mathematical Formulation  
Original k-ω Model Formulation  
Wilcox (1988) introduced the standard k-ω turbulence closure still used by many aeronautical engineers. The model’s 
formulation is given by                                                                            μ = ρkω                                                                             (1) D(ρk)Dt = ∂∂x μ + μσ ∂k∂x + P − C ρkω                                             (2) 

( ) = μ + + α − βρω                       (3) 

Where the k-production, based on the linear Boussinesq model, is P = μ u , + u , − u , δ − ρkδ u ,                                                     (4) 

and the model constants are 

α=0.520, β=0.072, σk=σω=2.0, Cμ=0.09.                          (5) 
There are four main limitations to the above formulation: 
1. The definition of ω ~ ε/k, which imposes the large eddy time-scale even in near-wall zones where it does not belong, 
2. The potential overprediction of eddy viscosity in large normal-strain flow regions, due to Pk = νtS2 (Eq. 4), 

3. The missing cross-diffusion term  in Eq. 3, leading to the incorrect near-wall asymptotic behavior k ~ y3.23    

instead of k ~ y2 (Speziale et al., 1990 and Wilcox, 1998) as well as causing excessive sensitivity to free stream levels of 
ω, 
4. The linear Boussinesq model, which assumes that the principal axes of the Reynolds-stress tensor (τij) coincide 
with those of the mean strain-rate tensor (Sij, hence Eq. 4). This assumption is invalid in flows containing sudden 
changes in mean strain, flows with large curvatures, with secondary motions, rotating flows, those containing 
significant boundary layer separation and, in general, three-dimensional flows. 
Realizable k-ω Model Formulation 
The proposed formulation maintains the linear Boussinesq stress-strain assumption and concentrates on correcting the 
three shortcomings of the original model, indicated above as items (a) and (b), namely the incorrect near-wall time-scale 
and the potentially excessive eddy viscosity in high normal-strain flow regions. Two realizability constraints are 
introduced into the eddy viscosity formulation: One prevents the turbulence time-scale from becoming less than the 
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Kolmogorov scale, τ ≥ ν C kω⁄ ; the other is an isotropic equivalent of the Schwarz limiter, 

u u ≤ u u ∙ u u .  Combined, these give rise to the following model reformulation: 

μ = min ρkω max 1, 2/R  , C ρkS                                                                         (6) 

Where Rt=νt/ν=k/(νω) is the turbulence Reynolds number. The first term within the braces guarantees the proper 
near-wall time-scale: Outside the immediate vicinity of a wall Rt >> 1, hence max 1, 2/R → 1 and the original µt = 
ϱk/ω is recovered; within the immediate vicinity of a wall Rt << 1, hence the 1st term becomes 2ν/(kω) =ρk 2C ν ε⁄  . The Kolmogorov time-scale, τ ~ ν ε⁄  , is thus recovered. This and Eq. 9 also impose the near-wall 
behavior ν ~y√k.  The Kolmogorov time-scale has been applied in several previously published turbulence models. 
Examples are Durbin (1991), Goldberg (1991), Goldberg and Apsley (1997). 
The second term within the braces is an isotropic form of the Schwarz limit, using the relations u u = 3u′u′ = 2k and u′v′ = ν S.  Applying the Schwarz constraint then yields μ ≤  where the mean strain magnitude is S = u , + u , − u , δ u , , finally leading to Eq. 6 with C=2/3. However, as pointed out by Menter (1994), 

applying Bradshaw’s stress-strain relationship gives rise to C=0.31. The commercial solver CFD++ (Chakravarthy, 

1999 and Goldberg et al., 1997), used in the current work, has both options user-selectable: = 0.31, (Bradshaw)2/3, (Schwarz) , 

where the stronger Bradshaw limit is recommended for high-speed flows in order to further limit eddy viscosity 
magnitude due to compressibility effects. It is noted that either choice leads to a strong limit on µt when S is large, a 
situation occurring in stagnating flows and flows across normal shocks. The significance of this will become apparent in 
the flow examples. 
While Eq. 6 imposes two kinds of realizability constraints on the final product of the turbulence closure, namely the 
eddy viscosity, ω itself remains singular at walls. Using fundamental viscous sublayer relationships, together with Eqs. 

6 and 9, lead to ω → S, which becomes singular at the wall due to the vanishing of µt. It is also important to note 

that in the viscous sublayer the 1st term within the braces in Eq. 6 is smaller than the 2nd (even if the smaller value of C, 

0.31, is used), leading to ν → y S. The fact that νt does not behave as y3 is unimportant since νt << ν in the 

immediate vicinity of walls. 
The k and modified ω transport equations are: 
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( ) = + + −                                                                  (7) 

( ) = + + + −                                                 (8) 

Notes: (a) The √   factor in Eq. 6 is explained in Goldberg & Apsley, 1997, p.228. (b) The ω equation’s generation 
term (Eq. 8) is expressed in terms of both μt and k/ω, unlike the original version (Eq. 3), in order to include both original 
(Eq. 1) and modified (Eq. 6) eddy viscosities.  
In either original or modified version of the model, the boundary conditions are given as in Menter, 1994: = ,   =                                                                                               (9)⁄  

Equations of Motion 
All computations presented here were performed using the commercial solver CFD++ (Chakravarthy, 1999 and 
Goldberg et al., 1997). The numerical framework of CFD++ is based on the following general elements: 
1) Unsteady/steady compressible and incompressible Favre-averaged Navier-Stokes equations with 
topography-parameter-free turbulence models. 
2) Unification of Cartesian, structured curvilinear and unstructured grids, including hybrids. 
3) Unified treatment of various cell shapes including hexahedral, tetrahedral and triangular prism cells (3-D), 
quadrilateral and triangular cells (2-D) and linear elements (1-D). 
4) Treatment of multi-block patched aligned (nodally connected), patched-nonaligned and overset grids. 
5) Total Variation Diminishing (TVD) discretization based on multi-dimensional interpolation framework. 
6) Riemann solvers to provide proper signal propagation physics, including versions for preconditioned forms of the 
governing equations. 
7) Consistent and accurate discretization of viscous terms using the same multi-dimensional polynomial framework. 
8) Versatile boundary condition implementation includes a rich variety of integrated boundary condition types for the 
various sets of equations. 
9) Implementation on MPP computers based on the distributed-memory message-passing model, using native 
message-passing libraries or MPI, PVM, etc. 
The conservation form of the equations of motion is given in the Appendix. 
3. Model Evaluation 
The following flow examples compare the realizable and original versions of the k-ω model and illustrate the advantage 
of the former in some cases. All flow examples, except one, used direct solution to walls (no wall functions) achievable 
by (a) ensuring that y+ at the first off-wall centroids is less than 1.0, (b) enforcing a normal-to-wall mesh growth-rate of 
no more than 1.20 (except for one 3D case where it is 1.25) to guarantee enough grid cells within the boundary layer, 
including adequate resolution of the viscous sub-layer. All reported two-dimensional grids achieved mesh-independent 
solutions through successive doubling of grid size. All calculations were done using double-precision computations. 
The first example is that of a flat plate flow, done in order to reaffirm the expected skin friction predictions. The last two 
cases are three-dimensional (hypersonic and transonic) flow examples. 
Practically no difference in computational efficiency was observed between the original and realizable versions of the 
k-ω model. 
Flat Plate 

A Mach 0.2 flow over a 5 m long plate serves as the first test case. The inflow is at standard atmospheric conditions 

with Tu=1% (where =   ) and μt/μ=20. Figure 1a shows skin friction along the plate and Figure 1b is a 

velocity profile at x=4 m. The two model versions yield almost identical results, predicting the White (1974) correlation 
for skin friction and the Musker (1979) velocity profile. 
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Figure 1a. Cf along plate 
 
 
 

Figure 1a. Cf along plate 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1b. Velocity profile at x=4 m 
Backward-Facing Step 
Experiments with various configurations of a backward-facing step have been reported in Driver and Seegmiller (1985). 
The present results are shown for the case of a parallel upper wall (α=0 in Figure 2a). Flow details are: M∞=0.128, 
T∞=297 K, p∞=1 atm., Reh=36000, Tu=1% and ℓT=2.5 cm. Turbulent boundary layer inflow, with δ=1.9 cm on both top 
and bottom walls, was imposed.  A 92,000 cell grid with y+≤0.3 permitted direct solution to the walls. 
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Figure 2a. Geometry and flow features 

Figure 2b compares skin friction prediction, along the step-side wall, with data. The post-reattachment behavior is 
slightly better captured by the realizable k-ω model version. Figures 2c and 2d compare streamwise velocity and 
turbulence kinetic energy profiles at two locations: One inside the separation bubble, the other downstream of it. There 
is practically no difference between the two model versions’ predictions; the velocity profiles closely follow the data 
whereas the k-profiles over-predict the experimental maxima (due to lack of normal stress anisotropy) but otherwise 
agree with the data reasonably well.  

 
Figure 2b. Lower wall skin friction 

 
Figure 2c. Velocity profiles at two streamwise Stations; one inside the separation bubble, the other further downstream 
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Figure 3d. Velocity profiles at several streamwise stations 

Transonic Flow over an Axisymmetric Bump 
This case involves transonic flow over an axisymmetric bump, reported in Bachalo and Johnson (1979). A normal shock, 
interacting with the boundary layer, causes flow detachment over the bump, at x/c≈0.7, with subsequent reattachment 
on the downstream cylindrical portion. Figure 4a shows geometry and main flow features. Inflow conditions are: 
M∞=0.875, Re∞=1.36x107/m, p∞=57,935 Pa, T∞=255.6 K, Tu=1% and  

 
Figure 4a. Bump geometry and flow features 

μt/μ=20. The computations were done on a 12,000 cell grid with y+ ≤ 1 to permit direct solution to the wall. Both the 
Bradshaw and Schwarz realizability constants (C=0.31 or 0.667, Eq. 6) were invoked. Figure 4b compares wall pressure 
predictions with experimental data (Bachalo & Johnson, 1979), showing significantly improved performance by the 
realizable k-ω model with the Bradshaw constant; the Schwarz constant, however, yields a result very close to that of 
the original k-ω version. Figures 4c compare velocity and corresponding turbulence kinetic energy profiles at two 
streamwise locations; one inside the separation bubble, the other downstream of it. In spite of the much improved wall 
pressure predicted by the realizable k-ω version, these profiles exhibit better prediction by the original closure. This 
indicates that the former is superior in capturing the primary flow features, shock location and associated separation 
bubble, but not necessarily the near-wall flow details. 
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Figure 4b. Wall pressure 

 
Figure 4c. (L) velocity and (R) turbulence kinetic energy profiles within and downstream of the separation bubble  

Transonic Diffuser 
Mohler (2005) describes a 2D transonic diffuser test case in which a subsonic inflow accelerates to supersonic levels 
within a nozzle-like geometry, then shocks down to subsonic flow in the diverging (diffuser) portion. The shock causes 
flow separation on the curved (top) wall with consequent reattachment upstream of the exit. Figure 5a illustrates the 
geometry and velocity contours, showing the shock and separation bubble downstream of it.  

 
Figure 5a. Diffuser geometry and streamwise velocity contours 

Flow conditions are: p0,in=134.4 kPa, T0,in=277.8 K, pout=97.2 kPa, Tu=5%, μt/μ=50.  
This case was run on a 21,000 cell mesh with y+ ≤ 0.2 on both walls to permit direct solution to walls. Both versions of 
the k-ω turbulence model used compressibility correction, available in CFD++, and the new version also invoked the 
Bradshaw realizability constant (C=0.31, Eq. 6). Shock locations are considerably better predicted by the realizable k-ω 
version as seen in Figures 5b and 5c which compare pressure predictions along the lower and upper walls, respectively, 
with experimental data (Mohler, 2005). The figures include predictions by the SST model (Menter, 1994), showing 
almost identical results to those by the realizable k-ω closure.  As in the previous case, the realizability constraints 
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avoid the excessive eddy viscosity predicted by the original model, thereby enabling correct prediction of shock 
location and resulting separation extent. This is observed in figures 5d and 5e, comparing predicted eddy viscosity by 
the original and realizable k-ω model versions, respectively. Higher eddy viscosity on the bottom wall and delayed 
separation onset (due to shock location further downstream) are clearly seen in figure 5d. Lastly, figure 5f compares 
predicted velocity profiles in the near-wall vicinity of the bottom surface at x=0.33 m, toward the diffuser exit (which is 
at x=0.38 m.) The realizable k-ω variant predicts the best agreement with the data whereas the original version 
underpredicts the data due to excessive turbulent diffusion. The SST model’s prediction is closer to that of the realizable 
k-ω but deteriorates toward the wall. 

 
Figure 5b. Bottom wall pressure profile 

 
Figure 5c. Top wall pressure profile 

 
Figure 5d. Orig. k-ω µt/µ contours  Figure 5e. Realizable k-ω µt/µ contours 
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Figure 5f. Lower wall velocity profiles at x=0.33 m 

Supersonic Reattaching Free Shear Layer 
Samimy, Petrie & Addy (1986) report experimental results from a supersonic turbulent reattaching shear layer onto a 
slanted ramp (see topology, figures 6a and 6b). Freestream conditions are: M∞=2.46, Re∞=5x107/m, p0=528.1 kPa and 
T0=297 K. An inflow boundary layer with δ=3.12 mm is imposed on both walls. The k-ω turbulence models were 
invoked subject to Tu=1% and ℓT=3 mm at inflow. A 52,500 cell grid was used for the calculation, with y+ ≤ 0.3 and 
normal-to-wall growth rate of 1.15 to enable direct solution to walls. Figure 6b shows the mesh, where the quadrilateral 
wall layer smoothly turns into a triangular grid inside the domain. Figure 6c shows Mach contours; the reattaching shear 
layer and recompression shock are clearly seen. Figure 6d shows negative streamwise velocity contours, indicating 
shear layer reattachment at x≈139 mm, about 7% further downstream than indicated by measurements. Figure 6e 
compares predicted lower wall pressure distribution with corresponding data. The original and realizable closures 
predict practically identical results. Figures 6f show Reynolds shear stress profiles at six streamwise locations (see 
figure 6a for orientation). The two model versions produce almost identical profiles which tend to overpredict the 
measured peak levels increasingly as moving downstream. These linear models do not have the capability to predict 
correctly the Reynolds stress distribution and the lack of anisotropy in the normal stresses diverts too much energy into 
the shear stresses, resulting in the observed overprediction of ′ ′ . Finally, residuals in this case dropped 7 
orders-of-magnitude in about 3,000 time-steps. 

 
Figure 6a. Domain outline 

 
Figure 6b. Mesh topology 
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Figure 6c. Mach contours  Figure 6d. Negative velocity contours 

 
Figure 6e. Lower wall pressure profile 
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Figure 6f. Reynolds shear stress at six stations 

Transonic Flow over the RAE2822 Airfoil 
This case involves transonic flow over the RAE2822 airfoil, reported in Cook, McDonald & Firmin (1979), and 
includes a normal shock at approximately the 60% chord location. Wind-tunnel- corrected flow conditions are: 
M∞=0.734, Rec=6.5x106 and α=2.79o. The computation was performed on a 66,000 cell grid with y+ ≤ 0.6 off the airfoil 
and a growth ratio of 1.2. Direct solve-to-wall approach was used. The following turbulence freestream conditions were 
applied: Tu=2% and ℓT=1 mm.  
Figure 7a shows Mach contours with predicted shock location and Figure 7b compares Cp profiles with measured data. 
The shock is observed to be captured by both versions of the k-ω model in close agreement with experimental data. A 
slight improvement in shock location and post-shock behavior is predicted by the realizable k-ω model version. 
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Figure 7a. Mach contours 

 
Figure 7b. Cp profiles 

Impinging Flow on a Heated Wall 
This axisymmetric case involves a turbulent jet from a pipe, ending 2 pipe diameters ahead of an isothermally heated 
plate, impinging on the plate. The shear layer from the pipe wall forms the outer boundary of this jet. As it impinges on 
the plate, the turbulent shear layer hits the newly developing plate boundary layer about 2 pipe diameters away from the 
stagnation point, where a secondary peak in heat transfer occurs due to the local increase in turbulence intensity (see 
figure 8a). The case for air at ReD =23,000 was computed on a 117,000 cell grid and compared with data by Baughn, 
Hechanova & Yan (1991) and Yan, Baughn & Mesbah (1992). Flow conditions are: p=105 Pa, T=293 K, Tw =314.9 K 
and D=0.0403 m.  Figure 8a is a sketch showing topology and main flow features. To predict this flow, a 50 diameter 
-long adiabatic wall pipe was used to ensure a fully developed flow before the pipe end is reached. Referring to Fig. 8b, 
the following boundary conditions were imposed. (1) Pipe inlet: Subsonic inflow, u=8.715 m/s, (2) Pipe surface: 
adiabatic, non-slip wall, (3) Impingement plate: Isothermal non-slip wall, (4) Far-field: p, T inflow/outflow using inside 
velocity (the far-field boundaries allow inflow or outflow and impose the specified ambient pressure.) Figure 8c shows 
an overview of the computational mesh. Calculations were performed using Tu=1% and ℓT=1.6 cm at the pipe entrance. 
Near-wall mesh was fine enough (y+ < 1) and sufficiently dense to integrate the equations to walls.  Six orders of 
magnitude reduction in residuals was achieved with both model versions. Fig. 8d shows plate heat transfer predictions 
in Nusselt Number form. Prediction by the realizable closure is similar to that by SST and both are significantly better 
than the prediction by the original model in the stagnation zone.  
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Figure 8a. Geometry and flow features 

 
Figure 8b. Domain dimensions and boundary conditions 

 
Figure 8c. Grid overview 
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Figure 8d. Heat transfer along heated vertical plate 

The secondary heat transfer peak is not predicted by either k-ω version or SST. In contrast, a solution using the k-ε-fµ 
turbulence closure (Goldberg and Palaniswamy, 1999), also shown in the figure, does capture the secondary peak and 
also improves heat transfer prediction further along the plate. 
Supersonic Flow over a Compression Ramp 
This test case addresses a two-dimensional M∞=2.84 flow over a 24o ramp. Measurements were reported in Dolling and 
Murphy (1983), Selig et al. (1989) and Settles et al. (1979). An oblique shock, impinging on the boundary layer 
upstream of the ramp corner (due to upstream influence), induces flow separation with subsequent reattachment onto 
the ramp surface. Figure 9a shows geometry and main flow features of this case and figure 9b is an overview of the 
computational mesh. 

 
Figure 9a. Geometry and main flow features 

 
Figure 9b. Mesh overview 

The solve-to-wall computations were done on a 22,200 cell grid with y+ ≤ 0.15. The mesh included streamwise 
clustering with (∆ ) = 0.1  (where δ0=23 mm), centered at the ramp’s corner. This test case is known for its 
sensitivity to inflow conditions (see Loyau and Vandromme, 1994). The following inflow conditions were applied: 
M∞=2.84, Re∞=7.3x107/m, T0=262 K, p∞=24 KPa and Tw=276 K, however, according to Settles et al. (1979), adiabatic 
conditions were imposed on the wall. The computational inflow was located 21.7δ0 upstream of the corner where a 
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compressible equilibrium turbulent boundary layer of thickness δi/δ0=0.45 was imposed. Freestream turbulence levels 
were set to Tu=1% and μt/μ=10. 
Figures 9c and 9d show wall pressure and skin friction, respectively, as predicted by the two k-ω model versions. Both 
perform well but an advantage of the realizable closure is observed in the skin friction plot both upstream and 
downstream of the separation bubble. Figure 9e shows comparisons of predicted velocity profiles at the ramp corner 
with experimental data (Settles et al., 1979). There is little difference between the two calculations and both capture the 
shock location correctly. 

 

 
Figure 9c. Wall pressure profiles 

 
Figure 9d. Skin friction profiles 
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Figure 9e. Ramp corner velocity profiles 

Hypersonic Flow through a Double-wedge Inlet 
This test case consists of a hypersonic air flow past two sharp fins fastened to a flat test bed (figure 10a). The entire test 
model was kept at a constant temperature of 300 K. Kussoy, K. Horstman & C. Horstman (1993) conducted 
experiments using two fin geometries: One with a 10o and another with a 15o compression angle; only the latter 
geometry is discussed here.  

 
Figure 10a. Topology 

The symmetry of the experimental test model was exploited in the CFD++ computations; only half the geometry was 
modeled, using a 972,000 cell grid comprising triangular prisms, tetrahedral, hexahedral, and pyramidal elements. Fine 
layers of triangular prisms were generated perpendicular to the fin and plate surfaces to properly capture the boundary 
layers. The first prism layer height was chosen to utilize a solve-to-wall integration approach (y+ < 1.0) and the normal 
growth factor of the layers was 1.25. Two perpendicular planes, one at the symmetry plane, the other across the fin, 
show grid sections in figure 10b.  

 
Figure 10b. Mesh around fin (green) and normal to wall (red) 
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The flow comes into the domain at M∞= 8.3 and T∞=75.2 K. An isothermal (constant 300 K), viscous wall boundary 
condition is applied to the plate and fin boundaries and both are set to solve-to-wall flux integration. Since the 
experimental test bed was pitched at a -2o angle-of-attack to the flow, this was incorporated into the computation by a 
corresponding inclination of the incoming flow. Turbulence levels were set to Tu=0.5% and μt/μ=5. The compressible, 
perfect gas equation set computations reached steady-state convergence with a 5 order-of-magnitude drop in global 
residuals in about 1,300 time-steps. Figure 10c provides an overall view of the flowfield, showing streamline patterns 
around the fins. Complex recirculatory flow regions are seen downstream of the wedges while the upward direction of 
the streamlines downstream of the rear recirculation indicates flow displacement due both to the crossing shocks and the 
boundary layers. The shock/expansion pattern is observed between the wedges. Wall pressure and heat transfer along 
the symmetry plane are compared to experimental data in Figure 10d. Both model versions capture the pressure profile 
well but underpredict heat transfer levels. The realizable variant captures the peak heat transfer magnitude slightly 
better than the original one does and both predict the peak location correctly. It is emphasized that better predictions 
may be possible on a finer mesh but the aim here was to compare the two model versions on the same grid, rather than 
refine this 3D mesh with the hope of obtaining improved predictions. 

 
Figure 10c. Streamlines and wall pressure contours 

 
Figure 10d. Wall centerline pressure and heat transfer profiles (Kussoy et al., 1993) 

Transonic Flow over the ARA M100 Wing/Fuselage Configuration 
This M=0.803 wing/body test case, reported by Peigin and Epstein (2004), is at α= 2.87o and a chord Reynolds number 
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Rec = 13.1x106. The NASA mesh (cfl3d.larc.nasa.gov/Cfl3dv6/cfl3dv6_testcases.html) has 860,000 cells with an 
off-wall y+ distribution as follows: y+

wing=0.8, 0.1≤ y+
fuselage≤ 30, the former with a growth rate of 1.1. Consequently, a 

wall function was used over the fuselage and direct solve-to-wall was employed on the wing. Freestream turbulence 
levels were Tu=0.5% and µt/µ=25. The realizable and original k-ω models, as well as the SST closure, were used in the 
calculations, the realizable k-ω being employed with both Schwarz and Bradshaw constants (C in Eq. 6). Figure 11a 
shows topology and pressure contours on the fuselage and upper wing surface. The normal shock footprint on the 
wing’s suction side is observed. Figure 11b is a wing slice showing the normal shock and its interaction with the 
turbulent boundary layer, including flow separation. Cp profiles at two wing sections are seen in figure 11c, where η=0 
and 1 correspond to wing root and tip, respectively. Comparisons with experimental data show that the original k-ω 
model and the realizable k-ω closure with C=2/3 (Schwarz constant) produce identical results, both predicting the shock 
location downstream of the data. The SST model, on the other hand, predicts the shock location too far upstream, 
indicating an overprediction of the separation region downstream of the shock. Predictions by the realizable k-ω with 
C=0.31 (Bradshaw constant) are between the former two, capturing the shock data at η=0.935 but still under-predicting 
it at η=0.455. 

 
 

Figure 11a. Wing/fuselage    
 
 
 
 

Figure 11b. Wing section showing normal shock/boundary layer interaction pressure contours 
 
 

 
 
 
 
 
 
 
 
 

Figure 11c. Cp profiles at two wing sections 
4. Summary/Conclusions 
This paper focuses on implementation of realizability constraints in the original Wilcox k-ω turbulence model. These 
are (1) a time-scale realizability which imposes the Kolmogorov scale in the immediate vicinity of solid walls, avoiding 
the incorrect large eddy near-wall time-scale which exists in the original closure, (2) a Schwarz-like condition, based on 
k/s, that limits eddy viscosity magnitude in flow zones involving large normal strain gradients.  
The other well-known impediment of the original model, namely the excessive sensitivity to freestream levels of ω, is 
outside the scope of the current work but has already been addressed by Menter (1994) and led to the SST closure. 
Comparing the performances of the original and realizable versions of the k-ω turbulence model, in both two- and 
three-dimensional flow cases, leads to the conclusion that the latter yields superior predictions mainly for transonic 
flows and those involving impingement, where large normal strain gradients occur, while behaving similar to or 
marginally better than the original closure in other flow regimes. Thus the proposed realizable version seems worth 
recommending to researchers who routinely use the k-ω turbulence closure. 
Future effort will focus on more three-dimensional flow cases at various Mach number regimes in order to better 
establish the scope of the realizable model’s advantages. 
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Appendix 
Conservation Form of the Equations of Motion + ( − ) + ( − ) + (ℎ − ℎ ) = Ψ                                                          (A1) q = (e ρ ρu ρv ρw ρσ  ⋯  ρσ )                                                                                        (A2) f = (e + p)u ρu ρu + p ρuv ρuw ρuσ ⋯  ρuσ                                                    (A3) 

g = (e + p)v ρv ρvu ρv + p ρvw ρvσ ⋯  ρvσ                                                    (A4)  
h = (e + p)w ρw ρwu ρwv ρw + p ρwσ ⋯  ρwσ                                             (A5) 

p = ρRT = (γ − 1) e −                                                                                            (A6) 

f = κ ∂T∂x + uτ + vτ + wτ  0 τ  τ  τ  ρD ∂σ∂x  ⋯  ρD ∂σ∂x                       (A7) 

g = κ ∂T∂y + uτ + vτ + wτ  0 τ  τ  τ  ρD ∂σ∂y  ⋯  ρD ∂σ∂y                     (A8) 

h = κ ∂T∂z + uτ + vτ + wτ  0 τ  τ  τ  ρD ∂σ∂z  ⋯  ρD ∂σ∂z                       (A9) 

= 2( + ) − ∇∙                                                                                                (A10) 

= 2( + ) − ∇∙                                                                                               (A11) 

= 2( + ) − ∇∙                                                                                              (A12) 

τ = (μ + μ ) ∂u∂x + ∂u∂x                                                                                                  (A13) 

Ψ = 0 0    Ω ⋯ Ω                                                                                           (A14) 
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