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Abstract 
The study examines rating migration, and default probability term structures obtained from rating migration matrices. It 
expands on the use of rating migration matrices with reduced form bond valuation models, by formally delineating the 
probability of default according to the likely rating paths of a bond, as implied by the rating migration matrix. Further, 
two alternatives are also considered. First, the cost of default is stipulated as the recovery of par according to the exit 
rating upon default. Also, in addition to stating the value of a bond in terms of expected cash flows, when considering 
the probability of default, the value of a bond is alternatively stated as the present value of all likely rating paths of the 
bond, discounted against the market risk-bearing bond forward rates of the different rating categories. The impact of 
term structure volatility and rating migration uncertainty on bond valuation is also considered. 
It is shown that the relationship between rating migration and default probability is complex, and the default 
probabilities of different rating categories are time-dependent and not isolated from each other. Also, rating migration 
resembles a delayed default process that influences default probabilities of subsequent intervals. The implications of a 
rating migration matrix may perhaps only be fully understood through simulation. This form one of the first points by 
which to evaluate rating migration matrices. The results of the valuation model show that historical rating migration 
matrices may not be optimal for pricing bonds ahistorically. A principal premise of the study is the dichotomy between 
historical values and ahistorical estimates, particularly with regards to rating migration. It is argued that historical 
estimates face two key shortcomings: they must be able to accurately forecast future rating migration and rating 
category intensities as a result, and they must specify a method to include rating migration uncertainty. An optimization 
model is delineated to extract ahistorical rating migration matrices from market prices. This too has implications that 
should be considered. In light of the above, reduced form models may have an advantage over structural models, in 
their ability to portray a far more sophisticated default process. 
Keywords: default probability, default risk, credit risk, rating migration, bond valuation 
1. Introduction 
1.1 The Factors Impacting Bond Valuation 
Huang and Huang (2012) find that, for investment grade bonds (those with a credit rating not lower than Baa) of all 
maturities, credit risk accounts for only a small fraction - typically around 20%, and, for Baa-rated 10-year bonds, in the 
30% range - of the observed corporate-Treasury yield spreads, and it accounts for a lower fraction of the observed 
spreads for bonds of shorter maturities. For junk bonds, however, credit risk accounts for a much larger fraction of the 
observed corporate-Treasury yield spreads. Geske and Delianedis (2001) conclude that credit risk and credit spreads are 
not primarily explained by default and recovery risk, but are mainly attributable to taxes, jumps, liquidity, and market 
risk factors. Also, Elton et al (2001) reach a similar conclusion that credit spreads are not primarily explained by default 
and recovery risk. 
Merton (1974) hypothesizes that the value of corporate debt is determined by the risk free rate, issue traits and default 
risk. Fama and French (1993) capture two factors specific to bonds. One common risk in bond returns arises from 
unexpected changes in interest rates - they proxy for the deviation of long-term bond returns from expected returns due 
to shifts in interest rates, and note that term-structure variables are likely to play a role in bond returns. The other stated 
factor is default risk. Whilst extensively modelling liquidity risk, Houweling et al (2005) note interest rate risk and 
credit risk as principal factors. Elton et al (2004) use a homogeneous group of bonds to minimize risk differences. They 
show that pricing errors within a group vary with bond characteristics. In particular, they consider default risk, liquidity, 
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tax liability, recovery rates, and age. 
Grandes and Peter (2005) delineate a currency (risk) premium, a default (risk) premium, and a jurisdiction premium. 
They find that although firm-specific factors are significant in explaining the risk premium investors demand to hold 
corporate debt, a much more important part of this premium can be attributed to macroeconomic risk factors of the 
country in which a firm operates. According to them,  the corporate default premium is a function of i) sovereign risk, 
ii) leverage, iii) firm-value volatility, iv) interest rate volatility, v) remaining time to maturity, and vi) liquidity. 
Contrasted with more specific credit risk, Delianedis and Geske (2003) delineate market risk as including equity risk, 
currency risk, interest rate risk, commodity price risk, and asset price risk. 
Campbell and Taksler (2003) note equity volatility as factor - both idiosyncratic volatility and systematic or 
market-wide volatility. They conclude that firm specific equity volatility is an important determinant of the corporate 
bond spread and that the economic effects of volatility are large. They also suggest including a risk premium on 
systematic credit risk. Elton et al (2001) state default risk, taxes and systemic risk - compensation for the systematic 
nature of risk in bond returns. Collin‐Dufresne et al (2001) point to local supply-demand shocks that are independent of 
both changes in credit-risk and typical measures of liquidity. In particular, there seems to exist a systematic risk factor in 
the corporate bond market that is independent of equity markets, swap markets, and the Treasury market and that seems 
to drive most of the changes in credit spreads. 
Athanassakos and Carayannopoulos (2001) see the factors that impact bond value as default risk, tax, specific issue 
traits, and short-run deviations from equilibrium. In turn, short-run deviations from equilibrium entails liquidity risk, the 
business and economic environment and conditions, and temporary imbalances of demand and supply between 
corporate and treasury bonds. The effects of economic conditions and the business cycle on yield spreads are captured 
with the use of three proxy variables: the annual rate of change in the consumer price index (inflation rate), the quarterly 
change in the difference between the 20-year and the three-month treasury yields, and the annual rate of change in 
industrial production index. In addition, whether maturity should be included as a factor is contested. 
Elton et al (2001) argue that, if corporate bond returns move systematically with other assets in the market whereas 
government bonds do not, then corporate bond expected returns would require a risk premium to compensate for the 
non-diversifiability of corporate bond risk, just like any other asset. The literature of financial economics provides 
evidence that government bond returns are not sensitive to the influences driving stock returns. There are two reasons 
why changes in corporate spreads might be systematic. First, if expected default loss were to move with equity prices, 
so while stock prices rise default risk goes down and as stock prices fall default risk goes up, it would introduce a 
systematic factor. Second, the compensation for risk required in capital markets changes over time. If changes in the 
required compensation for risk affects both corporate bond and stock markets, then this would introduce a systematic 
influence. They believe the second reason to be the dominant influence. The Fama-French (1993) model employs the 
excess return on the market, the return on a portfolio of small stocks minus the return on a portfolio of large stocks (the 
SMB factor), and the return on a portfolio of high minus low book-to-market stocks (the HML factor) as its three factors. 
Das and Tufano (1995) state investors are exposed to three risks: interest rate risk, changes in credit risk caused by 
changes in the credit rating of the issuer of the debt, and changes in credit risk caused by changes in spreads on the debt, 
even when ratings have not changed. Altman (1996) examines the expected spread change and cost implication due to 
credit rating migration. In the context of portfolios, Fei et al (2012) note that risk models generally predict for each asset 
in the portfolio, the corresponding probability of default (PD), exposure at default (EAD) and loss given default (LGD). 
This is also referred to as credit rating migration risk, or simply credit migration risk. Similarly, Kadam and Lenk (2008) 
note different estimates for risk capital, derived from loss distributions, which they quantify as Value-at-Risk (VAR) and 
Expected Loss (EL) for the portfolio at hand. Jarrow et al (1997) model the impact in forward rates - and thus bond 
value - due to credit rating jumps. 
Delianedis and Geske (2003) note that default probabilities and changes in expected default frequencies are important to 
both the structure and pricing of credit derivatives. All corporate issuers have some positive probability of default. This 
default probability should change continuously with changes in the firm’s stock price and thus its leverage. The value of 
most fixed income securities is typically inversely related to the probability of default. Investors are concerned about 
changes in the value of their fixed income securities due to changes in the probability of default, even though the actual 
default seldom occurs. In fact, fixed income investors may be more concerned with changes in the perceived credit 
quality of their bond holdings than with actual default. Rating migrations, which offer one reflection of changes in 
perceived quality of bonds, occur much more frequently than defaults. 
Foss (1995) specifically differentiates between credit risk and default risk. He notes that the terms default risk and credit 
risk are often used interchangeably; however, they are not one and the same. Default risk is defined as the risk that the 
issuer of a fixed-income security will be unable to make timely payments of interest or principal. This risk, diversified 
over a portfolio of equally rated securities, leads to an expected default loss. Many of the initial studies on risks and 
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returns focus on historical default rates and losses. Although these studies provide valuable insight, default rates and 
default losses, in isolation, are not paramount. Credit risk is defined as the risk that the perceived credit quality of an 
issuer will change, although default is not necessarily a certain event. Increased credit risk is reflected in a widening of 
the yield spread. Credit and default risk are correlated because credit deterioration is almost always a precursor to 
eventual default; even in the most drastic cases, however, until default actually occurs, the potential for recovery or 
stabilization cannot be totally discounted. In line with this, Manzoni (2004) makes the point that, while several studies 
model default and bankruptcy events, no empirical work directly models the probability of a bond having its rating 
revised. He points out the traditional default mode of thinking of most financial institutions, leading to  a consensus 
view of transitions as non-fundamental economic events. 
1.2 Credit Default Swaps 
With regards to the mechanism of credit default swaps (CDS), Blanco et al (2005) note that the buyer of protection 
makes periodic payments to the protection seller until the occurrence of a credit event or the maturity date of the 
contract, whichever is first. If a credit event occurs, the buyer is compensated for the loss incurred as a result of the 
credit event, which is equal to the difference between the par value of the bond or loan and its market value after default. 
Similarly, Zhu (2006) states that the protection seller is obliged to buy the reference bond at its par value when a credit 
event (bankruptcy, obligation acceleration, obligation default, failure to pay, repudiation / moratorium, or restructuring) 
occurs. In return, the protection buyer makes periodic payments to the seller until the maturity date of the CDS contract 
or when a credit event occurs, whichever comes first. This periodic payment, which is usually expressed as a percentage 
(in basis points) of its notional value, is called the CDS spread (or the CDS premium). 
Norden and Weber (2009) argue that CDS should reflect pure issuer default risk, and no facility or issue specific risk, 
making these instruments a potentially ideal benchmark for measuring and pricing credit risk. According to Blanco et al 
(2005), CDSs contain useful information: i) They are an upper bound on the price of credit risk (while credit spreads 
form a lower bound) and (ii) CDS prices lead in the price discovery process. Benkert (2004) argues that CDS premia 
represent primarily a price of default risk, and are in this respect similar to bond spreads. Consequently, CDS premia 
and bond spreads should be driven by the same factors. A number of studies (Benkert, 2004; Ericsson et al, 2009) 
indeed consider the same factors of bond valuation to explain CDS premiums. Weistroffer et al (2009) mention that 
rating agencies use information derived from CDS prices to calculate market implied ratings. 
Blanco et al (2005) demonstrate the theoretical relationship between CDS and credit spreads: Begin with a loose 
approximate arbitrage relation. Suppose an investor buys a T-year par bond with yield to maturity of y issued by the 
reference entity, and buys credit protection on that entity for T years in the CDS market at a cost of pCDS . The investor 
has eliminated most of the default risk associated with the bond. If 𝑝஼஽ௌ is expressed annually as a percentage of the 
notional principal, then the investor’s net annual return is y - 𝑝஼஽ௌ. By arbitrage, this net return should approximately 
equal the T-year risk-free rate, denoted by x. If y - 𝑝஼஽ௌ is less than x, then shorting the risky bond, writing protection 
in the CDS market, and buying the risk-free instrument would be a profitable arbitrage opportunity. Similarly, if y - 𝑝஼஽ௌ exceeds x, buying the risky bond, buying protection, and shorting the risk-free bond would be profitable. This 
suggests that the price of the CDS, 𝑝஼஽ௌ, should equal the credit spread, y-x. 
Weistroffer et al (2009) also consider the vantage point that, in an ideal world, CDS spreads and risk premia in the bond 
market should show similar behaviour due to the integration of both markets via the possibility of arbitrage. Given risk 
premia from bond yields, little should be learned from CDS spreads. In practice though, the two indicators reveal 
significant differences for various reasons. First, bond yields are influenced by many other factors apart from credit risk, 
notably interest rate risk and liquidity risk, which require distinct assumptions before their implied probabilities of 
default can be extracted. Likewise, CDS spreads do not easily translate into default probabilities, due to uncertainties 
concerning recovery values, counterparty risk or the pricing of specific contractual details. Moreover, CDSs allow credit 
risk to be separated from interest rate risk, thereby excluding one source of uncertainty in the underlying pricing 
mechanism. Hence, the two instruments provide for two complementary sources of information. They note that a 
number of studies conclude that on balance CDS spreads display the more favourable characteristics as a market 
indicator of distress. Based on rigorous empirical analysis, these studies find that CDS spreads tend to lead the signals 
derived from bond markets. For riskier credit, CDSs seem to be more liquid than their underlying reference entities, as 
indicated by lower bid-ask spreads in the CDS market. In addition, anecdotal evidence suggests that CDS trading tends 
to continue during periods of distress, in times when liquidity in bond markets may be severely restricted. 
Blanco et al (2005) find the theoretical relation equating CDS prices to credit spreads forms a valid equilibrium relation 
for most cases considered. The CDS market leads the bond market in determining the price of credit risk. When 
examining the determinants of changes in the pricing of credit risk in the two markets, they find that macro-variables 
(interest rates, term structure, equity market returns, and equity market implied volatilities) have a larger immediate 
impact on credit spreads than on CDS prices. Conversely, firm-specific equity returns and implied volatilities have a 
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greater immediate effect on CDS prices than on credit spreads. However, the equilibrium equivalence of CDS prices and 
credit spreads implies that both are equally sensitive to the mentioned variables in the long run, and they find that this is 
achieved through the lagged adjustment of the credit spreads to the CDS prices, confirming the price discovery results. 
The analysis of Zhu (2006) confirms the theoretical prediction that CDS prices to credit spreads should be on average 
equal to each other. However, in the short run there are quite significant pricing discrepancies between the two markets. 
Credit factors are very important in generating the deviation from the equivalence relationship. Rating events, changes 
in credit conditions and dynamic adjustments of the two spreads explain most of the short-term price discrepancies. The 
other factors, such as terms of contracts, liquidity and the short-sale restriction, only have a very small impact. The 
derivatives market leads the cash market in price discovery only occasionally. 
Longstaff et al (2005) use a convenience-yield or liquidity process to capture the extra return investors may require, 
above and beyond compensation for credit risk, from holding corporate rather than riskless securities. The contractual 
nature of credit-default swaps makes them far less sensitive to liquidity or convenience-yield effects. The 
convenience-yield or illiquidity process is applicable to the cash flows from corporate bonds, but not to cash flows from 
credit-default swap contracts. They use the information in credit-default swaps to provide direct evidence about the size 
of the default and non-default components in corporate spreads. They find evidence that time variation in corporate 
spreads is related to systematic liquidity shocks, and that the presence of an aggregate liquidity factor in bond markets 
may explain most of the movements of credit spreads. Also, the default component represents the majority of corporate 
spreads. Alternatively, market implied risk-neutral estimates of jump risk may be larger than estimates based on 
historical data. They also find evidence of a significant non-default component in corporate spreads. This result is 
robust to the choice of the riskless curve.  
They find that the non-default component is time varying and mean reverts rapidly. The non-default component of 
spreads is strongly related to measures of bond-specific illiquidity such as the bid/ask spread and the outstanding 
principal amount. In addition, changes in the non-default component are related to measures of Treasury richness such 
as the on-the-run/off-the-run spread as well as to measures of the overall liquidity of fixed income markets such as the 
flows into money market mutual funds. In contrast, there is only weak support for the hypothesis that the non-default 
component is due to taxes. 
1.3 Default Probability 
Zhu (2006) states that, in general, measures of credit risk consist of three building blocks: probability of default (PD), 
loss given default (LGD) and correlation between PD and LGD. 
In order to model default risk, Athanassakos and Carayannopoulos (2001), consider three proxy variables: i) credit 
rating, which captures the effect of both the probability of default and the recovery rate; ii) time to maturity; iii) the 
existence of a sinking fund. Both of the latter two proxies should be related to the probability of default. 
Campbell and Taksler (2003) note that the literature distinguishes between structural and reduced form models. In 
structural models, a firm is assumed to default when the value of its liabilities exceeds the value of its assets, in which 
case bondholders assume control of the company in exchange for its residual value. Reduced form models, by contrast, 
assume exogenous stochastic processes for the default probability and the recovery rate. The added flexibility of the 
reduced-form approach allows default risk to play a somewhat greater role in the pricing of corporate bonds. 
Merton (1974) shows that for a given maturity, the risk of default varies directly with the variance of the returns on the 
firm value. In this context, the business cycle and economic environment impact both the level of the risk free rate and 
the variance of returns on the firm value. 
Huang and Huang (2012) consider a credit risk model with a counter-cyclical market risk premium to capture the effects 
of business cycles on credit risk premia. Secondly, they introduce an analytically tractable jump-diffusion structural 
credit risk model to capture the effects on credit risk premia of certain future states with both high default risks and 
abnormally high stochastic discount factors. The second mechanism is distinctly different from the first mechanism. In 
the model with jumps in asset values, the jumps are unpredictable and there is no time variation in market risk premia. 
Altman (1989) notes that analysts have concentrated their efforts on measuring the default rate for finite periods of time 
- for example, one year - and then averaging the annual rates for longer periods. In almost all previous studies, the rate 
of default has been measured simply as the value of defaulting issues for some specific population of debt compared 
with the value of bonds outstanding that could have defaulted. Annual default rates are then usually compared with 
observed promised yield spreads in order to assess the attractiveness of particular bonds or classes of bonds. A corollary 
approach is to compare default rates with ex post returns to assess whether investors were compensated for the risks 
they bear. This approach seeks to measure the expected mortality of bonds in a manner similar to that used by actuaries 
in assessing human mortality. The use of the term mortality refers specifically to a life expectancy or survival rate for 
various periods of time after issuance. Although it is informative to measure default rates and losses based on the 
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average annual rate method, that traditional technique has at least two deficiencies. It fails to consider that there are 
other ways in which a bond dies, namely redemptions from calls, sinking funds, and maturation. Therefore, it fails to 
consider the surviving population of bonds; nor does it answer the question of the probability of default for various time 
periods in the future on the basis of an issue's specific attributes at issuance, summarized into its bond rating. What is 
the estimated probability of default and loss from default over a specific time horizon of one year, two years, three years, 
or N years? 
In line with reduced form models, Elton et al (2001) develop marginal default probabilities from a rating transition 
matrix employing the assumption that the rating transition process is stationary and Markovian. In year one, the 
marginal probability of default can be determined directly from the transition matrix and default vector, and is, for each 
rating class, the proportion of defaults in year one. To obtain subsequent year defaults, they first use the transition 
matrix to calculate the ratings going into a given year for any bond starting with a particular rating in the previous year. 
The defaults of that year are then the proportion in each rating class multiplied by the probability that a bond in that 
class defaults by year end. They find that the marginal probability of default increases for the high-rated debt and 
decreases for the low-rated debt. This occurs because bonds change rating classes over time. 
Elton et al (2001) show that a bond rated AAA has zero probability of defaulting one year later. However, given that it 
has not previously defaulted, the probability of it defaulting 20 years later is 0.206 percent. In the intervening years, 
some of the bonds originally rated AAA have migrated to lower-rated categories where there is some probability of 
default. At the other extreme, a bond originally rated CCC has a probability of defaulting equal to 22.052 percent in the 
next year, but if it survives 19 years the probability of default in the next year is only 2.928 percent. If it survives 19 
years, the bond is likely to have a higher rating. Despite this drift, bonds that were rated very highly at time 0 tend to 
have a higher probability of staying out of default 20 years later than do bonds that initially had a low rating. However, 
rating migration means this does not hold for all rating classes. For example, after 12 years the conditional probability 
of default for CCCs is lower than the default probability for Bs. This is because the odds of being upgraded to 
investment grade conditional on not defaulting is higher for CCC than B. Eventually, bonds that start out as CCC and 
continue to exist will be rated higher than those that start out as Bs. In short, the small percentage of CCC bonds that 
continue to exist for many years end up at higher ratings on average than the larger percentage of B bonds that continue 
to exist for many years. 
Grandes and Peter (2005) note that the rating agencies’ main justification for the sovereign ceiling rule - namely, that 
whenever a government defaults, firms in the country will default as well (i.e., transfer risk is 100 percent) - implies that 
a 1 percent increase in the government spread should be associated with an increase in the firm spread of at least 1 
percent. Market participants may judge transfer risk to be less than 100 percent though. The distinguishing feature of 
industrial countries - and the United States in particular - is that government bonds are risk-free (i.e., sovereign risk is 
zero). This is in sharp contrast to emerging markets where - almost by definition - government bonds are not risk-free. 
In an emerging market, the corporate yield spread above an equivalent government bond yield does not reflect corporate 
default risk, even after controlling for all other factors. It merely reflects corporate default risk in excess of sovereign 
default risk. Hence, it appears that in emerging economies there is a crucial additional determinant of corporate default 
risk: the default risk of the government, i.e., sovereign risk. 
When a sovereign is in distress or default, economic and business conditions are likely to be hostile for most firms: the 
economy will likely be contracting, the currency depreciating, taxes increasing, public services deteriorating, inflation 
escalating, and interest rates soaring, and bank deposits may be frozen. In particular, the banking sector is more likely 
than any other industry to be directly or indirectly affected by a sovereign in payment problems. The banks’ 
vulnerability is due to their high leverage (compared to other corporates), their volatile valuation of assets and liabilities 
in a crisis, their dependence on depositor confidence, and their typically large direct exposure to the sovereign. As a 
result, default risk of any firm is likely to be a positive function of sovereign risk. They model corporate default 
probability as the probability that the firm defaults given that the sovereign does not default, plus the probability that the 
firm defaults given that the sovereign has defaulted. 
Fei et al (2012) note a credit rating is a financial indicator of an obligor’s level of creditworthiness. Given the 
relationship between credit ratings and default probability or credit quality, Kumar and Haynes (2003) discuss rating 
methodology and list the key factors considered as: i) business analysis (industry risk; market position; operating 
efficiency; legal position), ii) financial analysis (accounting quality; earnings protection; adequacy of cash flows; 
financial flexibility; interest and tax sensitivity), and iii) management evaluation (track record of management; 
evaluation of capacity to overcome adverse situations; goals, philosophy and strategies). They find that financial 
parameters reflect, to a significant extent, the subjective and objective factors used by an expert while rating a debt 
obligation, with hidden relationships between the financial parameters and associated expert rating. 
A number of authors examine the timeliness, accuracy and actual information content of credit rating agencies' ratings 
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(Hines et al, 1975; Ederington and Goh, 1998; Amato and Furfine, 2004). Amato and Furfine (2004) mention that rating 
agencies insist that their ratings should be interpreted as ordinal rankings of default risk that are valid at all points in 
time, rather than absolute measures of default probability that are constant through time. Delianedis and Geske (2003) 
note that rating agencies regularly measure the historical default frequency of corporate issuers. While these historical 
default frequencies are interesting, they are not forward-looking. Option models can provide a forward-looking, risk 
neutral default probability. Chan and Jegadeesh (2004) point to evidence that agency ratings may not be accurate in a 
timely fashion. 
Studies like Wang (2004) attempt to model default ratings, and studies like Hines et al (1975), Kaplan and Urwitz 
(1979), Belkaoui (1980) and Chan and Jegadeesh (2004) statistically model bond ratings. This may provide alternative 
default probability estimates, as structural models also do, relative to the credit ratings of credit rating agencies, but 
must still be translated to default probability term structures, in a similar way credit agencies' ratings are translated. 
In general, bond valuation models - whether structural or reduced form - either use these models to extract default 
probability estimates from market data, or substitute externally sourced default probability estimates into these models, 
to determine the magnitude of the default risk component (Eom et al, 2004; Elton et al, 2001; Huang and Huang, 2012; 
Geske and Delianedis, 2001; Collin‐Dufresne et al, 2001). Also, a number of studies quantify credit ratings as proxies of 
credit quality in terms of spread (Foss, 1995; Kaplan and Urwitz, 1979; Cantor et al, 1997; Perraudin and Taylor, 2004; 
Chan and Jegadeesh, 2004) 
1.4 Default Probability Term Structures 
Elton (1999) argues that realized returns are a very poor measure of expected returns and that information surprises 
highly influence a number of factors in an asset pricing model. He believes that developing better measures of expected 
return and alternative ways of testing asset pricing theories that do not require using realized returns have a much higher 
payoff than any additional development of statistical tests that continue to rely on realized returns as a proxy for 
expected returns. He argues that either there are information surprises that are so large or that a sequence of these 
surprises is correlated so that the cumulative effect is so large that they have a significant permanent effect on the 
realized mean. Furthermore, these surprises can dominate the estimate of mean returns and be sufficiently large that 
they are still a dominant influence as the observation interval increases. Thus, the difference between expected and 
realized returns is viewed as a mixture of two distributions, one with standard properties and the other that more closely 
resembles a jump process. 
Duffie and Singleton (1999) state that, because of the possibility of sudden changes in perceptions of credit quality, 
particularly among low-quality issues such as Brady bonds, one may wish to allow for surprise jumps in default 
probability. 
Nelson and Siegel (1987) state the range of shapes generally associated with interest rate term structures: monotonic, 
humped, and S shaped. Related to this, Benkert (2004) consider low interest rates with a recessionary state of the 
economy. Corporate defaults occur more often during economic downturns than during boom phases, and the 
occurrence of a recession may cause a decline in credit quality that leads to more defaults in the future. According to 
this line of reasoning, the compensation for default risk would rise. Duffie and Singleton (1999) note strong evidence 
that hazard rates for default of corporate bonds vary with the business cycle. Equally, recovery data also exhibit a 
pronounced cyclical component. Das and Tufano (1995) allowed recovery to vary over time so as to induce a non-zero 
correlation between credit spreads and the riskless term structure. However, for computational tractability they 
maintained the assumption of independence of the hazard rate (default rate) and risk-free rate. 
Huang and Huang (2012) argue that a credit risk premium is required by investors because the uncertainty of default 
loss should be systematic - bondholders are more likely to suffer default losses in bad states of the economy. Moreover, 
precisely because of the tendency for default events to cluster in the worst states of the economy, the credit risk 
premium can be potentially very large. Athanassakos and Carayannopoulos (2001) note that yield spreads are greater 
during recessions than during recoveries, and also point to the link between the behaviour of yield spreads to the shape 
of the term structure, as a proxy of the business cycle. They confirm the typical direct relationship between default risk 
and yield spreads, and show that the impact of the business cycle (macro-economy) on the yield spread of a corporate 
bond depends on the industry sector to which the issuer of the bond belongs. The inflation rate should be directly related 
to yield spreads, since during inflationary periods investors may require higher risk premia from their investments in 
corporate bonds. 
Athanassakos and Carayannopoulos (2001) use the change in the shape of the term structure of interest rates - 
represented by the quarterly change in the difference between the 20-year treasury rates and the three month t-bill rates - 
as a proxy for the business cycle, since much research in the past has linked the shape of the treasury term structure to 
future variations in the business cycle. A steepening term structure is a typical result of robust economic growth and 
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lower short term interest rates and reflects a general belief in a more robust economic future. The opposite is true when 
the term structure is flattening or turns negatively sloped. Therefore, the particular proxy should be negatively related to 
yield spreads. Finally, the annual rate of change in the industrial production index should be negatively related to yield 
spreads since increased economic activity will bolster investors’ confidence in the corporate sector, and lead to a 
reduction in the risk premia demanded for investment in corporate bonds. 
Amato and Furfine (2004) argue that financial market participants behave as if risk is countercyclical, e.g. at its highest 
during economic downturns. Empirical models, too, tend to indicate a rise in risk during recessions. There is a 
relationship between the correlation of default rates and loss in the event of default and the business cycle. Models that 
assume independence of default probabilities and loss given default will tend to underestimate the probability of severe 
losses during economic downturns. They delineate the empirical significance of the procyclicality of credit quality 
changes by showing that estimated credit losses are much higher in a contraction relative to an expansion. 
Delianedis and Geske (2003) note the term structure of default probabilities could be interesting for examining the 
changing credit structure of either individual firms, industries, or the whole economy. Thus, a term structure of default 
probabilities could contain information about the business cycle. Typically, the term structure of unconditional default 
probabilities should be upward sloping because the probability of default over a specific time horizon increases with 
time. However, the term structure of default probabilities would be inverted when the short term default probability is 
greater than the forward default probability. This may occur whenever the firm has a high probability of defaulting in 
the short term, but if it can survive through the next year and payoff its short term obligations, then the firm’s default 
probability might decline. In this situation, the forward default probability would be less than the short term default 
probability. The short probability relates to the probability of only defaulting on the short term debt, and the forward 
probability held today relates to the probability of defaulting on the long term debt, conditional on not defaulting on the 
short term debt. 
Longstaff and Schwartz (1995) argue that the corporate yield spread should vary inversely with the benchmark treasury 
yield, and find evidence to support this. Kim et al (1993) show that default risk is not particularly sensitive to the 
volatility of interest rates but is sensitive to interest rate expectations. Campbell and Taksler (2003) note idiosyncratic 
volatility can move very differently from market-wide volatility. Movements in idiosyncratic risk are more persistent 
than movements in market risk. Lando and Skødeberg (2002) note that it is likely that macroeconomic variables or other 
indicators of the business cycle influence rating intensities. 
Hamilton and Cantor (2004) raise the notion of a credit cycle. This can be studied parallel to business cycles. 
A number of studies model default probability term structures as instantaneous stochastic processes (Das and Tufano, 
1995; Duffee, 1999; Jarrow et al, 2002) . For example, Duffee (1999) uses the extended Kalman filter to fit yields on 
bonds issued by individual investment-grade firms to a model of instantaneous default risk. Das and Tufan (1995) and 
Jarrow et al (1997) model default risk as Markov chains or trees. Jarrow and Turnbull (1995) exogenously specify a 
stochastic process for the evolution of the default-free term structure and the term structure for risky debt. 
Duffee (1999) argues that at each instant there is some probability that a firm defaults on its obligations. Both this 
probability and the recovery rate in the event of default may vary stochastically through time. The stochastic processes 
determine the price of credit risk. Although these processes are not formally linked to the firm's asset value, there is 
presumably some underlying relation. The instantaneous probability that a given firm defaults on its obligated bond 
payments follows a translated single-factor square-root diffusion process, with a modification that allows the default 
process to be correlated with the factors driving the default-free term structure. Realistically there are a number of 
factors other than default risk that drive a wedge between corporate and Treasury bond prices, such as liquidity 
differences, state taxes, and special repo rates. Here, all of these factors are substituted into a stochastic process called a 
default risk process. Default risk is negatively correlated with default-free interest rates. In addition, for the typical firm, 
the instantaneous risk of default has a lower bound that exceeds zero. In other words, even if a firm's financial health 
dramatically improves, the model implies that yield spreads on the firm's bonds remain positive. 
Duffee (1999) first models the price of a risk-free bond as given by the expectation, under the equivalent martingale 
measure, of the cumulative discount rate between t and T. The discount rate follows a stochastic process - the sum of a 
constant, and two factors that follow independent square-root stochastic processes. He then models the adjusted 
discount rate for bond issues that can default, relative to risk-free bonds. This setup is designed to capture three 
important empirical features of corporate bond yield spreads. The most obvious is that the spreads are stochastic, 
fluctuating with the financial health of the firm. The second feature is that yield spreads for very high-quality firms are 
positive, even at the short end of the yield curve. This fact suggests that regardless of how healthy a firm may seem, 
there is some level below which yield spreads cannot fall. The third feature is that yield spreads, especially spreads for 
lower quality bonds, appear to be systematically related to variations in the default-free term structure. 
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Houweling and Vorst (2005) note reduced form models that use time series estimation to model the hazard rate 
stochastically, typically as a Vasicek or CIR process. Also, other reduced form models use cross-sectional estimation 
and consider either constant or stochastic hazard rates, where the stochastic process is chosen in such a way that the 
survival probability curve is known analytically. Houweling and Vorst (2005) follow an intermediate approach by using 
a deterministic function of time to maturity. This specification facilitates parameter estimation, while still allowing for 
time-dependency. They model the integrated hazard function as a polynomial function of time to maturity, with three 
degrees - linear, quadratic and cubic. 
Das and Tufano (1995) choose to make recovery rates correlated with the term structure of interest rates. This results in 
a model wherein credit spreads are correlated with interest rates, as is evidenced in practice. In the 
Jarrow-Lando-Turnbull model credit spreads change only when credit ratings change, whereas in the debt markets it is 
found that credit spreads change even when ratings have not changed. Injecting stochastic recovery rates into the model 
provides this extra feature. 
Hamilton and Cantor (2004) point out the strong stochastic processes associated with rating transitions.  Altman and 
Rijken (2004) investigate the through-the-cycle methodology that agencies use. Through the cycle ratings are stable 
because they are intended to measure the risk of default over long investment horizons, and because they are changed 
only when agencies are confident that observed changes in a company's risk profile are likely to be permanent. Investors 
believe that ratings should reflect changes in credit quality, even if they are likely to be reversed within a year. At the 
same time, investors want to keep their portfolio rebalancing as low as possible and desire some level of rating stability. 
This leaves two conflicting goals - rating timeliness and rating stability. The objective of agencies is to provide an 
accurate relative (ordinal) ranking of credit risk at each point in time, without reference to an explicit time horizon. The 
through-the-cycle rating methodology of agencies is designed to achieve an optimal balance between rating timeliness 
and rating stability. The methodology has two key aspects: first, a long-term default horizon and, second, a prudent 
migration policy. These two standpoints are aimed at avoiding excessive rating reversals, while holding the timeliness 
of agency ratings at an acceptable level. Compared to point-in-time ratings, agency ratings are aimed at ignoring 
temporary shocks. 
In relation to credit rating migration matrices, Altman (1996) assesses the rating change experience of corporate bonds 
from two different initial states: i) from the time of issuance to up to ten years post-issuance, and ii) from a static-pool 
of issuers of a given rating, regardless of the bonds' ages, to up to ten years after the pool is formed. In contrasting 
unexpected and expected rating migration, he notes the standard deviation around the expected value could be 
calculated. 
Frydman and Schuermann (2008) note that, despite overwhelming evidence to the contrary, credit migration matrices, 
used in many credit risk and pricing applications, are typically assumed to be generated by a simple Markov process. In 
their paper they propose a parsimonious model that is a mixture of (two) Markov chains. They estimate this model using 
credit rating histories and show that the mixture model statistically dominates the simple Markov model and that the 
differences between two models can be economically meaningful. The non-Markov property of their model implies that 
the future distribution of a firm’s ratings depends not only on its current rating but also on its past rating history. They 
find that two firms with identical current credit ratings can have substantially different transition probability vectors. 
Lando and Skødeberg (2002) contrast rating migration matrices captured by means of a discrete-time estimator, and 
continuous-time estimator. The continuous-time estimator captures the chance of defaulting within a year after 
successive downgrades, even if it did not happen for one single firm in the sample, whereas the discrete-time method 
does not. It is shown that rating migration matrices from these different methods differ significantly. They present a 
rigorous formulation of the notion of rating drift - a type of non-Markovian behavior - in the process of ratings and find 
strong non-Markov effects for downgrades. 
Nickell et al (2000) use Moody’s data from 1970 to 1997 to examine the dependence of ratings transition probabilities 
on industry, country and stage of the business cycle using an ordered probit approach, and they find that the business 
cycle dimension is the most important in explaining variation of these transition probabilities. They point out that rating 
transition matrices vary according to the stage of the business cycle, the industry of the obligor and the length of time 
that has elapsed since the issuance of the bond. Kadam and Lenk (2008) identified strong differences in rating migration 
behaviour between issuers of different industry sectors and countries. 
Bangia et al (2002) argue that credit migration matrices provide the specific linkage between underlying 
macroeconomic conditions and asset quality. Credit migration matrices characterize the expected changes in credit 
quality of obligors. Total volatility (risk) is composed of a systematic and an idiosyncratic component. Because ratings 
are a reflection of a firm’s asset quality and distance to default, a reasonable definition of “systematic” is the state of the 
economy. They find distinct differences between the U.S. expansion and contraction transition matrices. The most 
striking difference between expansion and contraction matrices are the downgrading and especially the default 
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probabilities that increase significantly in contractions. Overall, these results reveal that migration probabilities are 
more stable in contractions than they are on average, supporting the existence of two distinct economic regimes. The 
rating universe should develop differently in contraction periods compared to expansion times. 
The straightforward application of these matrices however would normally be restricted to situations where the future 
state of the economy over the transition horizon under consideration is assumed to be known. The state of the economy 
clearly is one of the major drivers of systematic credit risk, especially as lower credit classes are much more sensitive to 
macro-economic factors. Consequently it should be integrated into credit risk modeling whenever possible, otherwise 
the downward potential of high-yield portfolios in contractions might be severely underestimated. Modern credit risk 
models account for different industries only through different term structures, but not through industry dependent 
transition matrices. 
Fei et al (2012) proposes an approach to estimate credit rating migration risk that controls for the business-cycle 
evolution during the relevant time horizon in order to ensure adequate capital buffers both in good and bad times. The 
approach allows the default risk associated with a given credit rating to change as the economy moves through different 
points in the business cycle. They mention a body of research linking portfolio credit risk with macroeconomic factors 
showing, for instance, that default risk tends to increase during economic downturns. Their premise is that point-in-time 
methodologies that account for business cycles should provide more realistic credit risk measures than through-the-cycle 
models that smooth out transitory fluctuations (perceived as random noise) in economic fundamentals. 
The naïve approach to accommodating cyclicality subdivides the historical ratings into those observed in normal, peak 
and trough regimes according to real GDP growth and deploys a discrete time (cohort) estimator of migration risk 
separately on each sub-sample. In effect, the naïve estimator implicitly assumes that the current economic conditions 
prevail throughout the prediction time horizon of interest. They relax this assumption by allowing the economy to 
evolve randomly between states of the business cycle during the risk horizon, and evaluate a MMC estimator against a 
naïve counterpart that conditions deterministically on the current economic conditions by assuming that they prevail 
throughout the prediction time horizon, and against classical through-the-cycle estimators. Such studies consider 
economic dynamics in credit risk modelling, by assessing the estimators in a strictly forward-looking sense. In contrast, 
they exploit a real-time leading indicator of business cycles based on a principal components methodology to generate 
out-of-sample predictions of credit migration risk. Acknowledging the risk that economic conditions randomly evolve 
over the risk horizon is shown to improve the accuracy of out-of-sample default probability predictions. Ignoring 
business cycles significantly understates default risk during economic contraction. 
Elton et al (2004) consider factors that affect individual issue prices, as part of homogeneous groups of bonds. They 
then assume that each of the variables considered could effect the level but not the shape of the corporate term structure. 
For example, it is assumed that the Baa+ and Baa- spot term structure curves are parallel to each other and the Baa spot 
term structure curve. They note that, to the extent that this simplification of the effect of variables is inappropriate it will 
bias their results against attributing importance to the influences they examine. Also, there exists significant correlation 
between homogeneous corporate term structures, in that such term structures generally lay parallel to each other, and 
perhaps even the market corporate term structure. A number of studies also allude to some correlation between 
risk-bearing term structures and default probability term structures (Elton et al, 2001; Eom et al, 2004). 
1.5 A Rating Migration Based Valuation Model 
1.5.1 A Rating Migration Based Reduced Form Model for Zero-Coupon and Coupon Paying Risk-Bearing Bonds 
Equation 1 states the reduced form model of Duffie and Singleton (1999), adapted for coupon paying bonds. Equation 1 
has two components, a coupon paying component associated with non-default outcomes, and a recovery component 
associated with default outcomes. 

In the equation, 𝑉 is the price or value of the risk-bearing bond; 𝑀 is the number of coupons of the bond, including 
par; 𝐶௠ is the coupon of the bond on coupon date 𝑚; 𝑅 is the recovery of par value; 𝑟௧೘௥௙ and 𝑡௠ are the risk-free 
spot rate and time value, respectively, associated with coupon date 𝑚; ℎ௡ is the default probability of interval 𝑛, 
conditional on no default prior to interval 𝑛; 𝑃௠ is the cumulative non-default probability of interval 𝑚; 𝐽௠ is the 
number of probability intervals for which the possibility of default is considered up to coupon date 𝑚; 𝐽ெ is the 
number of probability intervals considered up to maturity. 
For coupon paying bonds, it is convenient to consider 𝐽௠ and 𝐽ெ to be equal to 𝑚 and 𝑀. For example, the third 
coupon may have three probability intervals leading up to it. For zero-coupon bonds, 𝑀 is equal to 1, and 𝐽ெ may be 
greater than 𝑀, with 𝐽௠ not necessarily corresponding with m ; a regular coupon interval may still be considered 
though to ensure a timely and consistent consideration of default. A five-year zero coupon bond will have only one 
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coupon, but can have up to ten probability intervals leading up to it, if semi-anual probability intervals are used. 

𝑉  =   ෍ ቌෑሺ1  −  ℎ௡ሻ௃೘
௡ୀଵ  𝑒ି௥೟೘ೝ೑  ௧೘ 𝐶௠ቍெ

௠ୀଵ + ෍ ቌෑሺ1 − ℎ௡ሻ௝ିଵ
௡ୀଵ ℎ௝ 𝑒ି௥೟ೕೝ೑ ௧ೕ 𝑅ቍ௃ಾ

௝ୀଵ  
(1.1) 

ෑሺ1  − ℎ௡ሻ௝ିଵ
௡ୀଵ = 1 ; 𝑗 − 1 ൏ 1 

(1.1.1) 

𝑃௠ = ෑሺ1 − ℎ௡ሻ௃೘
௡ୀଵ  

(1.2) 

𝑃௠ | ௠ିଵ   =   ෑ ሺ1  −  ℎ௡ሻ௃೘ିଵ
௡ୀଵ   −  ෑሺ1  −  ℎ௡ሻ௃೘

௡ୀଵ = ෑ ሺ1 − ℎ௡ሻ௃೘ିଵ
௡ୀଵ ቀ1 − ൫1 − ℎ௃೘൯ቁ = ෑ ሺ1  −  ℎ௡ሻ௃೘ିଵ

௡ୀଵ  ℎ௃೘  
(1.3) 

𝑉  = ෍ 𝑃௠ெ
௠ୀଵ  𝑒ି௥೟೘ೝ೑ ௧೘ 𝐶௠ + ෍௃ಾ

௝ୀଵ 𝑃௝ | ௝ିଵ 𝑒ି௥೟ೕೝ೑ ௧ೕ 𝑅 
(1.4) 

Although not explicitly stated by them, equation 2 delineates the default probability structure implemented by Elton et 
al (2001). They subsequently substitute this into a reduced form model similar to equation 1. 𝑐𝑎𝑡௡௢௡ିௗ௘௙௔௨௟௧ are all non-default rating categories; 𝐼௉௔௧ℎ೘ is the intensity or propensity of path or tree Pathm  that 
leads up to interval 𝑚; similarly, 𝐼௝௉௔௧ℎ is the path intensity or propensity of path 𝑗; 𝐼௠௖௔௧೙

 is the intensity or 
propensity of rating category n  in interval m ; 𝑃𝑎𝑡ℎ௠ௗ௘௙௔௨௟௧ is the number of default paths of (up to) interval 𝑚; 𝑃𝑎𝑡ℎ௠௡௢௡ିௗ௘௙௔௨௟௧ is the number of non-default paths of interval 𝑚; contrary to a default path, a non-default path can 
not and does not end up in default over its length or run; 𝑃𝑎𝑡ℎ௠ | → ௞௡௢௡ିௗ௘௙௔௨௟௧ is the number of non-default paths that 

migrate to - end with - category 𝑘in interval m ; 𝑃௕ሺ೙షభሻ → ௕೙௠௜௚ | ௡
 is the probability of migration from rating 𝑏௡ିଵ in 

interval 𝑛 − 1 to rating 𝑏௡ in interval n ; 𝑃௞ → ௡௠௜௚ | ௠ is the probability of migration from category 𝑘 to category 𝑛 

in interval m ; 𝑃௞ → ௗ௘௙௔௨௟௧௠௜௚ | ௠  is the probability of category 𝑘 migrating to default status in interval 𝑚; ℎ௡is again the 

default probability of interval 𝑛, conditional on no default prior to interval 𝑛. 

𝐼௉௔௧ℎ೘ = ෑ 𝑃௕ሺ೙షభሻ → ௕೙௠௜௚ | ௡௃೘
௡ୀଵ  

(2.1) 

𝐼௠௖௔௧೙   =   ෍ ෍ 𝐼௝௉௔௧ℎ௉௔௧ℎ೘షభ | → ೖ೙೚೙ష೏೐೑ೌೠ೗೟
௝ୀଵ

௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟
௞ୀଵ 𝑃௞ → ௡௠௜௚ | ௠ = ෍ 𝐼௠ିଵ௖௔௧ೖ௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟

௞ୀଵ 𝑃௞ → ௡௠௜௚ | ௠ 
(2.2) 

∏
n= 1

m

(1 − hn) = ∑
n= 1

Pathm
non−default

I n
Path = ∑

n= 1

cat non− default

I m
cat n

 

(2.3) 

ෑሺ1  − ℎ௡ሻ௠ିଵ
௡ୀଵ  ℎ௠   =   ෍ ෍ 𝐼௝௉௔௧௛௉௔௧௛೘షభ | →ೖ೙೚೙ష೏೐೑ೌೠ೗೟

௝ୀଵ
௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟

௞ୀଵ 𝑃௞→ௗ௘௙௔௨௟௧௠௜௚ | ௠ = ෍ 𝐼௠ିଵ௖௔௧ೖ௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟
௞ୀଵ  𝑃௞ → ௗ௘௙௔௨௟௧௠௜௚ | ௠  

(2.4) 
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ℎ௡   =  1  −  ൭ෑሺ1  −  ℎ௠ሻ௡
௠ୀଵ  /  ෑሺ1  −  ℎ௠ሻ௡ିଵ

௠ୀଵ ൱ = ቌ ෍௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟
௞ୀଵ 𝐼௡ିଵ௖௔௧ೖ 𝑃௞ → ௗ௘௙௔௨௟௧௠௜௚ | ௡ ቍ / ൭ෑሺ1  −  ℎ௠ሻ௡ିଵ

௠ୀଵ ൱ 
(2.5) 

Equation 3 allows the recovery rate to depend on the rating category the bond is in when it defaults. Moving from 
equation 1.4 to equation 3.1 is further explained by equation set 2. 𝑅௠௡  is the recovery of par value of rating category 𝑛 
in interval 𝑚. 

𝑉  =   ෍ 𝑃௠ெ
௠ୀଵ  𝑒ି௥೟೘ೝ೑  ௧೘ 𝐶௠  + ෍௃ಾ

௝ୀଵ ෍௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟
௡ୀଵ 𝐼௝ିଵ௖௔௧೙ 𝑃௡ → ௗ௘௙௔௨௟௧௠௜௚ | ௝ 𝑒ି௥೟ೕೝ೑ ௧ೕ 𝑅௝௡ 

(3.1) 

By using a value loss description, equation 1 is rewritten as the sum of all promised cash flows, discounted at the 
risk-free rate, minus the present value of value lost due to default. It is expected that equation 4 should yield a similar 
value than equation 1. 𝑉௠௥௙ | ௔ is the risk-free based value of a bond with rating category 𝑎, in interval 𝑚; 𝐹𝑉௠௥௙ | ௔ is the risk-free based 
future value of a bond of rating category 𝑎, in interval 𝑚; 𝛥𝑉௠௔ → ௗ௘௙௔௨௟௧ is the change in value due to a bond of rating 

category 𝑎 defaulting in interval 𝑚; 𝑟௡ | ௠௥௙  is the risk-free forward rate over the interval demarcated by point in time 𝑛 and 𝑚; 𝑅௠௡  is the recovery of par value of rating category 𝑛 in interval m ; 𝐼௠௖௔௧೙ is the intensity or propensity 

of rating category 𝑛 in interval m ; 𝑃௞ → ௗ௘௙௔௨௟௧௠௜௚ | ௡  is the probability of category 𝑘 migrating to default status in 

interval 𝑛; 𝑟௧೘௥௙ and 𝑡௠ are the risk-free spot rate and time value, respectively, associated with coupon date 𝑚; 𝑃𝑉ሺ𝑥ሻ refers to the present value of 𝑥; 𝑐𝑎𝑡௡௢௡ିௗ௘௙௔௨௟௧are all non-default rating categories; 𝑘௠ is the number of 
coupons remaining at (after) interval 𝑚. 

𝑉௠௥௙ | ௔   =  𝐹𝑉௠௥௙ | ௔ = ෍ெ
௡ୀ௞೘ 𝑒ି௥೙ | ೘ೝ೑ ௧೘೙ 𝐶௡ 

(4.1) 

𝛥𝑉௠௔ → ௗ௘௙௔௨௟௧   = 𝐼௠ିଵ௖௔௧ೌ 𝑃௔ → ௗ௘௙௔௨௟௧௠௜௚ | ௠ ൫𝑉௠௥௙ | ௔ − 𝑅௠௔ ൯ (4.2) 

𝑉  =   ෍  ெ
௠ୀଵ 𝑒ି௥೟೘ೝ೑  ௧೘ 𝐶௠  − ෍  ௃ಾ

௝ୀଵ ൮ ෍௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟
௡ୀଵ 𝐼௝ିଵ௖௔௧೙ 𝑃௡ → ௗ௘௙௔௨௟௧௠௜௚ | ௝ 𝑃𝑉൫𝑉௝௥௙ | ௡  − 𝑅௝௡൯൲ 

(4.3) 

 

𝑉  =   ෍  ெ
௠ୀଵ 𝑒ି௥೟೘ೝ೑  ௧೘ 𝐶௠   ෍௃ಾ

௝ୀଵ ൮ ෍  ௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟
௡ୀଵ 𝐼௝ିଵ௖௔௧೙ 𝑃௡ → ௗ௘௙௔௨௟௧௠௜௚ | ௝ ቌ𝑒ି௥೟ೕೝ೑ ௧ೕ 𝑅௝௡ − ෍  ௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟

௡ୀଵ 𝑉௝௥௙ | ௡ 𝑒ି ௥೟ೕೝ೑ ௧ೕቍ൲ 
(4.4) 

1.5.2 Credit Quality Deterioration, Rating Migration, and Valuation According to Rating Migration 
In certain markets, like the South African market, credit spreads persist, yet the market has experienced very low default 
rates. Not all (few) corporate bonds in this market have top credit ratings assigned to them by credit agencies, and credit 
spreads abound. At the same time, historically very few actual defaults have occurred, such that a rating migration 
matrix based on historical data would have extremely low probability of migration to default per credit rating category. 
In light of credit risk being synonymous with credit quality, equation 5 rather values a bond according to its likely future 
credit ratings and thus credit quality. Bonds may very well migrate to a lower rating and thus credit quality, and remain 
there for some time, without defaulting immediately, or defaulting at all - the bond has merely migrated to a higher 
probability of default, and a rating homogeneous portfolio the bond forms part of, is expected to honour this probability 
of default estimate. 
A rating degradation implies a degradation of credit quality, that implies a loss of resell value and an increased 
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probability of default in the future. For a risk-neutral investor to be indifferent to the investment period, future credit 
quality must be adequately anticipated. Credit quality changes in the form of rating migration may cause an investor to 
reconsider holding a security, particularly in light of expected future ratings and thus credit quality, if it was not 
properly included in the valuation beforehand. This implies that the investor is not insensitive - but indeed sensitive - to 
the investment period. 
Thus, a bond may also be valued according to its probable future rating states, which corresponds to the rating 
migration paths of equation 2. In addition, this should produce a result comparable to a valuation that considers 
expected cash flows, when considering the risk of default (equation 1, 3 and 4). The duration of a bond in a particular 
rating category is valued against the forward rate of that category for the given duration or interval. The value of a bond 
is thus seen as the sum of the present value of all possible future rating states, according to all possible rating migration 
paths (equation 5.2). For this purpose, a rating migration matrix is still used. Practically, the study uses the market 
risk-bearing term structures to value these future rating states. 
As equation 5.4 and 5.5 reflect, the forward rate applicable over a particular rating migration path is seen as an extra 
weight or attenuation factor, such that that the intensity or propensity of a particular sub-path - and thus path - is simply 
the probability of the path multiplied by the applicable forward rate. 

Much of the terms correspond to that of previous equations. 𝑀 is the number of coupons of the bond, including par 
value; Cm  is the bond coupon corresponding to coupon date 𝑚; 𝑅 is the recovery of par value; 𝑅௠௡  is the recovery 
of par value of rating category 𝑛  in interval 𝑚 ; 𝑐𝑎𝑡௡௢௡ିௗ௘௙௔௨௟௧  are all non-default rating categories; 𝑃𝑎𝑡ℎ௠ | → ௞௡௢௡ିௗ௘௙௔௨௟௧ is the number of non-default paths that migrate to - end with - category 𝑘in interval 𝑚; 𝑃𝑎𝑡ℎ௠ௗ௘௙௔௨௟௧ 
is the number of default paths of interval 𝑚; 𝑃𝑎𝑡ℎ௠௡௢௡ିௗ௘௙௔௨௟௧ is the number of non-default paths of interval 𝑚; 𝑃௞௉௔௧ℎ೙

 is the probability of path 𝑛 over interval 𝑘; 𝑡௞ିଵ௞  is the time interval length between interval 𝑘 and 𝑘 − 1; 𝐷𝐹௠ | ௡௔  is the discount factor of rating category 𝑎 over the interval demarcated by point in time 𝑚 and 𝑛 - this also 

corresponds with the forward rate of the rating category over the interval; 𝐷𝐹௞ | ௞ିଵ௉௔௧ℎ೙  is the discount factor of path 𝑛 

over the interval (𝑘 − 1, 𝑘), which equals the forward over the particular interval; 𝑓௠ | ௠ିଵ௡  is the forward rate of 

rating category 𝑛 over the interval 𝑚 and 𝑚 − 1; 𝑓௞௉௔௧ℎ | ௡ is the forward rate of path n over interval 𝑘; I Pathl

df
 

and 𝐼௟ௗ௙ | ௉௔௧ℎ are the forward rate based path intensity or propensity of path l ; 𝐼௠ௗ௙ | ௖௔௧೙ is the forward rate based 
intensity or propensity of rating category 𝑛 in interval 𝑚; 𝑃௞ → ௡௠௜௚ | ௠ is the probability of migration from category 𝑘 
to category 𝑛 in interval 𝑚; 𝐽௠ is the number of probability intervals considered up to coupon date 𝑚. 𝐷𝐹௠ | ௡௔   =  𝐷𝐹௠ | ଴௔ / 𝐷𝐹௡ | ଴௔ = 𝑒ି௥೘ೌ ௧೘ ା ௥೙ೌ ௧೙ 

(5.1) 

𝑉  =   ෍ ൮ ෍௉௔௧ℎ೘೙೚೙ష೏೐೑ೌೠ೗೟
௡ୀଵ ቌෑ௃೘

௞ୀଵ 𝑃௞௉௔௧ℎ೙ ෑ௃೘
௞ୀଵ 𝐷𝐹௞ | ௞ିଵ௉௔௧ℎ೙ ቍ 𝐶௠൲ெ

௠ୀଵ  
(5.2) 

𝑉  =   ෍ ൮ ෍௉௔௧ℎ೘೙೚೙ష೏೐೑ೌೠ೗೟
௡ୀଵ ቌෑ௃೘

௞ୀଵ 𝑃௞௉௔௧ℎ೙ ෑ௃೘
௞ୀଵ 𝑒ି௙ೖುೌ೟ℎ | ೙ ௧ೖషభೖ ቍ 𝐶௠൲ெ

௠ୀଵ  
(5.3) 

𝐼௉௔௧ℎ೘ௗ௙ = ෑ 𝑃௕ሺ೙షభሻ → ௕೙௠௜௚ | ௡௃೘
௡ୀଵ 𝑒ି௙೙ುೌ೟ℎ | ೘ ௧೙షభ೙  

(5.4) 
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𝐼௠ௗ௙ | ௖௔௧೙   =   ෍ ⎝⎛ ෍ 𝐼௟ௗ௙ | ௉௔௧ℎ௉௔௧ℎሺ೘షభሻ | → ೖ೙೚೙ష೏೐೑ೌೠ೗೟
௟ୀଵ  𝑃௞ → ௡௠௜௚ | ௠ 𝑒ି௙೘ | ೘షభ೙  ௧೘షభ೘ ⎠⎞

௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟
௞ୀଵ  

=   ෍ 𝐼௠ିଵௗ௙ | ௖௔௧ೖ௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟
௞ୀଵ 𝑃௞ → ௡௠௜௚ | ௠ 𝑒ି௙೘ | ೘షభ೙  ௧೘షభ೘

 

 

(5.5) 

𝑉  =   ෍ ቌ ෍௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟
௡ୀଵ 𝐼௃೘ௗ௙ | ௖௔௧೙ 𝐶௠ቍெ

௠ୀଵ  
(5.6) 

Equation 6 includes the cash flows gained from recovery of par, after default. The recovery cash flow component is 
taken from equation 1. Again, 𝑟௧೘௥௙ and 𝑡௠ are the risk-free spot rate and time value, respectively, associated with 

coupon date 𝑚; 𝑃௞ → ௗ௘௙௔௨௟௧௠௜௚ | ௡  is the probability of category 𝑘 migrating to default status in interval 𝑛. 

𝑉  =   ෍ ൮ ෍ ቌ ෑ  ௃೘
௞ୀଵ 𝑃௞௉௔௧ℎ೙ 𝑒ି௙ೖುೌ೟ℎ | ೙ ௧ೖషభೖ 𝐶௠ቍ௉௔௧ℎ೘೙೚೙ష೏೐೑ೌೠ೗೟

௡ୀଵ ൲ெ
௠ୀଵ + ෍ ൮ ෍ ෑ 𝑃௞௉௔௧ℎ೙௠

௞ୀଵ
௉௔௧ℎ೘೏೐೑ೌೠ೗೟

௡ୀଵ  𝑒ି௥೟೘ೝ೑  ௧೘ 𝑅൲௃ಾ
௠ୀଵ

(6.1) 

𝑉  =   ෍ ෍  ௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟
௡ୀଵ

ெ
௠ୀଵ 𝐼௃೘ௗ௙ | ௖௔௧೙ 𝐶௠ + ෍ ൭ෑሺ1 − ℎ௡ሻ௠ିଵ

௡ୀଵ ℎ௠ 𝑒ି௥೟೘ೝ೑  ௧೘ 𝑅൱௃ಾ
௠ୀଵ  

(6.2) 

𝑉  =   ෍ ෍  ௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟
௡ୀଵ

ெ
௠ୀଵ 𝐼௃೘ௗ௙ | ௖௔௧೙ 𝐶௠ + ෍ ෍௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟

௡ୀଵ
௃ಾ

௠ୀଵ 𝐼௠ିଵ௖௔௧೙ 𝑃௡ → ௗ௘௙௔௨௟௧௠௜௚ | ௠ 𝑒ି௥೟೘ೝ೑  ௧೘ 𝑅௠௡  
(6.3) 

Equation 7 calculates the net change in value at point m  due to rating migration over the remaining probability 
intervals from that point to maturity. It is calculated as the sum of the change in future value for each remaining 
probability interval, up to maturity, based on rating migration per interval. 𝐷𝐹௡ | ௠௔  is the discount factor of rating category 𝑎 over the interval demarcated by point in time 𝑛 and m ; 𝑟௡ | ௠௔  is 
the forward rate of rating category 𝑎 over the interval demarcated by point in time 𝑛 and 𝑚; 𝑟௡௔ is the spot rate of 
rating category 𝑎 over the interval n ; 𝑟௧೘௥௙ is the risk-free spot rate associated with point in time 𝑚; 𝑡௠௡  is the 
interval demarcated by point in time n  and 𝑚; 𝐹𝑉௠௔ is the future value of a bond of rating category 𝑎, in interval 𝑚; 𝑉௠௔ is the value of a bond with bond rating 𝑎, in interval 𝑚; 𝛥𝑉௠௔ → ௕ is the change in value of a bond due to a 
rating migration from rating 𝑎 to 𝑏 in interval 𝑚; 𝛥𝑉௠௔ is the change in value of a bond with rating category 𝑎 due 
to rating migration to any other non-default rating category in interval 𝑚; 𝐼௠௖௔௧೙ is the intensity or propensity of rating 
category 𝑛 in interval 𝑚; 𝑃௞ → ௡௠௜௚ | ௠ is the probability of migration from category 𝑘 to category 𝑛 in interval 𝑚; 𝑀is the number of coupons of the bond, including par value; 𝐶௠ is the bond coupon corresponding to coupon date 𝑚; 𝑐𝑎𝑡௡௢௡ିௗ௘௙௔௨௟௧ are all non-default rating categories; 𝑃𝑉ሺ𝑥ሻ refers to the present value of 𝑥; 𝑅௠௡  is the recovery of 
par value of rating category 𝑛 in interval 𝑚; 𝑘௠ is the number of coupons remaining at (after) interval 𝑚. 𝐷𝐹௡ | ௠௔   =  𝐷𝐹௡ | ଴௔  / 𝐷𝐹௠ | ଴௔   = 𝑒ି௥೙ೌ ௧೙ ା ௥೘ೌ ௧೘; 𝑟௡ | ௠௔ 𝑡௠௡ = 𝑟௡௔ 𝑡௡ − 𝑟௠௔ 𝑡௠ 

(7.1) 

𝑉௠௔   =  𝐹𝑉௠௔ = ෍ெ
௡ୀ௞೘ 𝑒ି௥೙ | ೘ೌ  ௧೘೙ 𝐶௡ 

(7.2) 
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𝛥𝑉௠௔ → ௕   = 𝐹𝑉௠௔ − 𝐹𝑉௠௕ = 𝑉௠௔ − 𝑉௠௕ (7.3) 

𝛥𝑉௠௔ → ௕   =   ෍  ெ
௡ୀ௞೘ 𝑒ି௥೙ | ೘ೌ  ௧೘೙  𝐶௡  −  ෍ெ

௡ୀ௞೘ 𝑒ି௥೙ | ೘್  ௧೘೙ 𝐶௡ = ෍ெ
௡ୀ௞೘ ቀ𝑒ି௥೙ | ೘ೌ  ௧೘೙ − 𝑒ି௥೙ | ೘್  ௧೘೙ ቁ 𝐶௡ 

(7.4) 

𝛥𝑉௠௔   =   ෍  ௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟
௕ୀଵ 𝐼௃೘ିଵ௖௔௧ೌ  𝑃௔ → ௕௠௜௚ | ௃೘ 𝛥𝑉௠௔ → ௕   = ෍௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟

௕ୀଵ 𝐼௠ିଵ௖௔௧ೌ 𝑃௔ → ௕௠௜௚ | ௠ ෍ெ
௡ୀ௞೘ ቀ𝑒ି௥೙ | ೘ೌ  ௧೘೙  −   𝑒ି௥೙ | ೘್  ௧೘೙ ቁ 𝐶௡ (7.5) 

𝛥𝑉௠   =   ෍ ෍ 𝑃𝑉௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟
௞ୀଵ

௃ಾ
௡ୀ௝೘ାଵ ሺ𝛥𝑉௡௞ሻ = ෍ ෍ 𝛥𝑉௡௞௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟

௞ୀଵ
௃ಾ

௡ୀ௝೘ାଵ 𝑒ି௥೟೘ೝ೑  ௧೘ 
(7.6) 

Equation 8 states the value of a bond as the present value of coupons received up to future point 𝑤, plus the present 
value of the future value of the bond at point 𝑤; point 𝑤 is before maturity. In essence, it states the value of the bond 
when the bond is not kept to maturity, but sold before maturity. Equation 8.2 states the future value of the bond 
according to the present value of coupons to be received after point 𝑤 (equation 3). Equation 8.3 states the future value 
according to the present value of the future paths of the bond after point 𝑤 (equation 6). Equation 8.4 states the future 
value as the sum of the value of the remaining bond coupons at time 𝑤, discounted against the rating categories’ future 
rates at point 𝑤, and weighed according to the rating categories’ propensities at point 𝑤 - for each rating category, its 
propensity is considered at point 𝑤, and all remaining coupons are discounted against the future rates of the rating 
category at point 𝑤. Again, some similarity and convergence is expected among the equations - the equations should 
produce similar results. For equation 8.3 to equal equation 6, the future value of the bond is not discounted to present 
value by the risk-free rate, but by the rating path based spot rate 𝑅௧௡ೢ . 𝐶௠ is the coupon of the bond on coupon date 𝑚; 𝑘௪ is the number of coupons up to point 𝑤; 𝑅௠௡  is the recovery of 
par value of rating category 𝑛 in interval 𝑚; 𝑃௠ is the cumulative non-default probability of interval 𝑚; 𝑟௧೘௥௙ and 𝑡௠ are the risk-free spot rate and time value, respectively, associated with coupon date 𝑚; 𝑟௧೘ೢ௥௙  is the risk-free forward 

rate over the interval (𝑤, 𝑚) - 𝑡௪௠; 𝑟௧೘ೢ௡  is the risk-bearing forward rate of rating category 𝑛 over the interval (𝑤, 𝑚); 𝐼௠௖௔௧೙ is the intensity or propensity of rating category n  in interval 𝑚; 𝐼௠ௗ௙ | ௖௔௧೙ is the forward rate based intensity or 
propensity of rating category 𝑛 in interval 𝑚; 𝐼௠ | ௪௖௔௧೙  is the intensity or propensity of rating category 𝑛 in interval 𝑚, 

measured from point 𝑤; 𝐼௠ | ௪ௗ௙ | ௖௔௧೙ is the forward rate based intensity or propensity of rating category 𝑛 in interval 𝑚, 

measured from point 𝑤; 𝑃௞ → ௗ௘௙௔௨௟௧௠௜௚ | ௠  is the probability of migration from category 𝑘 to default in interval 𝑚; 𝑃𝑉ሺ𝑥ሻ 

refers to the present value of 𝑥; 𝐹𝑉௪ refers to the future value of the bond at point 𝑤; 𝐽௠ is the number of probability 
intervals considered up to coupon date 𝑚; 𝑅௧௡ೢ  is the risk-bearing rating path based spot rate of rating category 𝑛 for 
point 𝑤. 

𝑉  =   ෍ 𝑃௠௞ೢ
௠ୀଵ  𝑒ି௥೟೘ೝ೑  ௧೘ 𝐶௠  +  ෍  ௃ೢ

௝ୀଵ ෍௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟
௡ୀଵ 𝐼௝ିଵ௖௔௧೙ 𝑃௡ → ௗ௘௙௔௨௟௧௠௜௚ | ௝ 𝑒ି௥೟ೕೝ೑ ௧ೕ 𝑅௝௡  +  𝑃𝑉ሺ𝐹𝑉௪ሻ 

(8.1) 
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𝑃𝑉ሺ𝐹𝑉௪ሻ   =   𝑒ି௥೟ೝೢ೑ ௧ೢ  ቌ ෍ 𝑃௠ெ
௠ୀ௞ೢାଵ  𝑒ି௥೟೘ೢೝ೑  ௧೘ೢ 𝐶௠ + ෍௃ಾ

௝ୀ௃ೢାଵ ෍௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟
௡ୀଵ 𝐼௝ିଵ௖௔௧೙ 𝑃௡ → ௗ௘௙௔௨௟௧௠௜௚ | ௝  𝑒ି௥೟ೕೢೝ೑ ௧ೕೢ  𝑅௝௡ቍ (8.2) 

𝑃𝑉ሺ𝐹𝑉௪ሻ   =   ෍ ෍௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟
௡ୀଵ

ெ
௠ୀ௞ೢାଵ 𝐼௃೘ | ௪ௗ௙ | ௖௔௧೙ 𝑒ିோ೟೙ೢ  ௧ೢ 𝐶௠ 

+ ቌ ෍ ෍௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟
௡ୀଵ

௃ಾ
௠ୀ௃ೢାଵ 𝐼௠ିଵ௖௔௧೙ 𝑃௡ → ௗ௘௙௔௨௟௧௠௜௚ | ௠ 𝑒ି௥೟೘ೢೝ೑  ௧೘ೢ 𝑅௠௡ ቍ 𝑒ି௥೟ೝೢ೑ ௧ೢ 

 

(8.3) 

𝐼௠ௗ௙ | ௖௔௧೙ = 𝐼௠௖௔௧೙ 𝑒ିோ೟೘೙ ௧೘ (8.3.1) 

𝑃𝑉ሺ𝐹𝑉௪ሻ =   𝑒ି௥೟ೝೢ೑ ௧ೢ  ቌ ෍ ෍௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟
௡ୀଵ

ெ
௠ୀ௞ೢାଵ 𝐼௃௖ೢ௔௧೙ 𝑒ି௥೟೘ೢ೙ ௧೘ೢ 𝐶௠ቍ 

(8.4) 

1.5.3 Term Structure Volatility and Term Structure Volatility Premiums 
At some point, one or more of the equations above reference the recovery of par, the risk-free rate, risk-bearing rates, 
and a rating migration matrix as input. The recovery of par, the risk-free rate as term structure, the risk-bearing rate as 
term structure, and the rating migration matrix can all carry additional volatility as uncertainty. All but uncertainty 
pertaining to recovery of par is discussed next. 
Term structure stability (Marciniak, 2006) is a well-known factor with regards to term structure decomposition, and 
term structure volatility - variance over term structures pertaining to similar points in time, decomposed at different 
dates - is also documented (Marciniak, 2006). If the ahistorical risk-free and risk-bearing term structures are accepted as 
volatile, it should not be difficult to also consider ahistorical rating migration as volatile - that the probability of rating 
migration to both non-default credit ratings as well as default, is ahistorically uncertain. 
Two views can be taken regarding term structure volatility: i) premiums for term structure volatility are already 
included in term structure spot rates, such that cash flows that reference these rates are already guarded against term 
structure volatility; ii) premiums for term structure volatility should be added as additional factors of a bond valuation 
model. Below, options are used to demonstrate the cost of term structure volatility, and options manage to do this quite 
intuitively. At the same time, the magnitude (cost) of the options may be negligible, suggesting that premiums for term 
structure volatility are already included in spot rates. 
A basic premise of the view that term structure volatility premiums are already included, is that continuously or 
repetitively rolling over short term investments - investing and re-investing when the investment term expires - in 
risk-free and risk-bearing bonds should not yield higher returns than a single, long-term investment in the same security 
type, for the same investment term. As illustration, consider reinvesting in the next bond with 1 year to maturity, when 
the previous investment expires, and doing so for a period of 5 years, versus investing in a bond with 5 years to maturity. 
Here, continuously investing and reinvesting in bonds with short time to maturities has the advantage that long term 
term structure uncertainty is avoided, and market rates at the applicable points in time are likely more reflective of term 
structure rates at that point. The long-term bond must yield a return at least the same as the repetitive short-term 
investment, merely to be appropriate in terms of compensation in light of economic conditions. Yet, because it entails 
more uncertainty, the long-term investment is expected to yield a higher return - only under ideal market efficiency 
would it yield a similar return than the short term investment. 
This highlights the dichotomy between historical and ahistorical, and points out that historical estimates may find it 
difficult to fully account for and explain ahistorical prices. As long as the long-term investment yields an appropriately 
higher return than the short-term investment, term structure volatility premiums are likely already included in term 
structure spot rates. In the above, appropriately higher implies what is humanly possible under practical levels of market 
efficiency. 
In the case that term structure volatility premiums are already included in spot rates, bond valuation models may only 
be able to examine and state the magnitude of such premiums via i) ahistorical estimates of term structure volatility - or 
historical estimates as approximation thereof - or ii) isolating the term structure volatility component from the spread 
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between the short-term and long-term investment. 
To further the second view that term structure volatility premiums should still be included, the vantage point is taken 
that a risk-bearing bond would approximate a risk-free bond, if all of its cash flows were made certain. This does not 
necessarily imply that default should be prevented, or can not be allowed to occur; rather that default must be made 
certain. With reference to the above equations, the elements to fix would be the risk-free and risk-bearing term 
structures, as well as the applicable rating migration matrix. If these elements were certain, the cash flows - and value 
thereof - of risk-bearing bonds would be as certain as the cash flows of risk-free bonds. Here, options are the method by 
which the cash flows are made certain. 
With regards to risk-free term structure volatility, the recovery of par especially depends on the certainty of the risk-free 
rate, even if it is depicted as a term structure. The basic reduced form valuation model of equation 1 is also heavily 
dependent on the certainty of the risk-free rate - from the vantage point of these equations, ordinary promised coupons 
are dependent on the certainty of the risk-free rate. If market consensus regarding the applicable ahistorical risk-free 
rate worsens, all cash flows that build on it - recovery cash flows, for example - are worth less than anticipated. It may 
also render the investor sensitive to the investment period. The cost to guarantee risk-free rate dependent cash flows is 
seen as proportional to the cost of a future contract option to receive 100 currency at a future date, when paying the 
present value of 100 currency, based on the current risk-free term structure, now. The weight of the premium is taken to 
be related to the probability of the underlying cash flow, though this is a hypothetical or ideal stipulation. In practice, it 
is not truly known which of the bonds in the portfolio would follow certain paths, only the likely paths the bonds would 
follow. Hence, the options can not be taken for a proportion of the bonds only, but must be taken for all bonds. The 
magnitude of the price of the option should indicate the need for a premium to guarantee cash flows dependent on the 
risk-free rate. 

Equation 9.1 and 9.3 depict the premium to guarantee the value of recovery and coupons against risk-free term structure 
volatility, respectively. Equation 9.2 and 9.4 weight the premiums according to the probability of occurrence. Equation 
9.5 adds a premium to the basic reduced form model of equation 3, to guarantee the value of recovery and coupons 
against risk-free term structure volatility. 𝑅௠௡  is the recovery of par value of rating category 𝑛 in interval 𝑚; 𝐶௠ is 

the bond coupon corresponding to coupon date 𝑚; 𝑀 is the number of coupons, including par; 𝑈௥௙ோ | ௠ is the premium 

to guarantee the value of recovery of par expected in interval 𝑚 against risk-free term structure volatility; 𝑈௥௙஼ | ௠ is 

the premium to guarantee coupon 𝐶 expected in interval 𝑚 against risk-free term structure volatility; 𝑈෩௥௙ோ | ௠ and 

𝑈෩௥௙஼ | ௠  is the premium 𝑈௥௙ோ | ௠  and 𝑈௥௙஼ | ௠  weighted according to their probability of occurrence, respectively; 

𝐹௉௏బೝ೑ሺ100ሻ100 | ௠
 is a futures option to receive 100 currency at future point in time 𝑚 for the current or immediate payment 

that equals its present value 𝑃𝑉଴௥௙ሺ100ሻ according to the present risk-free term structure; 𝑃௠௡ is the cumulative 
non-default probability of rating category n  in interval m ; 𝐼௠௖௔௧೙ is the intensity or propensity of rating category 𝑛 

in interval 𝑚; 𝑃௞ → ௗ௘௙௔௨௟௧௠௜௚ | ௡  is the probability of category 𝑘 migrating to default status in interval 𝑛. 

𝑈௥௙ோ | ௠   = ሺ𝑅௠௡ / 100ሻ . 𝐹௉௏బೝ೑ሺ100ሻ100 | ௠  (9.1) 

𝑈෩௥௙ோ | ௠   =   ෍௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟
௡ୀଵ 𝐼௃೘ିଵ௖௔௧೙ 𝑃௡ → ௗ௘௙௔௨௟௧௠௜௚ | ௃೘ 𝑈௥௙ோ | ௠ 

(9.2) 

𝑈௥௙஼ | ௠   = ሺ𝐶௠ / 100ሻ . 𝐹௉௏బೝ೑ሺ100ሻ100 | ௠  (9.3) 
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𝑈෩௥௙஼ | ௠ = 𝑃௠ 𝑈௥௙ோ | ௠ (9.4) 

𝑉  =   ෍ 𝑃௠ெ
௠ୀଵ  𝑒ି௥೟೘ೝ೑  ௧೘ 𝐶௠ +  ෍  ௃ಾ

௝ୀଵ ෍௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟
௡ୀଵ 𝐼௝ିଵ௖௔௧೙ 𝑃௡ → ௗ௘௙௔௨௟௧௠௜௚ | ௝ 𝑒ି௥೟ೕೝ೑ ௧ೕ 𝑅௝௡ − ෍ெ

௠ୀଵ 𝑈෩௥௙஼ | ௠   −   ෍  ௃ಾ
௠ୀଵ 𝑈෩௥௙ோ | ௠ 

(9.5) 

Cash flows or valuations that depend on risk-bearing rates as term structures can be secured in a similar manner. The 
equations above (equation 5 - 6) that stipulate the value of a bond according to its likely rating paths, utilize and are 
sensitive to risk-bearing term structures. Put options to sell a bond at a particular future point in time at its future value, 
according to the present risk-bearing term structure corresponding to the bond's expected credit rating at the future point 
in time, can help to guarantee the future value of a bond with a particular rating at that point. This guarantees the value 
of the bond calculated according to its likely rating paths1. 
Equation 10.1 depicts the premium to guarantee the value of a risk-bearing bond against risk-bearing term structure 
volatility. Equation 10.2 and 10.3 weight the premium according to the probability of occurrence. For the same reasons 
mentioned before, the weights are hypothetical or ideal. Equation 10.4 adds a premium to equation 8.1 and 8.4 to 
guarantee the future value of the bond against risk-bearing term structure volatility. 𝑃𝑉ሺ𝑥ሻ refers to the present value of 𝑥, discounted against the risk-free term structure; 𝑈ோ | ௔஻ | ௠ is the premium to 

guarantee the value of a risk-bearing bond 𝐵 with rating category 𝑎 at point in time 𝑚 against risk-bearing term 

structure volatility; 𝑂ி௏బೌ ሺ஻ሻ | ௠஻ | ௣௨௧  is a put option to sell a risk-bearing bond 𝐵 with expected rating category 𝑎 at future 

point in time 𝑚, at its future value 𝐹𝑉଴௔ሺ𝐵ሻ according to the present, applicable risk-bearing term structure of rating 

category 𝑎; 𝑈෩ோ | ௔஻ | ௠ is the premium to guarantee the future value of a risk-bearing bond that will have credit rating 𝑎 

in interval 𝑚, weighted according to its probability of occurrence; 𝑈෩ோ஻ | ௠ is the cumulative premium to guarantee all 
bond future values in interval 𝑚; 𝑃௠ is the cumulative non-default probability of interval m ; 𝐼௠௖௔௧೙ is the intensity 

or propensity of rating category n  in interval m ; 𝑃௞ → ௗ௘௙௔௨௟௧௠௜௚ | ௡  is the probability of category 𝑘 migrating to default 

status in interval 𝑛 ; 𝐶௠  is the bond coupon corresponding to coupon date 𝑚; 𝑀 is the number of coupons, 
including par; 𝑅௠௡  is the recovery of par value of rating category 𝑛 in interval 𝑚. 𝑈ோ | ௔஻ | ௠ = 𝑂ி௏బೌ ሺ஻ሻ | ௠஻ | ௣௨௧  (10.1) 

𝑈෩ோ | ௔஻ | ௠ = 𝐼௃೘௖௔௧ೌ 𝑂ி௏బೌ ሺ஻ሻ | ௠஻ | ௣௨௧  (10.2) 

 𝑈෩ோ஻ | ௠   =   ෍  ௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟
௞ୀଵ 𝑈෩ோ | ௞஻ | ௠ = ෍௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟

௞ୀଵ 𝐼௃೘௖௔௧ೖ 𝑂ி௏బೖ ሺ஻ሻ | ௠஻ | ௣௨௧  
(10.3) 

𝑉  =   ෍ 𝑃௠௞ೢ
௠ୀଵ  𝑒ି௥೟೘ೝ೑  ௧೘ 𝐶௠ + ෍  ௃ೢ

௝ୀଵ ෍௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟
௡ୀଵ 𝐼௝ିଵ௖௔௧೙ 𝑃௡ → ௗ௘௙௔௨௟௧௠௜௚ | ௝ 𝑒ି௥೟ೕೝ೑ ௧ೕ 𝑅௝௡ + 𝑃𝑉ሺ𝐹𝑉௪ሻ − 𝑈෩ோ஻ | ௪ 

(10.4) 

Similarly, put options and call options can be used to guarantee credit rating migration probability between non-default 
categories; the intricacies thereof will not be stated here though. Put options reflect the premium to guard against more 
credit quality degradation than anticipated. The put option is stipulated to sell a bond at a future value in a particular 

                                                        
1 Similarly specified call options would further help to balance the premium. 
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interval, according to the term structure of the anticipated credit rating in that interval, and will be in value when the bond 
realized a lower credit rating in the interval. Call options reflect the excess due to less credit quality degradation than 
anticipated, and help to balance the overall premium due to credit migration volatility. The call option is stipulated to buy a 
bond at a future value in a particular interval, according to the term structure of the anticipated credit rating in that interval, 
and will be in value when the bond realized a higher credit rating in the interval. Both options are weighted according to 
the probability of the bond, with initial credit rating 𝑎, reaching an anticipated rating 𝑏 in interval 𝑚, but this is ideal. 
The drawback of this approach is that it does not guard against unanticipated rating migration that actually leads to 
default - higher than expected default rates for one or more rating categories. In light of this, a more balanced approach 
may be to assume as applicable, a rating migration matrix with higher volatility - measured as the cumulative 
probability of migrating out of a particular rating category to another category or to default. This will simultaneously 
allow a higher rate of default per category, higher probability of non-default rating migration, and preserve migration 
probability integrity. 
Hence, the basic argument is that rating migration uncertainty - also from a bond valuation premium perspective - may 
be best addressed through a more volatile rating migration matrix. Also, evident of risk-bearing term structure 
uncertainty is that it may predominantly relate to rating migration uncertainty. Given the relationship that should hold 
between the value of a bond as expected cash flows discounted against default probability (equation 3), and the value of 
a bond as the value of future rating migration paths (equation 8), and if market risk-bearing spot rates already include 
premiums for rating migration uncertainty, it likely is done through more volatile rating migration matrices, compared 
to historical rating migration matrices. This again stresses the dichotomy between ahistorical and historical estimates - 
rating migration matrices in particular. 
1.5.4 Tax Premiums 
Equation set 11 adds a tax premium to equation 3. Because of similarity in application, it is not repeated for the other 
equations as well. T  is the tax rate. 

𝑉  =   ෍ 𝑃௠ெ
௠ୀଵ  𝑒ି௥೟೘ೝ೑  ௧೘ 𝐶௠ ሺ1  −  𝑇ሻ + ෍௃ಾ

௝ୀଵ ෍௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟
௡ୀଵ 𝐼௝ିଵ௖௔௧೙ 𝑃௡ → ௗ௘௙௔௨௟௧௠௜௚ | ௝ 𝑒ି௥೟ೕೝ೑ ௧ೕ 𝑅௝௡ 

(11.1) 

1.5.5 Decomposing Market Rating Migration Probabilities 
What should be evident from the reduced form models above, is that it is indeed possible to extract ahistorical rating 
migration probability matrices from market prices. The valuation models above can be used to model bond value, and 
this is optimized against market prices via the ahistorical rating migration matrix being decomposed. The accuracy and 
validity of the rating migration matrix decomposed would depend on the comprehensiveness of the valuation model 
used to model bond value. 
Equation set 12 contains the optimization problem to extract the market rating migration matrix from market prices. 
Any proper rating migration matrix that satisfy the constraints could serve as initial solution. The probabilities of the 
migration matrix are adjusted and selected as part of the optimization. A number of constraints are stipulated: For each 
rating category, the sum of the probabilities of migrating from the particular category to any other non-default category, 
plus the probability of default of the category should equal 1 (equation 12.b). For each rating category, any probability 
of migrating to any other non-default category, as well as the probability of default of that particular category should be 
greater than or equal to zero (equation 12.c). For each rating category with a category preceding it, the particular 
category's probability of default should be equal to or higher than that of the category preceding it (equation 12.d). For 
each rating category, the probability of migrating to rating category 𝑛 is equal to or greater than the probability of 
migrating to rating category 𝑛 + 1 (equation 12.e). 𝑉௡௠௔௥௞௘௧ and 𝑉௡௠௢ௗ௘௟ are the market and modelled bond value of bond 𝑛 ; 𝑉௡௠௔௥௞௘௧ | ௞ and 𝑉௡௠௢ௗ௘௟ | ௞ are the market 
and modelled bond value of bond n  with rating category 𝑘; 𝑁 is the total number of bonds included in the sample; 𝑁௞ is the total number of sample bonds of rating category 𝑘; 𝑐𝑎𝑡௡௢௡ିௗ௘௙௔௨௟௧ refers to all the non-default rating 
categories; 𝑃௠ → ௡௠௜௚  is the probability of migrating from category 𝑚 to 𝑛; 𝑃௖௔௧೘ௗ௘௙௔௨௟௧ is the probability of default for 
category 𝑚. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ෍ሺ𝑉௡௠௔௥௞௘௧ − 𝑉௡௠௢ௗ௘௟ሻே
௡ୀଵ ଶ 

(12.a) 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ෍ ෍൫𝑉௡௠௔௥௞௘௧ | ௞ − 𝑉௡௠௢ௗ௘௟ | ௞൯ேೖ
௡ୀଵ

௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟
௞ୀଵ ଶ 

Subject to:  

∑
n= 1

catnon− default

Pm →n
mig + Pcatm

default = 1
; m ∈{ 1,. . , cat non− default }  

(12.b) 

∑
n= 1

catnon− default

Pm →n
mig ≥ 0

; Pcatm

default ≥ 0 ; m ∈{ 1,. . , cat non− default }  

(12.c) 

𝑃௖௔௧೘ௗ௘௙௔௨௟௧ ≥ 𝑃௖௔௧೘షభௗ௘௙௔௨௟௧; 𝑚 ∈ ሼ 2,.., 𝑐𝑎𝑡௡௢௡ିௗ௘௙௔௨௟௧ ሽ 
(12.d) 

𝑃௡ → ௡ି௫௠௜௚   ≥   𝑃௡ → ௡ି௫ିଵ௠௜௚
Pn → n+ x

mig ≥ Pn →n+ x+1
mig

 

𝑛 ∈ ሺ1,...𝑐𝑎𝑡௡௢௡ିௗ௘௙௔௨௟௧ሻ 𝑛 − 𝑥 ≤ 𝑐𝑎𝑡௡௢௡ିௗ௘௙௔௨௟௧; 𝑛 − 𝑥 −  1  ≥  1 𝑛 + 𝑥 + 1 ≤ 𝑐𝑎𝑡௡௢௡ିௗ௘௙௔௨௟௧; 𝑛 +  𝑥  ≥  1 

(12.e) 

1.5.6 Liquidity Premiums 
Market risk-bearing spot rates should carry liquidity premiums. In this case, liquidity should be a function of credit 
quality (rating), over and above conventional liquidity proxies (issued amount, listed, currency-denomination, 
on-the-run, age, missing prices, yield volatility, number of contributors and yield dispersion - Houweling et al, 2005) - 
depending on the demand-characteristics of lower credit quality bonds, such bonds may experience a greater liquidity 
premium, compared to higher credit quality bonds. This may relate to the frequently used notion of flight-to-quality. 
1.5.7 Credit Default Swaps 

Equation 13 states the present value of all future CDS payments equal to the present value of payments in the case of 
default. It is assumed that risk-free term structure volatility premiums are already included in the risk-free rate. 𝑃௖ௗ௦ is 
the contractual CDS payments; 𝐿 is the number of payments within the period of the contract; 𝑃𝐴𝑅 is the par value of 

the bond; 𝑅௠௡  is the recovery of par value of rating category 𝑛 in interval 𝑚; 𝑃௞ → ௗ௘௙௔௨௟௧௠௜௚ | ௡  is the probability of 

category 𝑘 migrating to default status in interval 𝑛; 𝑃௠ is the cumulative non-default probability of interval 𝑚; 𝑃௠௡ 
is the cumulative non-default probability of rating category 𝑛 in interval 𝑚; 𝑐𝑎𝑡௡௢௡ିௗ௘௙௔௨௟௧ are all non-default rating 
categories; 𝑟௧೘௥௙ is the risk-free spot rate associated with point in time 𝑚. 

෍  ௅
௠ୀଵ 𝑃௠ 𝑒ି ௥೟೘ೝ೑  ௧೘ 𝑃௖ௗ௦   =   ෍ ෍௖௔௧೙೚೙ష೏೐೑ೌೠ೗೟

௡ୀଵ
௃ಾ

௠ୀଵ 𝐼௠ିଵ௖௔௧೙ 𝑃௡ → ௗ௘௙௔௨௟௧௠௜௚ | ௠ 𝑒ି ௥೟೘ೝ೑  ௧೘ ሺ𝑃𝐴𝑅 −  𝑅௠௡ ሻ 
(13.1) 

1.5.8 Concluding Remarks 
A great emphasis of this section was the use of rating migration probabilities to obtain default probabilities. Also, bonds 
were valued according to their likely future ratings. Term structure uncertainty was also briefly considered. 
There is little to support the belief that ahistorical estimates should correspond with historical estimates. Ahistorical 
estimates are normally expected to be higher than historical estimates. This is also true for rating migration and default 
probabilities. Ahistorical rating migration matrices can be extracted from market prices, and it is expected to be more 
volatile than historical rating migration matrices, simply because uncertainty is removed from the latter. It is equally as 
difficult to believe that the market exclusively and solely consider historical rating migration matrices when valuing 
bonds ahistorically. 
The equations above extensively utilize credit ratings as measure or rating of credit quality. It thus refocuses attention 
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on credit rating accuracy and timeliness. It may also again stir up interest in credit rating substitutes or alternatives that 
categorize bonds according to credit quality independent of or different than credit rating agencies. 
2. Methodology 
The scope of the study is limited to reflecting on i) the propagation of bonds with different ratings, as implied by a 
rating migration matrix (equation 2), ii) the change in value, when expanding the recovery of par according to the rating 
upon default (equation 3), iii) the net change in future value due to rating migration (equation 7), and iv) valuing a bond 
according to its likely rating paths (equation 6). 
To evaluate equation 6 and 7, a bond is simulated by expanding a standard coupon and par over regular (bi-annual) 
coupon intervals, from 6 months to 10 years, calculating the value of the bond, and converting it to a yield rate. A 
standard coupon of 7.5 is used. 
For a number of reasons, the study utilizes the data from previous studies to examine the valuation equations. The 
risk-free and risk-bearing term structures are from Elton et al (2001) and Huang and Huang (2012). The forward rates 
required for equation 6 are extracted from these term structures. The rating migration matrix and recovery rates are from 
Elton et al (2001). Seven principal credit ratings are considered - [AAA, AA, A, BBB, BB, B, C]. 
Table 1 and 2 show the recovery rates and rating migration matrices utilized, respectively. Figure 1 shows the risk-free 
and risk-bearing term structures2. Figure 2 and 3 show the corresponding forward rates, referenced against the spot rate 
term structures. 
Table 1. Recovery rates as percentage of par (Elton et al, 2001) 

AAA AA A BBB BB B CCC
68.34 59.59 60.63 49.42 39.05 37.54 38.02
Table 2. Rating migration probability - Standard and Poor's (Elton et al, 2001) 

 AAA AA A BBB BB B CCC Default
AAA 90.788 8.291 0.716 0.102 0.102 0.000 0.000 0.000
AA 0.103 91.219 7.851 0.620 0.103 0.103 0.000 0.000
A 0.924 2.361 90.041 5.441 0.719 0.308 0.103 0.103
BBB 0.000 0.318 5.938 86.947 5.302 1.166 0.117 0.212
BB 0.000 0.110 0.659 7.692 80.549 8.791 0.989 1.209
B 0.000 0.114 0.227 0.454 6.470 82.747 4.086 5.902
CCC 0.228 0.000 0.228 1.251 2.275 12.856 60.637 22.526
Default 0.000 0.000 0.000 0.000 0.000 0.000 0.000 100.000
 
 
 
 

 

 

 

 

 
Figure 1. Risk-free and risk-bearing term structures 

                                                        
2 With regards to the legends of Figure 1, RF implies risk-free. 
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Figure 2. Risk-free and risk-bearing term structure forward rates 

 
 
 
 
 
 
 
 
 

 
Figure 3. Risk-free and risk-bearing term structure forward rates 

3. Analysis 

Figure 4 to 6 show the interval (yearly) default probability ℎ௡, cumulative default probability product ∑
m= 1

n− 1

(1− hm) hn , and 

cumulative non-default probability ∑
m= 1

M

(1− hm) , respectively. Figure 7 to 13 show the propensity 𝐼௠௖௔௧೙ of the rating 

categories over the intervals, when starting with a purely homogeneous rating category bond portfolio. Figure 7, 8, 9, 10, 
11, 12, 13 correspond to a homogeneous bond portfolio with rating category AAA, AA, A, BBB, BB, B, CCC, 
respectively. 
Figure 4 to 13 should demonstrate the significance and impact - the footprint - of rating migration probabilities - the 
rating migration matrix. These figures also depict the non-linear relationship between credit rating and credit quality. 
Figure 7 to 13 show that the rating migration matrix has a distinct influence on the quantity and quality of bonds 
remaining per interval. Figure 4 to 13 should also convey that default probability processes are dynamic and complex. 
In light of this, is questioned whether it would be possible to reflect on the implications of a rating migration matrix 
without simulation. Furthermore, the timeline of default may perhaps be split into two distinct cases: i) default as a 
rapid, unexpected case (AAA rated bonds defaulting, for example), versus ii) default as a prolonged process of 
worsening credit quality, manifested by a slow, but continued migration to lower  ratings. Evidently, default probability 
is dependent on time, and the dependency differs across the different rating categories. 
 



Applied Finance and Accounting                                          Vol. 5, No. 1; 2019 

33 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Interval default probability 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5. Interval cumulative default probability product 

 
 
 
 
 
 
 
 

 

 

 

Figure 6. Interval cumulative non-default probability 
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Figure 7. Interval propensity of a homogeneous portfolio with initial rating: AAA 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Interval propensity of a homogeneous portfolio with initial rating: AA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Interval propen sity of a homogeneous portfolio with initial rating: A 
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Figure 10. Interval propensity of a homogeneous portfolio with initial rating: BBB 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Interval propensity of a homogeneous portfolio with initial rating: BB 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Interval propensity of a homogeneous portfolio with initial rating: B 
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Figure 13. Interval propensity of a homogeneous portfolio with initial rating: CCC 

Figure 14 shows the net change in future value of the different ratings (equation 7). The value excludes value loss due to 
default, and is mainly influenced by interval rating propensity changes. The difference in spot rates between ratings also 
plays a significant role. The figure shows that lower ratings - CCC and B - are likely to experience an improvement in 
value, due to the bonds remaining in the portfolio being upgraded. Higher ratings are likely to experience a worsening 
in value, due to the bonds remaining in the portfolio worsening in terms of rating and thus credit quality. The value 
change increases with the time horizon, and is not really significant. However, it may point to the dynamics of the rating 
migration matrix - too high net value changes would imply an increase in default probabilities in subsequent intervals. 
Figure 15 depicts the difference in yield rate between equation 1 and 3 - expanding the recovery component to make it 
dependent on the rating at default. The figure reveals an insignificant change. This is likely due to the nature of the 
per-interval distribution of ratings at default, coupled with the difference in recovery rate per rating category. 
Figure 16 and 17 show the forward-rate based intensities of equation 6. These figures contain the same values and only 
differ in terms of representation. Figure 18 and 19 show the difference in yield between the yield values obtained from 
equation 6 and the corresponding input or reference spot rate. For the higher quality ratings - AAA to BBB - the 
modelled value greatly corresponds with market value, judging by the similarity in yield. For the AAA and AA ratings, 
the yield structure is below the reference structure, and for the A and BBB ratings, the yield structure is above the 
reference structure. For the lower quality ratings - BB to CCC - the modelled value is significantly lower than market 
value, also reflected by the yield spread. If the equation is deemed accurate, and the input forward rates are deemed 
accurate, it should point to a discrepancy between the rating migration matrix used, and that implied by market prices, 
and utilized by the market. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 14. Net change in future value 
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Figure 15. Yield change when basing recovery on credit rating on default 
 
 
 
 
 
 
 

 
 

 

 

 

 
 

Figure 16. Forward-rate based interval intensity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 17. Forward-rate based interval intensity 
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Figure 18. Modelled yield rate to reference spot rate (equation 6) 
 

 
 
 
 
 
 
 
 

Figure 19. Modelled yield rate to reference spot rate (equation 6) 
4. Conclusion 
Default probability term structures - as the product of Markov chain processes or simply rating migration matrices - are 
composites of interval rating category propensities or intensities and per-rating  migration to default probabilities. The 
default probabilities shape over intervals, particularly due to rating migration, and are thus interval - or time - dependent. 
Default probabilities of rating categories are not isolated from each other, but form composites across rating categories: 
the default probability of a rating category is not shaped only by the rating category's default probability and the rating 
category's rating migration matrix entry, in isolation of other rating categories' default probabilities and rating migration 
matrix entries, but in union therewith - in essence, the entire rating migration matrix. 
Bonds of different credit quality (ratings), with default probability, but no rating migration probability, are perhaps easy 
and easier to value, but, at the same time, may be a hypothetical and elementary case. Rating migration brings a unique 
dimension to default probabilities as processes. Firstly, it signals prolonged credit quality changes, which leads to 
changes in probability of default, and is contrasted with default, which is rapid or immediate credit quality termination. 
Secondly, as a delayed process it influences rating category propensities and default probabilities of subsequent 
intervals. Also, it technically links the default probabilities and processes of different credit ratings. The cost implication 
of rating migration should be fully considered. 
The implication of rating migration is that both terminating and intermediate interval rating category intensities are 
important - that rating migration estimates per interval should be accurate, as it influences subsequent default 
probability estimates. An accurate rating migration matrix would imply that both intermediate and terminating rating 
propensities are correctly estimated. The consequence is no potential for arbitrage between the option of keeping a 
(portfolio of) bond(s) and selling the (portfolio of) bond(s), for any interval. For correct valuation and valuation 
modelling each interval's default and non-default rating propensities should be accurate. Consequently, default 
probability estimates and bond value in general should be rather sensitive to rating migration probabilities. 
A bond valuation model was proposed that values a bond according to its likely rating paths - default as well as 
non-default. The results were satisfactory, particularly for higher quality ratings. With reference to the market, the 
model under-values lower quality ratings. This may very well be due to the rating migration matrix used. Alternatively, 
it may be the forward rates used to value the rating paths. The study extracted forward rates from market rates to value 
interval rating paths. Overall, the bond valuation model offers a method of triangulation - valuing bonds this way should 
essentially correspond to valuing a bond according to expected cash flows, when considering the probability of default. 
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The study utilized a rating migration matrix based on - calculated from - historical data. Historical data are free of 
uncertainty and should generally carry less (no) risk than (compared to) ahistorical data that are uncertain and risk-laden. 
Actual, perceived default probability should be higher than historically measured default probability, and historical 
estimates should demonstrate a tendency to under-value, and ahistorical estimates a tendency to over-value - only in 
ideal cases would the two meet. It should be possible to extract rating migration matrices from market prices, and a 
method to do so was delineated. 
Historical rating migration matrices face a number of hurdles. First, the accuracy of historical rating migration matrices 
can and should be evaluated, in order to determine the accuracy of conclusions drawn from them. This can be done 
through simulation, and noting the extent historical rating migration matrices can forecast interval rating category 
intensities. To knowledge, this has not been considered before. If conclusions drawn from such rating migration 
matrices are deemed accurate, because the rating migration matrices are deemed accurate, the rating migration matrices 
should also be able to accurately forecast a period's rating migrations, including default. 
Secondly, and perhaps more prominently, historical rating migration matrices need to overcome the historical-ahistorical 
dichotomy. With reference to the previous point, it is expected that historical rating migration matrices would fail to be 
ahistorically accurate - they would fail to be accurate when forward-looking or forward-applied. And even if they are 
ahistorically accurate, it can still be argued that they allow for little uncertainty. A basic consideration is how to include 
rating migration uncertainty into rating migration probabilities, and how to measure rating migration uncertainty. One 
answer is to simply increase the rating migration probabilities. From a different vantage point, historical rating 
migration matrices can be made sure (accurate) by including guarantees. The hypothetical use of options was briefly 
considered. The relative cost of such guarantees serves to support the historical-ahistorical pitfall and dilemma, and 
highlights that it is an area than needs consideration. 
Extracting ahistorical rating migration matrices from market prices may mean that significant volatility resides across 
such extracted ahistorical rating migration matrices. This too may have a number of implications to consider. It may 
support views regarding uncertainty in rating migration estimates, including default, and it may indicate that ahistorical 
rating migration matrices move and update more rapidly than historical rating migration matrices. This forms another 
point that valuation models that utilize historical rating migration matrices should consider. 
In general, rating migration based default probabilities demonstrate a term structure removed from interest rate term 
structures - some co-variance likely exists, but it is not complete. Economic outlooks may influence default 
probabilities via rating migration probabilities, and economic outlooks may influence rating migration probabilities just 
as well. This then also imply a unique (delayed) relationship between economic outlooks and default probability that 
should receive more attention. To incorporate economic outlooks into rating migration matrices, the rating migration 
matrix as a whole should likely be updated. 
Rating migration offers a more detailed default process that structural models may find difficult to reproduce, 
particularly through modelling. This may very well give reduced form models an advantage over structural models. 
Indirectly, a bond valuation model's accuracy should be related to its ability to forecast future ratings as proxies of credit 
quality. 
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