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Abstract

Climate change presents significant risks to the global economy and financial markets through both physical and
transition channels. This study examines the transmission of climate-related risks, measured by two news-based
indicators—the Physical Risk Index (PRI) and the Transition Risk Index (TRI)—to equity markets. Using the Diebold—
Yilmaz and Barun k—Kiehlik connectedness frameworks, we analyze three representative equity benchmarks: the S&P
500 (SP500), the iShares ESG MSCI KLD 400 Index (DSI), and the iShares Global Clean Energy Index (ICLN). The
empirical results show three main findings. First, both the PRI and TRI have relatively weak spillover effects on equity
markets but display strong mutual interactions, indicating interdependence between physical and transition risk
dimensions. Second, return spillovers are more prominent in the short term, while volatility spillovers dominate over
longer horizons, reflecting structural asymmetry in risk transmission. Third, major global shocks—including the 2011
Libyan conflict, the COVID-19 pandemic, and U.S. tariff shocks in 2018 and 2025—increase both return and volatility
spillovers. Overall, the findings indicate that volatility is the primary channel for long-term transmission of
climate-related uncertainty. Climate-related news, although not yet fully integrated into equity market dynamics, is
increasingly relevant for financial stability and the broader energy transition. Therefore, incorporating climate risk
considerations into financial market analysis and policy design is necessary.

Keywords: Climate risk, News-based indices (PRI, TRI), Spillover effects, Connectedness (Diebold-Yilmaz, Barun k—
Kfehlik), Volatility transmission

1. Introduction

Climate change is one of the most pressing challenges to the global economy and financial stability. Its effects are
typically categorized as physical risks, such as extreme weather events and rising sea levels, and transition risks, which
result from policy shifts, regulatory changes, and technological advancements. Both types of risk have become
increasingly relevant in shaping financial market dynamics. Recent global shocks—including the COVID-19 pandemic,
oil price fluctuations, and trade tensions during the Trump administration—have heightened market uncertainty and
intensified cross-market spillovers. Meanwhile, investors are placing greater emphasis on environmental, social, and
governance (ESG) factors, with the clean energy sector playing a central role in the transition to sustainable growth.

This study presents a new method for capturing climate-related risks by using two news-based indices: Physical Risk
Index (PRI) and the Transition Risk Index (TRI). These indices, constructed from newspaper coverage, measure the
level of public and investor attention to climate-related issues. Unlike previous research that mainly examined ESG
indices or green bonds (e.g., Mensi et al., 2022), this study analyses how climate-related discourse in the media can be
systematically quantified and connected to financial market dynamics. By measuring language patterns related to
climate risk, this research provides new insights into how public perceptions of climate risks are transmitted to market
behavior.

The motivation for this work is both academic and practical. Hartzmark and Sussman (2019) show that mutual funds
with low sustainability ratings experienced outflows exceeding USD 12 billion, while those with high ratings attracted
inflows of more than USD 24 billion after Morningstar introduced its sustainability rating. Firms that neglect
environmental risks tend to lose investor confidence, which undermines their long-term growth prospects.
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Understanding how environmental and climate-related risks affect financial markets can help create a virtuous cycle in
which investors reward responsible firms, thus advancing sustainable economic development. However, sustainability
includes more than environmental performance. Companies that do not uphold labor standards or human rights cannot
be considered genuinely sustainable, regardless of their environmental initiatives. Strong labor practices improve
product quality and consumer trust, while effective governance—through transparency, internal controls, and
accountability—reinforces the credibility of environmental and social commitments. Long-term responsible investment
therefore requires balanced performance across all three ESG dimensions.

Our empirical analysis uses advanced connectedness methodologies, specifically the Diebold—Yilmaz (2012, 2014)
spillover index framework and the Barun k—Kiehlik (2018) frequency-domain decomposition. These methods enable us
to disentangle the transmission of climate-related risks to financial markets across various time horizons and through
distinct channels of returns and volatilities. The main results show three key insights. First, the spillover effects of the
PRI and TRI on equity markets are relatively weak, in contrast to previous findings that highlight the roles of ESG
indices and green bonds. Second, return spillovers dominate in the short term, while volatility spillovers prevail in the
long term, indicating a structural asymmetry in transmission. Third, return spillovers display two major spikes—during
the 2011 Libyan conflict and the COVID-19 pandemic—whereas volatility spillovers show four peaks, associated with
the Libyan conflict, the 2018 tariff shocks, the COVID-19 pandemic, and the renewed tariff shocks in 2025.

This study contributes to the growing literature by demonstrating that news-based climate risk indices interact with
equity markets through both return and volatility channels, and by identifying volatility as the dominant mechanism for
transmitting long-term uncertainty.

The remainder of this paper is structured as follows. Section 2 reviews related literature. Section 3 outlines the
methodology, emphasizing the Diebold—Yilmaz and Barun k—Kiechlik frameworks. Section 4 describes the data. Section
5 presents the empirical results, including static and dynamic analyses. Section 6 concludes with key findings and
policy implications.

2. Literature Review

The COVID-19 pandemic, oil price fluctuations, and political developments, such as tariff policies under the Trump
administration, have significantly affected global financial markets. Research confirms that crises and geopolitical
shocks shape financial uncertainty and spillover transmission across asset classes (Ali et al., 2020; Baig et al., 2020;
Zhang, 2020a). These events increase volatility and systemic risk, as contagion spreads through increasingly
interconnected financial systems.

To capture market uncertainty, scholars have often used benchmark indicators such as the Chicago Board Options
Exchange Volatility Index (VIX) and the Economic Policy Uncertainty (EPU) index (Baker et al., 2016). During the
COVID-19 pandemic, new measures—most notably the Infectious Disease Equity Market \olatility (ID-EMV)
tracker—were introduced to quantify uncertainty caused by health crises (Bai et al., 2020). Using a time-
frequency-domain framework, Liu, Nakajima, and Hamori (2022) examined the spillover effects of news-based
economic uncertainty driven by COVID-19 on renewable energy stocks in the United States, Europe, and global
markets. They found that return spillovers were concentrated at higher frequencies, while volatility spillovers persisted
at lower frequencies, indicating that renewable energy markets were more sensitive to pandemic-related uncertainty
than during the Global Financial Crisis.

Recently, research has focused on sustainable finance indicators—including ESG stock indices, clean energy
benchmarks such as the iShares ESG MSCI KLD 400 Index (DSI), the iShares Global Clean Energy Index (ICLN), and
green bond indices—as key elements of financial connectedness and systemic risk (Kilig et al., 2022; Mensi et al.,
2022). Evidence generally indicates a strong interdependence between clean energy and conventional financial markets.
For example, Banerjee et al. (2024) found that green assets primarily transmit shocks, while brown assets mainly
receive them. Similarly, Ziadat et al. (2024) examined spillover dynamics between clean energy markets and global
stock indices, concluding that clean energy instruments can serve as effective diversification tools alongside traditional
benchmarks such as WTI and CSI300.

The broader role of ESG investment and green finance has been extensively examined. Zeng et al. (2025) reported that
large ESG indices (e.g., the S&P 500 ESG Index and the Dow Jones Sustainability World Index) and major technology
firms such as Microsoft acted as net risk transmitters, while the Green Bond Index and firms such as Apple primarily
served as net receivers. Mensi et al. (2022) found that green bonds and the S&P 500 (SP500) showed increased
connectedness during crises, although green bonds remained relatively less volatile under extreme conditions. Similarly,
Dogan et al. (2025) demonstrated an asymmetric relationship between green investments and international stock
markets, with environmental and sustainability indices functioning mainly as net transmitters and green bonds as net
receivers. Their analysis also showed that equity markets in the United States, the United Kingdom, Italy, Germany, and
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France acted as major transmitters of shocks, whereas China and Japan were the main recipients.

Other strands of literature have examined carbon risk and renewable energy dynamics. Ha et al. (2024) found that
carbon futures and renewable energy volatility alternated between transmitter and receiver roles before and after the
pandemic. Karkowska and Urjasz (2025) showed that geopolitical risk changes the transmission patterns of ESG indices,
with North American and developed European markets acting as dominant transmitters, while emerging European and
Asia—Pacific markets primarily absorb shocks. Together, these findings show that ESG and clean energy markets are
deeply integrated into global financial systems, with their transmission roles varying by crisis type, policy changes, and
regional characteristics.

Building on this research, the present study examines spillover dynamics among five key variables—DSI, ICLN, SP500,
PRI, and TRI—using the Diebold-Yilmaz (2012, 2014) and Barun k—Kfehlik (2018) frameworks. The objective is to
assess how sources of economic and geopolitical uncertainty, including the COVID-19 pandemic, oil price volatility,
and tariff shocks, affect clean energy and ESG-related equity markets. Following Dogan et al. (2025), who combined
these approaches to analyze green investment connectedness, this study highlights the importance of time—frequency
decomposition in identifying the asymmetric spillover patterns that characterize sustainable finance during periods of
global disruption.

3. Empirical Methods

To examine the interconnectedness between climate-related risks and equity markets, we analyze five time series: two
news-based climate risk indices—PRI and TRI—and three equity benchmarks, SP500, DSI, and ICLN. We employ the
spillover index framework developed by Diebold and Yilmaz (2014) to quantify the extent and direction of return and
volatility transmission among these variables.

Specifically, we estimate a vector autoregressive (VAR) model using daily log returns and compute the generalized
forecast error variance decomposition (GFEVD). This approach attributes the H-step—ahead forecast error variance of
each variable to shocks originating both from itself and from all other variables in the system, while remaining invariant
to variable ordering. The resulting variance decompositions allow us to compute total, directional, and net spillover
measures, thereby capturing how shocks propagate across climate and financial indicators.

To further understand the dynamics of interconnectedness across different time horizons, we adopt the Barun K—Kiehlik
(2018) frequency-domain methodology. This technique decomposes the overall spillover effects into frequency-specific
components, distinguishing short-, medium-, and long-term spillover behavior. Finally, to capture the time-varying
nature of market interactions, we apply a rolling-window estimation of the spillover measures throughout the sample
period, enabling us to track how the strength and direction of transmission evolve in response to major events and shifts
in market sentiment.

3.1 Diebold-Yilmaz Approach

We use the Diebold-Yilmaz approach to measure connectedness based on the forecast error variance decomposition
(FEVD) of a vector autoregression (VAR) model. For FEVD, see Pesaran and Shin (1998).

Let y, represents an N x 1 vector of daily log returns of equities and climate risk series at time t. We estimate an
n-variable VAR with p lags,

P
Ve = Z Dy 4+ &
i=1

and use the moving-average representation
ye = Y(L)g
& i.i.d.~(0,2)

where @ denotes the N X N coefficient matrices, €, is a white noise error vector with covariance matrix X, s,
representsan N X N impulse-response coefficient matrix corresponding to lag h.

For an H-step horizon, the generalized FEVD share of shocks in variable k that contribute to the H-step forecast-error
variance of variable j is
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where H is the forecast horizon, gy, is the kth diagonal element of the X, Hﬁ’c is the contribution of the variable k to
the variable j selected forecast horizon H.

Since generalized FEVD column sums need not equal one, we row-normalize
H
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=3N pH
=10k

05"
Z‘,’(":l@j;” = 1,2}}’,{:195{*’ =N
Total Connectedness Index (TCI) measures the overall level of spillovers in the system. It shows how much, on average,
shocks in one market contribute to the movements of other markets. A higher TCI means stronger overall
connectedness.

We then report connectedness by total spillovers, as an average off-diagonal share, and directional spillovers; FROM
others, TO others, NET spillovers (TO - FROM). All measures are reported in percent and indicate how strongly the N
series are connected in the time domain and directions in which shocks tend to affect.
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3.2 Barun k—Kiehlik Approach

Following the Barunk-Kiehlik methodology, we decompose time-domain spillovers into frequency-specific
components. We take the Fourier transform of the VAR impulse response to obtain the frequency response y(e™®)
defined as
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The generalized causation spectrum (f(w)) i is the share of variable j’s movement at frequency

(f(@))ji =

w € (—m,m) thatis due to shocks from variable k. It is order-invariant as the generalized FEVD idea shows.
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I;(w) measures how important each frequency is for variable j. We use it as a weight.
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We choose a band d = (a,b) and integrate the spectrum with the weight to get 6;,(d), the share of j explained by k
within that band.

B, (d)
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0, (d) can be converted into a share 6;,(d) by dividing by the total across all frequencies, and 6;,(d) measures the
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pairwise spillover from the kth variable to the jth variable at an arbitrary frequency band d which is now comparable.
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This equation builds To, From, and Net within each band as it compute directional TO spillovers on band d by
averaging 0 (d) across receivers at j # k. You can also get FROM and NET by band in the same way.

Summing short, medium and long run up equals the time-domain total. As they use the generalized decomposition
results are order invariant.

4, Data

This study investigates the spillover effects between market returns and climate-related risk indices. The analysis
focuses on three representative equity return series and two indices that quantify the physical and transition dimensions
of climate risk. The equity variables include the SP500, representing the broad U.S. market; DSI, capturing
ESG-oriented equities; and ICLN, reflecting climate-focused equities. The climate risk variables consist of the PRI and
TRI, both developed from news-based textual analysis. All analyses and visualizations were conducted in R
(https://www.r-project.org/).

The PRI measures unexpected shifts in media attention to physical risks such as extreme weather events, floods,
droughts, and rising sea levels, whereas the TRI captures surprises in media coverage of transition risks, including new
climate policies, carbon taxes, and clean energy technologies. These indices were constructed by researchers at
PolicyUncertainty.com  (https://policyuncertainty.com/Climate_Risk_Indexes.html)  based on climate-related
vocabularies derived from scientific texts.> The vocabularies were converted into numerical vectors using the term
frequency—inverse document frequency (tf—idf) approach, and cosine similarity was then employed to assess the
closeness of each news article to these climate-related vocabularies.? This process generates a “concern” series for both
physical and transition risks. The PRI and TRI represent the unexpected components of these concern series, indicating
days when climate risks received unusually high media attention. Accordingly, the two indices serve as timely measures
of daily shocks in public and investor attention to climate-related risks.®

The dataset covers the period from June 26, 2008, to June 30, 2025, beginning when ICLN data first become available.
The sample period spans major global events—including the Global Financial Crisis, U.S. trade tensions, and the
COVID-19 pandemic—thus capturing multiple episodes of heightened uncertainty. Missing observations in the original
series were addressed using forward-fill imputation, replacing missing values with the most recent available observation.
The final dataset comprises 4,456 daily observations, which were used to estimate the VAR models.*

To obtain volatility measures, we applied an Autoregressive Moving Average—Generalized Autoregressive Conditional
Heteroskedasticity (ARMA-GARCH) model to the return series of DSI, ICLN, and SP500, as well as to the two risk
indices. The lag orders were selected using the Akaike Information Criterion (AIC), and model adequacy was verified
through residual diagnostics based on the Ljung—Box test. The corresponding estimation results are summarized in
Appendix A.

Table 1. Variable description

Variable Data Data Source

DSl iShares ESG MSCI KLD 400 Index Yahoo Finance
(U.S. ESG equity index)

ICLN iShares Global Clean Energy Index Yahoo Finance
(Global clean-energy equity index)

SP500 U.S. large-cap market Index Yahoo Finance

PRI News-based Physical Climate Risk Index (hazards like extreme  PolicyUncertainty.com (Climate Risk
weather, sea-level rise) Indexes)

TRI News-based Transition Climate Risk Index (policies and PolicyUncertainty.com (Climate Risk
technology shifts for decarbonization) Indexes)

! See Bua, G., Kapp, D., Ramella, F., & Rognone, L. (2024).

2 The term frequency-inverse document frequency (tf-idf) method is a common text-mining technique. It assigns higher
weights to words that occur frequency in a given document but less often across all documents, capturing their relative
importance.

® For recent papers on modern language models with news in finance, see Zhu, L., Wu, H., & Wells, M. T. (2023) and
Zhang, Z., Xu, K., Qiao, Y., & Wilson, A. (2025).

* We also applied listwise deletion, removing any date with missing variables in either risk or return series, resulting in
4456 observations. The analysis results remained robust to alternative treatments of missing observations.
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Note: Stock market variables (DSI, ICLN, SP500) are obtained from Yahoo Finance via R and transformed into daily
log returns, computed as In (Pt/Pt-1). Climate risk indices (PRI, TRI) are downloaded from PolicyUncertainty.com
(Climate Risk Indexes).

Table 1 summarizes all variables and their corresponding data sources. In our empirical framework, the three equity
variables represent distinct segments of financial markets—broad market (SP500), ESG-focused (DSI), and clean
energy (ICLN)—whereas the two climate risk indices, PRI and TRI, capture different dimensions of climate-related
risks. This joint dataset enables an integrated analysis of cross-market and cross-risk spillovers. Unlike conventional
uncertainty measures such as the VIX or the Economic Policy Uncertainty (EPU) index, the PRI and TRI directly
reflect media-based attention to climate risks, making it possible to disentangle physical hazards from transition-related
concerns.

Specifically, the PRI quantifies the salience of physical climate hazards—including natural disasters, extreme weather,
sea-level rise, droughts, and heat waves—based on the frequency of related terms in newspaper articles. The TRI, by
contrast, captures transition risks by tracking the prevalence of policy and technological terms linked to decarbonization
processes, such as carbon taxes, regulatory shifts, and clean-energy innovation. Each day’s Reuters news coverage is
compared against climate-related vocabularies (physical and transition) using text-based similarity measures to generate
a “concern” score. The PRI and TRI are then defined as the innovations from an AR(1) process applied to these concern
series—that is, they represent the unexpected components of daily climate-related attention. Hence, a spike in the PRI
or TRI denotes days when physical or transition climate risks received unusually strong media focus.

All climate risk indices (PRI and TRI) were obtained from PolicyUncertainty.com (Climate Risk Indexes), while daily
equity prices for the SP500, DSI, and ICLN were collected from Yahoo Finance via R and converted into logarithmic
returns.

To assess spillovers across the general equity market and climate-sensitive sectors, we analyze three return series: the
SP500, DSI, and ICLN. The SP500 reflects the performance of large-cap U.S. firms, DSI represents a free-float market
capitalization index of U.S. firms with strong ESG characteristics, and ICLN tracks approximately 100 companies
engaged in clean energy production and technology.

Table 2 presents the descriptive statistics for equity and clean-energy returns (DSI_Return, ICLN_Return,
SP500_Return), their volatility proxies (DSI_Vol, ICLN_Vol, SP500_Vol), and the climate risk indices (PRI, TRI). The
mean returns are close to zero (ranging from —0.0002 to 0.0004), with ICLN Return exhibiting the highest dispersion
(Std. Dev. = 0.0205), while DSI_Return and SP500_Return show the lowest volatility (Std. Dev. = 0.0126). All three
return series display negative skewness (—0.46 to —0.55) and high excess kurtosis (around 15). The Jarque—Bera (JB)
statistics strongly reject normality (p = 0.000), confirming the presence of heavy left tails and extreme
movements—typical features of financial return distributions. Finally, the augmented Dickey—Fuller (ADF) test rejects
the null hypothesis of a unit root for all series, confirming stationarity.

The volatility series are strictly positive, exhibiting very small mean values on the order of 1074, but display pronounced
right skewness (approximately 6.7-7.5) and exceptionally high kurtosis (around 56-78). The Jarque—Bera (JB) test
rejects normality for all volatility proxies (p = 0.000), while the augmented Dickey—Fuller (ADF) test confirms
stationarity by rejecting the null of a unit root (p = 0.01).

For the climate risk indices, both PRI and TRI have slightly negative means (—0.0018 and —0.0011, respectively) and
standard deviations of 0.0208 and 0.0235—magnitudes comparable to those of equity return variability. Their positive
skewness (ranging from 0.75 to 0.96) and excess kurtosis (between 4.56 and 6.96) indicate episodic upward spikes in
public and policy attention to climate-related risks. As with the return and volatility series, both normality and unit-root
hypotheses are decisively rejected (JB p = 0.000; ADF p = 0.01).

Overall, the descriptive statistics reveal pervasive non-normality, heavy tails, and asymmetry across all variables. These
distributional properties underscore the necessity of employing econometric techniques that are robust to
heteroskedasticity and outliers. In particular, the spiky, heavy-tailed nature of the volatility and risk indices provides a
key motivation for our subsequent spillover analysis and frequency-domain decomposition. As will be shown,
cross-market volatility transmission remains relatively muted over short horizons but becomes dominant in the long run.
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Table 2. Summary Statistics

Variable Mean Std. Dev. Skewness Kurtosis JB Stat ADF Stat
Return

26703.038 —15.912

DSI_Return 0.0004 0.0126 —0.4604 14.9572 (0.000) (0.01)
20712.678 —12.269

ICLN_Return —0.0002 0.0205 —0.5540 13.5038 (0.000) (0.01)
30863.757 —15.996

SP500_Return 0.0004 0.0126 —0.4907 15.8557 (0.000) (0.01)

\olatility

51 Vol 1073897.055 —9.030

- 0.0002 0.0003 7.4560 77.5764 (0.000) (0.01)
LN Vol 560520.022 —6.612
- 0.0004 0.0008 6.6637 56.3042 (0.000) (0.01)
825158.657 —8.181

SP500_Vol 0.0002 0.0004 7.0559 68.1549 (0.000) (0.01)

Risk Index

866.825 —10.602

PRI —0.0018 0.0208 0.7478 4.5594 (0.000) (0.02)
3595.367 —9.696

TRI 0.0011 0.0235 0.9557 6.9637 (0.000) (0.01)

Note: The table reports descriptive statistics for returns (DSI_Return, ICLN_Return, SP500_Return), volatility proxies
(DSI_Vol, ICLN Vol, SP500_Vol), and risk indices (PRI, TRI). Returns are expressed in decimals. “Std. Dev.” is the
standard deviation; “Skewness” (<0/>0) indicates left/right-tail asymmetry; “Kurtosis” measures tail thickness (values
far above 3 imply heavy tails). “JB Stat” is the Jarque—Bera normality test; p-values are shown in parentheses below
each row. The JB test rejects normality for all series at conventional levels (p = 0.000). “ADF Stat” is the Augmented
Dickey-Fuller test; p-values are shown in parentheses below each row. The ADF test rejects the unit root for all series at
conventional levels. Volatility variables are strictly positive and extremely right-skewed with very high kurtosis,
consistent with volatility clustering. Return means are close to zero with negative skewness and large kurtosis-typical of
financial returns. PRI and TRI display positive skewness and elevated kurtosis, indicating episodic spikes in
policy/transition risk. All statistics are computed on the full sample; minor discrepancies reflect rounding.

5. Empirical Results

This section presents the empirical findings on the spillover effects between equity markets and climate risk indices.
Two complementary approaches are employed: the Diebold—Yilmaz (DY) method in the time domain and the Barun k-
Kftehlik (BK) method in the frequency domain. The lag length of the VAR models for both returns and volatilities is
determined using the Akaike Information Criterion (AIC). Using the generalized forecast error variance decomposition
(FEVD), the DY approach captures how shocks are transmitted across markets over time. The BK method further
decomposes these spillovers into three frequency bands: short term (1-5 days), medium term (6-20 days), and long
term (>21 days).

Dynamic spillovers are then estimated through a rolling-window framework. The baseline window length is set to 200
days, while alternative lengths (150 and 250 days) are used for robustness checks. Since the results remain consistent
across specifications, only the 200-day case (w = 200) is reported. Section 5.1 discusses the full-sample spillover results
in the time and frequency domains, while Section 5.2 summarizes the time-varying spillover dynamics.

5.1 Static Analysis

This subsection reports the spillover effects among index returns in both the time and frequency domains using the DY
and BK approaches. Table 3 displays the spillover matrices for five variables. The upper panel presents the DY
(Diebold-Yilmaz) results, while the lower panel provides frequency-specific results based on the BK (Barun k—Kiehlik)
decomposition. Each block lists the Total Connectedness Index (TCI) for its respective band (DY: 39.03; short term:
24.88; medium term: 9.71; long term: 4.44).

In each matrix, the rows represent the source markets and the columns represent the recipient markets. Each cell shows
the directional spillover (%) from the row market to the column market. The rightmost “From” column reports the total
contribution a market sends to others (off-diagonal row sum), while the bottom “To” row reports the total contribution a
market receives from others (off-diagonal column sum). The last row provides the “Net (= To — From)” measure, where
positive values indicate net transmitters and negative values indicate net receivers. Under the BK framework, analogous
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matrices and corresponding TCls are presented for each frequency band—short, medium, and long term—as indicated
in the table headings.

Over the full sample, the Total Connectedness Index (TCI) of 39.03 indicates a moderate level of interdependence
across markets. Based on the net spillover definition (Net = To — From), the SP500 (+4.94) and DSI (+3.39) act as net
transmitters, whereas ICLN (—8.64) is a clear net receiver. Including both the SP500 and DSI in the model helps
distinguish general market dynamics from ESG-specific behavior. When DSI diverges from SP500, it reflects
incremental influences unique to ESG-oriented equities. Both PRI (+0.07) and TRI (+0.24) appear largely neutral.
Bilaterally, the DSI«<>SP500 channel stands out (DSI—SP500 = 38.06; SP500—DSI = 37.54), indicating strong
comovement between these two indices.

Turning to the frequency decomposition, the short-term (1-5 days) TCI of 24.88 accounts for the majority of total
connectedness, confirming that spillovers are predominantly short-term in nature. In this frequency band, SP500 (+1.94)
and DSI (+1.78) are net transmitters, while ICLN (—3.99) and TRI (—0.91) are net receivers, and PRI (+1.18) is slightly
transmitter-leaning. In the medium term (6-20 days), the TCI declines to 9.71, with SP500 (+1.91) and DSI (+1.43)
remaining transmitters, and ICLN (—3.33) continuing as a receiver. At this horizon, TRI (+0.46) switches to a
transmitting role, while PRI (—0.47) becomes a receiver. In the long term (=21 days), the TCI further decreases to 4.44.
SP500 (+1.10) and DSI (+0.17) continue as net transmitters, ICLN (—1.33) and PRI (-0.61) act as receivers, and TRI
(+0.68) remains a transmitter. The sum across the three bands (24.88 + 9.71 + 4.44 = 39.03) aligns with the full-sample
TCI, validating the decomposition.

Overall, SP500 and DSI consistently serve as net transmitters of shocks, primarily through short-term channels, while
ICLN remains a persistent net receiver across all frequencies. Interestingly, the roles of TRI and PRI vary with the time
horizon—TRI behaves as a receiver in the short and medium term but becomes a transmitter in the long term, whereas
PRI exhibits the opposite pattern.

These results can be interpreted in two key ways. First, return spillovers are clearly dominated by short-term dynamics,
highlighting the value of the BK decomposition alongside the DY framework. While the DY approach effectively
captures the overall strength and direction of market spillovers, it does not distinguish between transitory and persistent
effects. The BK method addresses this limitation by decomposing spillovers into short-, medium-, and long-term
components using the Fourier transform of the VAR impulse response. The predominance of the short-term TCI implies
that index returns respond quickly to climate-related shocks and news, though these effects tend to dissipate rapidly. In
this sense, the BK framework provides more nuanced and temporally informative insights into financial connectedness
than the aggregate DY measure alone.

Table 3. Return Spillover Table

DY spillover results: TCI = 39.03

DSI_Return ICLN_Return  SP500_Return PRI TRI From
DSI_Return 41.61 20.13 38.06 0.12 0.08  58.39
ICLN_ Return 24.13 49.84 25.74 0.13 0.16  50.16
SP500_Return 37.54 21.22 41.01 0.15 0.08  58.99
PRI 0.06 0.05 0.08 86.15 13.67  13.86
TRI 0.05 0.12 0.05 13.53 86.24  13.75
To 61.78 4152 63.93 13.93 13.99 195.15

3.39 -8.64 4.94 0.07 0.24

Net(=To-From)

BK spillover results (Frequency 1-5 days): TCI = 24.88

DSI_Return ICLN_Return  SP500_Return PRI TRI From
DSI_ Return 27.71 12.91 25.02 0.09 0.07  38.09
ICLN_ Return 14.68 30.05 16.23 0.06 0.08  31.06
SP500_ Return 25.12 14.08 28.06 0.13 0.07  39.40
PRI 0.04 0.04 0.06 59.70 7.29 7.43
TRI 0.02 0.05 0.03 8.32 59.88 8.42
To 39.87 27.07 41.34 8.61 751  124.39

1.78 -3.99 1.94 1.18 -0.91

Net(=To-From)
BK spillover results (Frequency 6-20 days): TCI =9.71
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DSI_Return ~ ICLN_Return ~ SP500_Return PRI TRl From
DSI_Return 10.67 5.45 9.76 0.02 000  15.23
ICLN_ Return 7.17 14.75 6.97 0.03 002  14.19
SP500_Return 9.46 5.39 9.70 0.01 000  14.86
PRI 0.01 0.01 0.01 13.23 233 235
TRI 0.02 0.03 0.02 1.83 1153 1.90
To 16.66 10.86 16.77 1.88 2.36 4854
Net(=To-From) 1.43 -3.33 1.91 -0.47 0.46
BK spillover results (Frequency 21-infinity): TCl = 4.44
DSI_Return  ICLN_Return  SP500_Return PRI TRl From
DSI_Return 3.24 1.78 3.28 0.01 000  5.07
ICLN_Return 2.28 5.05 2.54 0.04 006 491
SP500_Return 2.95 1.75 3.25 0.01 001 472
PRI 0.01 0.00 0.00 13.23 405  4.06
TRI 0.01 0.04 0.00 3.38 1483 344
To 5.24 3.58 5.82 3.45 412 2221
0.17 -1.33 1.10 ~0.61 0.68

Net(=To-From)

Note: The table reports the directional spillover matrix (percent) for five variables. The upper panel presents
full-frequency results from the Diebold-Yilmaz (DY) framework, and the lower panel shows the Barun k—Kfehlik (BK)
frequency decomposition into short (1-5 days), medium (6-20 days), and long (>21 days) bands. Off-diagonal cells
report spillovers from row i to column j; diagonal entries are own contributions. The rightmost From column gives the
off-diagonal row sum (total sent by that market), and the bottom To row gives the off-diagonal column sum (total
received). Net (= To — From) is the difference between the two (positive = net transmitter; negative = net receiver).
Each block also reports the band-specific Total Connectedness Index (TCI): DY = 39.03; short = 24.88; medium = 9.71;
long = 4.44. Row totals are approximately 100% (subject to rounding). The sum of TCls across the three BK bands

approximately equals the DY TCI, with small differences due to rounding.
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Figure 1. Return-spillover heatmaps at the full frequency (DY) and by frequency bands (BK)
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Note: Each off-diagonal cell shows the share (%) of the forecast-error variance of the column market (To) explained by
shocks to the row market (From). Diagonal (own) contributions are left blank for readability. Numbers inside cells are
rounded to one decimal. A common color scale is used across panels to permit cross-band comparison. Total
Connectedness Index (TCI): DY = 39.03; BK short = 24.88 (1-5 days), BK medium = 9.71 (6-20 days), BK long = 4.44
(>21 days).

Second, the contrasting transmitter—receiver roles of DSI and ICLN are economically intuitive. DSI serves as a
benchmark ESG index composed mainly of large-cap U.S. firms such as NVIDIA Corporation, Microsoft Corporation,
and Alphabet Inc. These firms are highly liquid, broadly held, and exert substantial influence on global financial
markets, making DSI a natural transmitter of shocks. In contrast, ICLN is concentrated in renewable energy
companies—including First Solar, Inc., Vestas Wind Systems A/S, and Iberdrola S.A.—that are more specialized and
sensitive to fluctuations in capital flows and sector-specific shocks. Rather than driving broader markets, ICLN tends to
respond to them. The difference in index composition (approximately 400 firms for DSI versus about 100 for ICLN)
and geographic scope (U.S.-focused versus global) further reinforces these contrasting roles. Hence, our empirical
results align with the expectation that DSI operates as a transmitter, while ICLN functions as a receiver across different
horizons.

Figure 1 visualizes the directional return spillovers using generalized FEVD at both the aggregate (DY) and
frequency-specific (BK) levels. The figure confirms a moderate overall degree of connectedness (TCI = 39.03), with
spillovers concentrated in high-frequency movements: the short-term band accounts for roughly 63.7% of total
connectedness (24.88 / 39.03), the medium-term band for 24.9%, and the long-term band for 11.4%. Equity markets
(DSI_Return and SP500_Return) exhibit strong bilateral spillovers, with large, reciprocal flows (e.g., DSI — SP500 =
37.5%; SP500 — DSI =38.1%). ICLN_Return consistently acts as a net receiver across frequency bands (negative Net
values), while DSI_Return and SP500_Return behave as net transmitters (positive Net values).

By contrast, PRI and TRI interact only weakly with equity markets but display a strong two-way linkage with each
other (=13-14% in the DY panel), with near-zero net effects. The BK decomposition shows that these directional
patterns remain stable across horizons, although the magnitude of spillovers declines from short to long horizons.

Table 4 reports the generalized FEVD-based directional spillovers among DSI_Vol, ICLN_Vol, SP500_Vol, PRI, and
TRI. The full-frequency Diebold-Yilmaz (DY) results indicate an overall connectedness of approximately 41% (TClI,
computed as the off-diagonal sum divided by the number of variables). Volatility transmission is concentrated within
the equity and clean-energy block: SP500_Vol receives the largest inflows (To = 77.26), followed by DSI_Vol (65.06),
while ICLN Vol emerges as the only significant net receiver (Net = —28.60). In contrast, the policy and transition
indices remain peripheral to the equity complex and mainly interact with each other (PRI — TRI = 13.53; TRl —
PRI = 13.41), resulting in near-zero net effects for PRI (—=0.05) and a small net receiver role for TRI (+0.77). Overall,
SP500_Vol (+19.60) and DSI_Vol (+8.28) act as the dominant net transmitters of volatility.

Turning to the frequency decomposition, the Barun kK—Kiehlik (BK) panels reveal that connectedness is almost entirely
a low-frequency phenomenon. At the short horizon (1-5 days), the TCl is only 0.12%, and all cross-market linkages are
economically negligible, aside from a faint PRI<TRI interaction (TRI — PRI = 0.30; PRI — TRI = 0.25). At the
medium horizon (6-20 days), the TCI rises to 4.03%, with transmission largely confined to the policy/transition risk
pair: TRI acts as a net receiver (Net = —0.95), and PRI as a net transmitter (+0.57), while equity and clean-energy
volatilities remain largely decoupled. At the long horizon (> 21 days), the TCI increases sharply to 36.96%—accounting
for about 90% of total connectedness—and the structure observed in the DY panel fully materializes. A dense,
bidirectional network emerges among ICLN_Vol, DSI_Vol, and SP500_Vol, with ICLN_Vol remaining the dominant
receiver (Net = —29.29) and SP500 Vol (+19.76) and DSI Vol (+8.42) acting as the main transmitters. PRI and TRI
continue to exhibit modest bilateral links (PRI — TRI = 4.69; TRI — PRI = 3.83) and only weak ties to equity
markets.

Volatility spillovers across these markets are minimal at high frequencies, become modest at medium
horizons—primarily within the policy and transition risk pair—and dominate at long horizons within the equity—
clean-energy cluster. This pattern, consistent with the network visualizations, underscores that slower-moving,
structural forces rather than short-lived shocks drive the cross-market transmission of volatility in our sample.
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Table 4. Volatility Spillover Table

DY spillover results: TCI =

DSI Vol ICLN_Vol SP500 Vol PRI TRI From
DSI_\ol 43.22 16.08 40.27 0.09 0.34 56.78
ICLN_Vol 25.97 36.62 36.84 0.17 0.39 63.37
SP500_\ol 38.8 18.42 42.34 0.09 0.35 57.66
PRI 0.16 0.07 0.05 86.2 13.53 13.81
TRI 0.13 0.2 0.1 13.41 86.17 13.84
To 65.06 34.77 77.26 13.76 14.61 205.46
Net(=To-From) 8.28 -28.6 19.6 -0.05 0.77
BK spillover results (Frequency 1-5 days): TCl = 0.12

DSI Vol ICLN_Vol SP500 Vol PRI TRI From
DSI_Vol 0.02 0.01 0.01 0.00 0.00 0.02
ICLN_ Vol 0.00 0.00 0.00 0.00 0.00 0.00
SP500_\ol 0.02 0.01 0.03 0.00 0.00 0.03
PRI 0.00 0.00 0.00 2.95 0.25 0.25
TRI 0.01 0.00 0.01 0.30 3.17 0.32
To 0.03 0.02 0.02 0.30 0.25 0.62
Net(=To—From) 0.01 0.02 -0.01 0.05 -0.07
BK spillover results (Frequency 6-20 days): TCI = 4.03

DSI_Vol ICLN_Vol SP500_\ol PRI TRI From
DSI_Vol 0.88 0.27 0.67 0.00 0.00 0.95
ICLN_Vol 0.03 0.13 0.02 0.00 0.00 0.06
SP500_ Vol 0.61 0.28 0.87 0.00 0.00 0.90
PRI 0.07 0.04 0.02 66.09 8.59 8.72
TRI 0.07 0.12 0.07 9.28 64.65 9.54
To 0.77 0.72 0.79 9.29 8.59 20.16
Net(=To—From) -0.17 0.66 -0.12 0.57 -0.95
BK spillover results (Frequency 21-infinity): TCI = 36.96

DSI_Vol ICLN_Vol SP500_\ol PRI TRI From
DSI_\ol 42.29 15.84 39.59 0.08 0.34 55.85
ICLN_ Vol 25.98 36.42 36.85 0.17 0.39 63.39
SP500_\ol 38.15 18.16 41.44 0.08 0.34 56.73
PRI 0.09 0.03 0.03 17.15 4.69 4.84
TRI 0.05 0.07 0.02 3.83 18.35 3.97
To 64.27 34.10 76.49 4.16 5.77 184.78
Net(=To—From) 8.42 -29.29 19.76 -0.68 1.80

Note: The table reports the directional spillover matrix (percent) for five variables. The upper panel presents
full-frequency results from the Diebold-Yilmaz (DY) framework, and the lower panel shows the Barun k—Kiehlik (BK)
frequency decomposition into short (1-5 days), medium (6-20 days), and long (>21 days) bands. Off-diagonal cells
report spillovers from row i to column j; diagonal entries are own contributions. The rightmost From column gives the
off-diagonal row sum (total sent by that market), and the bottom To row gives the off-diagonal column sum (total
received). Net (= To — From) is the difference between the two (positive = net transmitter; negative = net receiver).
Each block also reports the band-specific Total Connectedness Index (TCI): DY = 41.1; short = 0.12; medium = 4.03;
long = 36.96. Row totals are approximately 100% (subject to rounding). The sum of TClIs across the three BK bands
approximately equals the DY TCI, with small differences due to rounding. Both datasets, listwise deletion and
forward-fill, can generate the similar table.
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Figure 2. Volatility-spillover heatmaps at the full frequency (DY) and by frequency bands (BK)

Note: Each off-diagonal cell shows the share (%) of the forecast-error variance of the column market (To) explained by
shocks to the row market (From). Diagonal (own) contributions are left blank for readability. Numbers inside cells are
rounded to one decimal. A common color scale is used across panels to permit cross-band comparison. Total
Connectedness Index (TCI): DY = 41.09; BK short = 0.12 (1-5 days), BK medium = 4.03 (6-20 days), BK long = 36.96
(>21 days).

These findings highlight two key contrasts with the return-based results. First, volatility spillovers are predominantly a
long-term phenomenon, in sharp contrast to return spillovers that are short-term and event-driven. This structural
difference suggests that return connectedness reacts quickly to new information, while volatility connectedness reflects
deeper and more persistent sources of uncertainty. Second, the BK decomposition reveals virtually no cross-market
linkages at short horizons, limited interactions at medium horizons, and a well-defined, dense network only at long
horizons. These results underscore the importance of frequency-specific analysis—without the BK framework, the
long-run dominance of volatility spillovers would remain obscured within the aggregate DY measure.

Figure 2 visualizes the directional volatility spillovers based on the generalized FEVD at both the aggregate (DY) and
frequency-specific (BK) levels. In the DY panel, equity volatilities (DSI_Vol, ICLN_Vol, SP500 Vol) are tightly
interconnected—for example, DSI — ICLN = 26.0%, DSI — SP500 = 38.8%, ICLN — DSI = 16.1%, ICLN —
SP500 = 18.4%, SP500 — DSI = 40.3%, and SP500 — ICLN = 36.8%—with the SP500 acting as the relatively
stronger transmitter.

By contrast, the risk indices (PRI and TRI) form a distinct and self-contained block, displaying sizable bilateral linkages
(PRI — TRI = 13.4%; TRI — PRI = 13.5%) but negligible connections with equity volatilities (mostly within the
0.0-0.4% range).

The BK decomposition reveals virtually no short-term transmission, moderate medium-term effects concentrated within
the PRI-TRI pair (8.6-9.3%), and pronounced long-term spillovers that closely mirror the DY pattern—for instance, DSI
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— ICLN = 26.0%, DSI — SP500 = 38.2%, ICLN — DSI = 15.8%, ICLN — SP500 = 18.2%, SP500 — DSI = 39.6%, and
SP500 — ICLN = 36.9%.

Overall, volatility shocks propagate slowly and persistently across markets, with long-horizon linkages dominating both
among equities and within the PRI-TRI pair. This suggests that while short-horizon diversification remains largely
effective, long-horizon risk management and hedging strategies should account for substantial and asymmetric volatility
spillovers.

5.2 Dynamic Analysis

It is well established that both returns and volatilities evolve over time, and that market connectedness tends to intensify
during periods of financial stress. To capture these dynamics, we apply a rolling-window approach to estimate the
time-varying Total Connectedness Index (TCI). The results reported below are based on a 200-day rolling window,
though the findings remain robust when alternative window sizes of 150 and 250 days are employed.

Figure 3 illustrates the time-varying TCI of returns obtained from the Diebold—Yilmaz framework. The TCI fluctuates
within a range of approximately 35-50% for most of the sample period but exhibits two distinct spikes. The first occurs
around mid-2011, corresponding to the Libyan civil war, which sharply curtailed oil supply and pushed crude oil prices
above USD 110 per barrel in the spring before retreating to around USD 90 by August. The second—and more
pronounced—spike appears at the onset of the COVID-19 pandemic, when global equity markets declined abruptly,
volatility indices such as the VIX surged, and overall uncertainty reached unprecedented levels.

Taken together, these results indicate that return spillovers are largely event-driven and transitory, with sharp increases
in connectedness observed during major crises such as the 2011 oil shock and the 2020 COVID-19 pandemic.

Figure 4 displays the time-varying connectedness of returns based on the Barunk-Kiehlik (BK) frequency
decomposition. The results clearly show that spillovers are predominantly driven by short-term dynamics. The
short-term component (orange line) accounts for the largest share of total connectedness, while the medium-term
component (green line) plays a secondary role, and the long-term component (blue line) remains consistently subdued.

Total Connectedness Index (Window Size = 200)

TCI (%)

Date

Figure 3. Time-Varying Total Connectedness Index of Returns (DY Approach)

Note: The figure shows the rolling Total Connectedness Index (TCI, %) computed within the Diebold-Yilmaz
Framework using the generalized FEVD. Estimates are obtained from a VAR on the volatility of daily returns (lag
length selected by AIC; forecast horizon H = 50) with rolling windows of w = 200. Higher values indicate stronger
cross-market connectedness.
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Total Connectedness Index (BK Approach, Window Size = 200)
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Figure 4. Time-Varying Total Connectedness Index of Returns (BK Approach)

Note: The figure shows the rolling Total Connectedness Index (TCI, %) by Barunk—Kfehlik frequency bands,
computed from a VAR on daily returns (lag length selected by AIC; forecast horizon H=50) using the generalized
FEVD. Bands are defined as short (1-5 days), medium (6-20 days), and long (> 21 days). At each date, the sum across
the three bands equals the total TCI (up to rounding); higher values indicate stronger cross-market connectedness.

TCI (%)

Total Connectedness Index (Window Size = 200)
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Figure 5. Time-Varying Total Connectedness Index of Volatility (DY Approach)

Note: The figure shows the rolling Total Connectedness Index (TCI, %) computed within the Diebold—Yilmaz
framework using the generalized FEVD. Estimates are obtained from a VAR on the volatility of daily returns (lag
length selected by AIC; forecast horizon H = 50) with rolling windows of w = 200. Higher values indicate stronger

cross-market connectedness.
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Total Connectedness Index (BK Approach, Window Size = 200)
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Figure 6. Time-Varying Total Connectedness Index of Volatility (BK Approach)

Note: The figure shows the rolling Total Connectedness Index (TCI, %) by Barun k—Kfehlik frequency bands,
computed from a VAR on the volatility of daily returns (lag length selected by AIC; forecast horizon H=50) using the
generalized FEVD. Bands are defined as short (1-5 days), medium (6-20 days), and long (> 21 days). At each date, the
sum across the three bands equals the total TCI (up to rounding); higher values indicate stronger cross-market
connectedness.

Two major spikes emerge in 2011 and 2020. In both episodes, the short-term component rises most sharply, confirming
that returns respond immediately to sudden shocks. The medium-term component increases modestly during crises, but
its magnitude is far smaller than that of the short-term component. The long-term element remains relatively flat
throughout the sample period.

Overall, these findings suggest that return spillovers are primarily a short-term phenomenon. Returns react rapidly to
climate-related news and global shocks, reflecting high market liquidity and the quick adjustment of investor sentiment.

Figure 5 presents the time-varying connectedness of volatilities using the Diebold-Yilmaz (DY) framework. Compared
with returns, the volatility-based TCI remains higher on average (around 50%) and exhibits four distinct spikes
corresponding to major global events: the 2011 Libyan civil war and European debt crisis, the 2018 U.S. trade policy
shocks (tariffs on steel, aluminum, and Chinese imports), the COVID-19 pandemic in 2020, and renewed U.S. trade
measures in 2025.

Unlike return spillovers, which are concentrated in the short term, volatility spillovers are more persistent and primarily
reflect long-run structural factors. They rise not only in response to short-lived financial shocks but also during broader
geopolitical and policy disruptions.

For comparison with earlier figures, the 2011 oil price shock and the 2020 pandemic have already been discussed in
Figure 3. Here, we emphasize the two tariff-related episodes. In March 2018, the United States imposed tariffs of 25%
on steel and 10% on aluminum, citing national security concerns, while temporarily exempting certain countries such as
Canada and Mexico. Later that month, the U.S. announced tariffs on approximately USD 60 billion of Chinese goods in
response to alleged unfair practices in technology and intellectual property. Both measures generated substantial
uncertainty in global trade and financial markets, as reflected in the spike in volatility connectedness. Finally, the 2025
episode shows another pronounced increase linked to renewed tariff measures, again contributing to elevated volatility
transmission across markets.

Figure 6 illustrates the frequency decomposition of volatility connectedness obtained from the BK method. In contrast
to returns, where spillovers are dominated by the short term, volatility spillovers are largely driven by the long term.
The blue line (long term) is clearly dominant, and nearly all spikes occur in this band. The green line (medium term)
exhibits moderate increases during crises, whereas the red line (short term) remains close to zero throughout.

This pattern suggests that volatility spillovers are primarily shaped by persistent, structural forces such as monetary
policy shifts, trade disputes, and geopolitical tensions. Short-term shocks exert minimal influence, while long-term
movements capture enduring forms of systemic risk. Most of the major spikes in 2011 (oil price shock and Libyan
conflict), 2018 (U.S. tariffs and trade war), 2020 (COVID-19 pandemic), and 2025 (renewed tariff measures) appear in
the long-term component. Although short-term elements show limited responses—mainly to oil and pandemic
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shocks—the medium- and long-term components capture all four episodes, underscoring their role in propagating
persistent uncertainty.

Taken together, the contrast with returns is striking. Return spillovers are short-lived and event-driven, whereas
volatility spillovers are long-lasting and rooted in structural uncertainty. While the DY framework captures the overall
level of interdependence, the BK decomposition reveals that volatility connectedness emerges predominantly at longer
horizons, exhibiting a distinct “long-term bias” relative to return spillover. (The time variation in the net spillovers for
returns and volatilities is presented in Appendix B.)

6. Discussion

Our findings provide several insights into the transmission mechanisms of climate-related risks across financial markets.
Unlike previous studies that emphasize strong spillovers from ESG indices and green finance to broader markets, we
find that the news-based climate risk indices—PRI and TRI—show only limited interaction with equity markets. This
indicates that media-driven attention to climate risks has not yet been fully reflected in equity spillover dynamics. This
distinction does not contradict earlier evidence but instead highlights a difference in timing and integration: sentiment
related to physical and transition risks, as measured by news analytics, may spread more gradually through financial
systems than asset-based sustainability measures, such as ESG indices or green factor portfolios, which are already
incorporated into institutional investment strategies.

Another key contribution of our analysis is the distinction between return and volatility transmission channels. The
predominance of short-term return spillovers indicates rapid, event-driven responses to shocks—whether from climate
events or geopolitical tensions—aligning with the view that equity markets react quickly but often only temporarily to
new information. In contrast, the strong long-term dominance of volatility spillovers suggests that deeper uncertainty
persists, reflecting the gradual accumulation of structural risks. This asymmetry supports the argument that
volatility-based connectedness offers a more reliable perspective for identifying systemic and policy-induced
uncertainty than return-based measures alone.

Finally, the heterogeneous roles of DSI and ICLN—where DSI consistently acts as a net transmitter of shocks and
ICLN serves as a net receiver—highlight the importance of distinguishing between broad ESG indices and specialized
clean energy benchmarks. DSI’s larger market capitalization, higher liquidity, and closer integration with mainstream
financial flows likely explain its function as an information source. In contrast, ICLN’s narrower sectoral focus and
greater sensitivity to capital inflows make it more reactive to external shocks. These differences indicate that
climate-aligned investment vehicles are not homogeneous; their spillover dynamics depend on factors such as index
composition, market depth, and investor base characteristics. Future research should examine these aspects more
explicitly.

7. Concluding Remarks

This study examined the spillover effects of economic uncertainty between equity markets—represented by the SP500,
DSI, and ICLN—and news-based climate risk indices, PRI and TRI, across time and frequency domains using the
Diebold-Yilmaz (DY) and Barun k - Kiehlik (BK) frameworks. By using PRI and TRI as proxies for climate-related
uncertainty and combining them with three key equity benchmarks representing the U.S. large-cap, ESG-focused, and
clean energy markets, we analyzed the magnitude and direction of spillovers between climate risk attention and
financial market dynamics. The rolling-window approach enabled us to capture time-varying relationships during major
global episodes, such as the Libyan conflict, U.S. tariff shocks, and the COVID-19 pandemic.

First, PRI and TRI exert only limited influence on equity spillovers. This finding contrasts with previous studies that
emphasized strong interconnectedness between ESG indices, green finance, and the broader market (Zeng et al., 2025;
Mensi et al., 2022; Dogan et al., 2025). In our framework, the two climate risk indices primarily interacted with each
other rather than with equities, suggesting that news-based measures of physical and transition risks have not yet been
fully priced into equity markets. This difference indicates that sentiment extracted from textual analysis evolves more
gradually than financial indicators based on ESG or clean energy portfolios already integrated into institutional
investment strategies.

Second, our results reveal a clear asymmetry between return and volatility spillovers across time horizons. Short-term
spillovers are dominated by returns, indicating that equity markets respond quickly but only temporarily to shocks. In
contrast, long-term spillovers are driven by volatilities, reflecting deeper and more persistent uncertainty related to
structural or policy risks. This pattern supports earlier evidence on time—frequency asymmetry (Dogan et al., 2025) and
reinforces the view that volatility-based connectedness offers a more comprehensive measure of systemic uncertainty
than returns alone.

Third, the time-varying analysis of returns identified two significant spikes: one during the 2011 Libyan conflict and
related oil price surge, and a larger spike at the onset of the COVID-19 pandemic in 2020. These findings indicate that
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return spillovers are strongly event-driven and typically dissipate rapidly after crises end. This observation is consistent
with broader literature showing that market connectedness increases sharply during periods of acute stress, then
stabilizes (Mensi et al., 2022).

Fourth, the dynamic volatility analysis identified four major episodes of heightened spillovers: the 2011 Libyan conflict,
the 2018 U.S. tariff shocks, the COVID-19 crisis in 2020, and renewed tariff shocks in 2025. Compared with returns,
volatility spillovers showed more frequent and persistent spikes, highlighting volatility’s central role as the main
channel for long-term uncertainty transmission. Unlike earlier studies that emphasized return spillovers, these findings
indicate a structural shift toward volatility-driven contagion during global crises.

Taken together, these results indicate that return spillovers reflect short-lived, event-driven reactions, whereas volatility
spillovers represent deeper and more persistent aspects of financial uncertainty.

Beyond their technical implications, these findings contribute to the broader discourse on sustainable finance and
climate-related market dynamics. By integrating news-based climate risk indices with ESG and clean energy
benchmarks, this study connects social awareness with financial market responses. Because PRI and TRI are derived
from textual data, they capture real-time shifts in public attention, indicating that investor sentiment is influenced by
both economic fundamentals and societal concern over environmental risks. The limited integration of these climate
risk measures into equity spillovers suggests that financial markets continue to underreact to climate-related news—a
gap that may narrow as sustainability considerations become more embedded in global investment practices.

From a policy and investment perspective, the dominance of volatility spillovers highlights the importance of long-term
risk management strategies aimed at mitigating persistent uncertainty. Reducing climate risks through effective policies
and transparent transition frameworks can decrease volatility and promote greater market stability, thereby supporting
long-term economic resilience.

Finally, several avenues for future research remain. Although this study examined spillovers in returns and volatilities,
recent studies have begun to examine higher-order moments, such as skewness and kurtosis (He and Hamori, 2021; He
and Hamori, 2024). Extending the current framework to include these higher-moment dynamics would provide a deeper
understanding of how climate and financial uncertainties propagate across markets and over time.
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Appendix A
Results of ARMA model
Variable ARMA - GARCH JB test LB test LB2 test

DSI_Return ARMA(1,4)
-GARCH(1,1) 941.630 (0.000) 8.777 (0.553) 8.390 (0.591)

ICLN_Return ARMAC(5,0)
-GARCH(1,1) 575.917 (0.000) 5.315 (0.869) 8.885 (0.543)

SP500_Return ARMAC(1,0)
-GARCH(1,1) 1158.657 (0.000) 8.789 (0.552) 7.483 (0.679)

Note: ARMA-GARCH indicates the selected orders of the ARMA and GARCH components of the model. JB test
reports the Jarque—Bera test statistic and its corresponding p-value. LB test reports the Ljung—Box test statistic for
residuals and its corresponding p-value. LB2 test reports the Ljung—Box test statistic for the squared residuals and its
corresponding p-value.

Appendix B

NET Connectedness by Variable (Window Size = 200)
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Figure B1. Time-Varying Net Connectedness Index of Returns (DY Approach)
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NET Connectedness by Variable (Window Size =200)
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Figure B2. Time-Varying Net Connectedness Index of Returns (BK Approach)

NET Connectedness by Variable (Window Size = 200)
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Figure B3. Time-Varying Net Connectedness Index of Volatilities (DY Approach)
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NET Connectedness by Variable (Window Size =200)
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Figure B4. Time-Varying Net Connectedness Index of Volatilities (BK Approach)
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