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Abstract 

Climate change presents significant risks to the global economy and financial markets through both physical and 

transition channels. This study examines the transmission of climate-related risks, measured by two news-based 

indicators—the Physical Risk Index (PRI) and the Transition Risk Index (TRI)—to equity markets. Using the Diebold–

Yilmaz and Baruník–Křehlík connectedness frameworks, we analyze three representative equity benchmarks: the S&P 

500 (SP500), the iShares ESG MSCI KLD 400 Index (DSI), and the iShares Global Clean Energy Index (ICLN). The 

empirical results show three main findings. First, both the PRI and TRI have relatively weak spillover effects on equity 

markets but display strong mutual interactions, indicating interdependence between physical and transition risk 

dimensions. Second, return spillovers are more prominent in the short term, while volatility spillovers dominate over 

longer horizons, reflecting structural asymmetry in risk transmission. Third, major global shocks—including the 2011 

Libyan conflict, the COVID-19 pandemic, and U.S. tariff shocks in 2018 and 2025—increase both return and volatility 

spillovers. Overall, the findings indicate that volatility is the primary channel for long-term transmission of 

climate-related uncertainty. Climate-related news, although not yet fully integrated into equity market dynamics, is 

increasingly relevant for financial stability and the broader energy transition. Therefore, incorporating climate risk 

considerations into financial market analysis and policy design is necessary. 

Keywords: Climate risk, News-based indices (PRI, TRI), Spillover effects, Connectedness (Diebold–Yilmaz, Baruník–

Křehlík), Volatility transmission 

1. Introduction  

Climate change is one of the most pressing challenges to the global economy and financial stability. Its effects are 

typically categorized as physical risks, such as extreme weather events and rising sea levels, and transition risks, which 

result from policy shifts, regulatory changes, and technological advancements. Both types of risk have become 

increasingly relevant in shaping financial market dynamics. Recent global shocks—including the COVID-19 pandemic, 

oil price fluctuations, and trade tensions during the Trump administration—have heightened market uncertainty and 

intensified cross-market spillovers. Meanwhile, investors are placing greater emphasis on environmental, social, and 

governance (ESG) factors, with the clean energy sector playing a central role in the transition to sustainable growth. 

This study presents a new method for capturing climate-related risks by using two news-based indices: Physical Risk 

Index (PRI) and the Transition Risk Index (TRI). These indices, constructed from newspaper coverage, measure the 

level of public and investor attention to climate-related issues. Unlike previous research that mainly examined ESG 

indices or green bonds (e.g., Mensi et al., 2022), this study analyses how climate-related discourse in the media can be 

systematically quantified and connected to financial market dynamics. By measuring language patterns related to 

climate risk, this research provides new insights into how public perceptions of climate risks are transmitted to market 

behavior. 

The motivation for this work is both academic and practical. Hartzmark and Sussman (2019) show that mutual funds 

with low sustainability ratings experienced outflows exceeding USD 12 billion, while those with high ratings attracted 

inflows of more than USD 24 billion after Morningstar introduced its sustainability rating. Firms that neglect 

environmental risks tend to lose investor confidence, which undermines their long-term growth prospects. 
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Understanding how environmental and climate-related risks affect financial markets can help create a virtuous cycle in 

which investors reward responsible firms, thus advancing sustainable economic development. However, sustainability 

includes more than environmental performance. Companies that do not uphold labor standards or human rights cannot 

be considered genuinely sustainable, regardless of their environmental initiatives. Strong labor practices improve 

product quality and consumer trust, while effective governance—through transparency, internal controls, and 

accountability—reinforces the credibility of environmental and social commitments. Long-term responsible investment 

therefore requires balanced performance across all three ESG dimensions. 

Our empirical analysis uses advanced connectedness methodologies, specifically the Diebold–Yilmaz (2012, 2014) 

spillover index framework and the Baruník–Křehlík (2018) frequency-domain decomposition. These methods enable us 

to disentangle the transmission of climate-related risks to financial markets across various time horizons and through 

distinct channels of returns and volatilities. The main results show three key insights. First, the spillover effects of the 

PRI and TRI on equity markets are relatively weak, in contrast to previous findings that highlight the roles of ESG 

indices and green bonds. Second, return spillovers dominate in the short term, while volatility spillovers prevail in the 

long term, indicating a structural asymmetry in transmission. Third, return spillovers display two major spikes—during 

the 2011 Libyan conflict and the COVID-19 pandemic—whereas volatility spillovers show four peaks, associated with 

the Libyan conflict, the 2018 tariff shocks, the COVID-19 pandemic, and the renewed tariff shocks in 2025. 

This study contributes to the growing literature by demonstrating that news-based climate risk indices interact with 

equity markets through both return and volatility channels, and by identifying volatility as the dominant mechanism for 

transmitting long-term uncertainty. 

The remainder of this paper is structured as follows. Section 2 reviews related literature. Section 3 outlines the 

methodology, emphasizing the Diebold–Yilmaz and Baruník–Křehlík frameworks. Section 4 describes the data. Section 

5 presents the empirical results, including static and dynamic analyses. Section 6 concludes with key findings and 

policy implications. 

2. Literature Review 

The COVID-19 pandemic, oil price fluctuations, and political developments, such as tariff policies under the Trump 

administration, have significantly affected global financial markets. Research confirms that crises and geopolitical 

shocks shape financial uncertainty and spillover transmission across asset classes (Ali et al., 2020; Baig et al., 2020; 

Zhang, 2020a). These events increase volatility and systemic risk, as contagion spreads through increasingly 

interconnected financial systems. 

To capture market uncertainty, scholars have often used benchmark indicators such as the Chicago Board Options 

Exchange Volatility Index (VIX) and the Economic Policy Uncertainty (EPU) index (Baker et al., 2016). During the 

COVID-19 pandemic, new measures—most notably the Infectious Disease Equity Market Volatility (ID-EMV) 

tracker—were introduced to quantify uncertainty caused by health crises (Bai et al., 2020). Using a time–

frequency-domain framework, Liu, Nakajima, and Hamori (2022) examined the spillover effects of news-based 

economic uncertainty driven by COVID-19 on renewable energy stocks in the United States, Europe, and global 

markets. They found that return spillovers were concentrated at higher frequencies, while volatility spillovers persisted 

at lower frequencies, indicating that renewable energy markets were more sensitive to pandemic-related uncertainty 

than during the Global Financial Crisis. 

Recently, research has focused on sustainable finance indicators—including ESG stock indices, clean energy 

benchmarks such as the iShares ESG MSCI KLD 400 Index (DSI), the iShares Global Clean Energy Index (ICLN), and 

green bond indices—as key elements of financial connectedness and systemic risk (Kılıç et al., 2022; Mensi et al., 

2022). Evidence generally indicates a strong interdependence between clean energy and conventional financial markets. 

For example, Banerjee et al. (2024) found that green assets primarily transmit shocks, while brown assets mainly 

receive them. Similarly, Ziadat et al. (2024) examined spillover dynamics between clean energy markets and global 

stock indices, concluding that clean energy instruments can serve as effective diversification tools alongside traditional 

benchmarks such as WTI and CSI300. 

The broader role of ESG investment and green finance has been extensively examined. Zeng et al. (2025) reported that 

large ESG indices (e.g., the S&P 500 ESG Index and the Dow Jones Sustainability World Index) and major technology 

firms such as Microsoft acted as net risk transmitters, while the Green Bond Index and firms such as Apple primarily 

served as net receivers. Mensi et al. (2022) found that green bonds and the S&P 500 (SP500) showed increased 

connectedness during crises, although green bonds remained relatively less volatile under extreme conditions. Similarly, 

Dogan et al. (2025) demonstrated an asymmetric relationship between green investments and international stock 

markets, with environmental and sustainability indices functioning mainly as net transmitters and green bonds as net 

receivers. Their analysis also showed that equity markets in the United States, the United Kingdom, Italy, Germany, and 
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France acted as major transmitters of shocks, whereas China and Japan were the main recipients. 

Other strands of literature have examined carbon risk and renewable energy dynamics. Ha et al. (2024) found that 

carbon futures and renewable energy volatility alternated between transmitter and receiver roles before and after the 

pandemic. Karkowska and Urjasz (2025) showed that geopolitical risk changes the transmission patterns of ESG indices, 

with North American and developed European markets acting as dominant transmitters, while emerging European and 

Asia–Pacific markets primarily absorb shocks. Together, these findings show that ESG and clean energy markets are 

deeply integrated into global financial systems, with their transmission roles varying by crisis type, policy changes, and 

regional characteristics. 

Building on this research, the present study examines spillover dynamics among five key variables—DSI, ICLN, SP500, 

PRI, and TRI—using the Diebold–Yilmaz (2012, 2014) and Baruník–Křehlík (2018) frameworks. The objective is to 

assess how sources of economic and geopolitical uncertainty, including the COVID-19 pandemic, oil price volatility, 

and tariff shocks, affect clean energy and ESG-related equity markets. Following Dogan et al. (2025), who combined 

these approaches to analyze green investment connectedness, this study highlights the importance of time–frequency 

decomposition in identifying the asymmetric spillover patterns that characterize sustainable finance during periods of 

global disruption. 

3. Empirical Methods 

To examine the interconnectedness between climate-related risks and equity markets, we analyze five time series: two 

news-based climate risk indices—PRI and TRI—and three equity benchmarks, SP500, DSI, and ICLN. We employ the 

spillover index framework developed by Diebold and Yilmaz (2014) to quantify the extent and direction of return and 

volatility transmission among these variables. 

Specifically, we estimate a vector autoregressive (VAR) model using daily log returns and compute the generalized 

forecast error variance decomposition (GFEVD). This approach attributes the H-step–ahead forecast error variance of 

each variable to shocks originating both from itself and from all other variables in the system, while remaining invariant 

to variable ordering. The resulting variance decompositions allow us to compute total, directional, and net spillover 

measures, thereby capturing how shocks propagate across climate and financial indicators. 

To further understand the dynamics of interconnectedness across different time horizons, we adopt the Baruník–Křehlík 

(2018) frequency-domain methodology. This technique decomposes the overall spillover effects into frequency-specific 

components, distinguishing short-, medium-, and long-term spillover behavior. Finally, to capture the time-varying 

nature of market interactions, we apply a rolling-window estimation of the spillover measures throughout the sample 

period, enabling us to track how the strength and direction of transmission evolve in response to major events and shifts 

in market sentiment. 

3.1 Diebold–Yilmaz Approach 

We use the Diebold-Yilmaz approach to measure connectedness based on the forecast error variance decomposition 

(FEVD) of a vector autoregression (VAR) model. For FEVD, see Pesaran and Shin (1998). 

Let 𝑦𝑡  represents an 𝑁 × 1 vector of daily log returns of equities and climate risk series at time t. We estimate an 

n-variable VAR with p lags,  

𝑦𝑡 =∑Φ𝑖𝑦𝑖−1 + 𝜀𝑡

𝑝

𝑖=1

 

and use the moving-average representation  

𝑦𝑡 = ψ(L)𝜀𝑡 

𝜀𝑡  𝑖. 𝑖. 𝑑. ~(0, 𝛴) 

where Φ denotes the 𝑁 × 𝑁 coefficient matrices, 𝜀𝑡 is a white noise error vector with covariance matrix Σ, ψ  

represents an 𝑁 × 𝑁 impulse-response coefficient matrix corresponding to lag h.  

For an H-step horizon, the generalized FEVD share of shocks in variable k that contribute to the H-step forecast-error 

variance of variable j is  

𝜃𝑗𝑘
𝐻 =

𝜎𝑘𝑘
−1𝛴 =0

𝐻 ((𝜓 𝛴)𝑗𝑘)
2

𝛴 =0
𝐻 (𝜓 𝛴𝜓 

′ )𝑗𝑗
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where 𝐻 is the forecast horizon,  𝜎𝑘𝑘  is the kth diagonal element of the Σ, 𝜃𝑗𝑘
𝐻  is the contribution of the variable k to 

the variable j selected forecast horizon H.  

Since generalized FEVD column sums need not equal one, we row-normalize 

𝜃𝑗𝑘
~𝐻 =

𝜃𝑗𝑘
𝐻

𝛴𝑘=1
𝑁 𝜃𝑗𝑘

𝐻  

𝛴𝑘=1
𝑁 𝜃𝑗𝑘

~𝐻 = 1, 𝛴𝑗,𝑘=1
𝑁 𝜃𝑗𝑘

~𝐻 = 𝑁 

Total Connectedness Index (TCI) measures the overall level of spillovers in the system. It shows how much, on average, 

shocks in one market contribute to the movements of other markets. A higher TCI means stronger overall 

connectedness.  

We then report connectedness by total spillovers, as an average off-diagonal share, and directional spillovers; FROM 

others, TO others, NET spillovers (TO - FROM). All measures are reported in percent and indicate how strongly the N 

series are connected in the time domain and directions in which shocks tend to affect.  

𝑆𝐻 = 100 ×
𝛴𝑘=1,𝑘≠𝑗
𝑁 𝜃𝑗𝑘

~𝐻

𝑁
 

3.2 Baruník–Křehlík Approach 

Following the Baruník–Křehlík methodology, we decompose time-domain spillovers into frequency-specific 

components. We take the Fourier transform of the VAR impulse response to obtain the frequency response ψ( −𝑖 ) 
defined as  

ψ( −𝑖 )  =  ∑ 𝑖  

ｈ

𝜓  

This tells us how the system reacts at each speed and wave frequency ω.  

(𝑓(𝜔))𝑗𝑘 =
𝜎𝑘𝑘
−1𝜓( −𝑖 )𝛴)𝑗𝑘

2

(𝜓( −𝑖 )𝛴𝜓′( +𝑖 ))𝑗𝑗
 

The generalized causation spectrum (𝑓(𝜔))𝑗𝑘 is the share of variable j’s movement at frequency 

𝜔 ∈  (−𝜋, 𝜋) that is due to shocks from variable k. It is order-invariant as the generalized FEVD idea shows. 

𝛤𝑗(𝜔) =
(𝜓( −𝑖 )𝛴𝜓′( +𝑖 ))𝑗𝑗

1

2𝜋
∫ (𝜓( −𝑖 )𝛴𝜓′( +𝑖 ))𝑗𝑗𝑑𝜆
𝜋

−𝜋

 

𝛤𝑗(𝜔) measures how important each frequency is for variable j. We use it as a weight. 

𝜃𝑗𝑘(𝑑) =
1

2𝜋
∫ 𝛤𝑗(𝜔)(𝑓(𝜔)
𝑏

𝑎

)𝑗𝑘𝑑𝜔 

We choose a band 𝑑 = (𝑎, 𝑏) and integrate the spectrum with the weight to get 𝜃𝑗𝑘(𝑑), the share of j explained by k 

within that band.  

𝜃𝑗𝑘
~ (𝑑) =

𝜃𝑗𝑘(𝑑)

𝛴𝑘𝜃𝑗𝑘(∞)
 

𝜃𝑗𝑘(𝑑) can be converted into a share 𝜃𝑗𝑘
~ (𝑑) by dividing by the total across all frequencies, and 𝜃𝑗𝑘

~ (𝑑) measures the 

pairwise spillover from the kth variable to the jth variable at an arbitrary frequency band 𝑑 which is now comparable. 

𝑆.←𝑘
𝐹 = 100 ×

𝛴𝑘=1,𝑘≠𝑗
𝑁 𝜃𝑗𝑘

~ (𝑑)

𝑁
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This equation builds To, From, and Net within each band as it compute directional TO spillovers on band 𝑑 by 

averaging 𝜃𝑗𝑘
~ (𝑑) across receivers at j ≠ k. You can also get FROM and NET by band in the same way.  

Summing short, medium and long run up equals the time-domain total. As they use the generalized decomposition 

results are order invariant.  

4. Data  

This study investigates the spillover effects between market returns and climate-related risk indices. The analysis 

focuses on three representative equity return series and two indices that quantify the physical and transition dimensions 

of climate risk. The equity variables include the SP500, representing the broad U.S. market; DSI, capturing 

ESG-oriented equities; and ICLN, reflecting climate-focused equities. The climate risk variables consist of the PRI and 

TRI, both developed from news-based textual analysis. All analyses and visualizations were conducted in R 

(https://www.r-project.org/). 

The PRI measures unexpected shifts in media attention to physical risks such as extreme weather events, floods, 

droughts, and rising sea levels, whereas the TRI captures surprises in media coverage of transition risks, including new 

climate policies, carbon taxes, and clean energy technologies. These indices were constructed by researchers at 

PolicyUncertainty.com (https://policyuncertainty.com/Climate_Risk_Indexes.html) based on climate-related 

vocabularies derived from scientific texts.
1
 The vocabularies were converted into numerical vectors using the term 

frequency–inverse document frequency (tf–idf) approach, and cosine similarity was then employed to assess the 

closeness of each news article to these climate-related vocabularies.
2
 This process generates a ―concern‖ series for both 

physical and transition risks. The PRI and TRI represent the unexpected components of these concern series, indicating 

days when climate risks received unusually high media attention. Accordingly, the two indices serve as timely measures 

of daily shocks in public and investor attention to climate-related risks.
3
 

The dataset covers the period from June 26, 2008, to June 30, 2025, beginning when ICLN data first become available. 

The sample period spans major global events—including the Global Financial Crisis, U.S. trade tensions, and the 

COVID-19 pandemic—thus capturing multiple episodes of heightened uncertainty. Missing observations in the original 

series were addressed using forward-fill imputation, replacing missing values with the most recent available observation. 

The final dataset comprises 4,456 daily observations, which were used to estimate the VAR models.
4
 

To obtain volatility measures, we applied an Autoregressive Moving Average–Generalized Autoregressive Conditional 

Heteroskedasticity (ARMA–GARCH) model to the return series of DSI, ICLN, and SP500, as well as to the two risk 

indices. The lag orders were selected using the Akaike Information Criterion (AIC), and model adequacy was verified 

through residual diagnostics based on the Ljung–Box test. The corresponding estimation results are summarized in 

Appendix A. 

Table 1. Variable description  

Variable Data Data Source 

DSI iShares ESG MSCI KLD 400 Index 
(U.S. ESG equity index) 

Yahoo Finance 

ICLN iShares Global Clean Energy Index 
(Global clean-energy equity index) 

Yahoo Finance 

SP500 U.S. large-cap market Index Yahoo Finance 
PRI News-based Physical Climate Risk Index (hazards like extreme 

weather, sea-level rise) 
PolicyUncertainty.com (Climate Risk 
Indexes) 

TRI News-based Transition Climate Risk Index (policies and 
technology shifts for decarbonization) 

PolicyUncertainty.com (Climate Risk 
Indexes) 

                                                        
1
 See Bua, G., Kapp, D., Ramella, F., & Rognone, L. (2024). 

2
 The term frequency-inverse document frequency (tf-idf) method is a common text-mining technique. It assigns higher 

weights to words that occur frequency in a given document but less often across all documents, capturing their relative 

importance.  

3
 For recent papers on modern language models with news in finance, see Zhu, L., Wu, H., & Wells, M. T. (2023) and 

Zhang, Z., Xu, K., Qiao, Y., & Wilson, A. (2025). 

4
 We also applied listwise deletion, removing any date with missing variables in either risk or return series, resulting in 

4456 observations. The analysis results remained robust to alternative treatments of missing observations.  
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Note: Stock market variables (DSI, ICLN, SP500) are obtained from Yahoo Finance via R and transformed into daily 

log returns, computed as ln (Pt/Pt-1). Climate risk indices (PRI, TRI) are downloaded from PolicyUncertainty.com 

(Climate Risk Indexes).  

Table 1 summarizes all variables and their corresponding data sources. In our empirical framework, the three equity 

variables represent distinct segments of financial markets—broad market (SP500), ESG-focused (DSI), and clean 

energy (ICLN)—whereas the two climate risk indices, PRI and TRI, capture different dimensions of climate-related 

risks. This joint dataset enables an integrated analysis of cross-market and cross-risk spillovers. Unlike conventional 

uncertainty measures such as the VIX or the Economic Policy Uncertainty (EPU) index, the PRI and TRI directly 

reflect media-based attention to climate risks, making it possible to disentangle physical hazards from transition-related 

concerns. 

Specifically, the PRI quantifies the salience of physical climate hazards—including natural disasters, extreme weather, 

sea-level rise, droughts, and heat waves—based on the frequency of related terms in newspaper articles. The TRI, by 

contrast, captures transition risks by tracking the prevalence of policy and technological terms linked to decarbonization 

processes, such as carbon taxes, regulatory shifts, and clean-energy innovation. Each day’s Reuters news coverage is 

compared against climate-related vocabularies (physical and transition) using text-based similarity measures to generate 

a ―concern‖ score. The PRI and TRI are then defined as the innovations from an AR(1) process applied to these concern 

series—that is, they represent the unexpected components of daily climate-related attention. Hence, a spike in the PRI 

or TRI denotes days when physical or transition climate risks received unusually strong media focus. 

All climate risk indices (PRI and TRI) were obtained from PolicyUncertainty.com (Climate Risk Indexes), while daily 

equity prices for the SP500, DSI, and ICLN were collected from Yahoo Finance via R and converted into logarithmic 

returns. 

To assess spillovers across the general equity market and climate-sensitive sectors, we analyze three return series: the 

SP500, DSI, and ICLN. The SP500 reflects the performance of large-cap U.S. firms, DSI represents a free-float market 

capitalization index of U.S. firms with strong ESG characteristics, and ICLN tracks approximately 100 companies 

engaged in clean energy production and technology. 

Table 2 presents the descriptive statistics for equity and clean-energy returns (DSI_Return, ICLN_Return, 

SP500_Return), their volatility proxies (DSI_Vol, ICLN_Vol, SP500_Vol), and the climate risk indices (PRI, TRI). The 

mean returns are close to zero (ranging from −0.0002 to 0.0004), with ICLN_Return exhibiting the highest dispersion 

(Std. Dev. = 0.0205), while DSI_Return and SP500_Return show the lowest volatility (Std. Dev. = 0.0126). All three 

return series display negative skewness (−0.46 to −0.55) and high excess kurtosis (around 15). The Jarque–Bera (JB) 

statistics strongly reject normality (p = 0.000), confirming the presence of heavy left tails and extreme 

movements—typical features of financial return distributions. Finally, the augmented Dickey–Fuller (ADF) test rejects 

the null hypothesis of a unit root for all series, confirming stationarity. 

The volatility series are strictly positive, exhibiting very small mean values on the order of 10⁻⁴, but display pronounced 

right skewness (approximately 6.7–7.5) and exceptionally high kurtosis (around 56–78). The Jarque–Bera (JB) test 

rejects normality for all volatility proxies (p = 0.000), while the augmented Dickey–Fuller (ADF) test confirms 

stationarity by rejecting the null of a unit root (p = 0.01). 

For the climate risk indices, both PRI and TRI have slightly negative means (−0.0018 and −0.0011, respectively) and 

standard deviations of 0.0208 and 0.0235—magnitudes comparable to those of equity return variability. Their positive 

skewness (ranging from 0.75 to 0.96) and excess kurtosis (between 4.56 and 6.96) indicate episodic upward spikes in 

public and policy attention to climate-related risks. As with the return and volatility series, both normality and unit-root 

hypotheses are decisively rejected (JB p = 0.000; ADF p = 0.01). 

Overall, the descriptive statistics reveal pervasive non-normality, heavy tails, and asymmetry across all variables. These 

distributional properties underscore the necessity of employing econometric techniques that are robust to 

heteroskedasticity and outliers. In particular, the spiky, heavy-tailed nature of the volatility and risk indices provides a 

key motivation for our subsequent spillover analysis and frequency-domain decomposition. As will be shown, 

cross-market volatility transmission remains relatively muted over short horizons but becomes dominant in the long run. 
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Table 2. Summary Statistics 

Variable Mean Std. Dev. Skewness Kurtosis JB Stat ADF Stat 

Return 
 

     

DSI_Return 0.0004  0.0126  −0.4604  14.9572  
26703.038 

(0.000) 

−15.912 

(0.01) 

ICLN_Return −0.0002  0.0205  −0.5540  13.5038  
20712.678 

(0.000) 

−12.269 

(0.01) 

SP500_Return 0.0004  0.0126  −0.4907  15.8557  
30863.757 

(0.000) 

−15.996 

(0.01) 

Volatility       

DSI_Vol 
0.0002 0.0003  7.4560  77.5764  

1073897.055 

(0.000) 

−9.030 

(0.01) 

ICLN_Vol 
0.0004 0.0008  6.6637  56.3042  

560520.022 

(0.000) 

−6.612 

(0.01) 

SP500_Vol 
0.0002 0.0004  7.0559  68.1549  

825158.657 

(0.000) 

−8.181 

(0.01) 

Risk Index           

PRI −0.0018  0.0208  0.7478  4.5594  
866.825 

(0.000) 

−10.602 

(0.01) 

TRI −0.0011  0.0235  0.9557  6.9637  
3595.367 

(0.000) 

−9.696 

(0.01) 

Note: The table reports descriptive statistics for returns (DSI_Return, ICLN_Return, SP500_Return), volatility proxies 

(DSI_Vol, ICLN_Vol, SP500_Vol), and risk indices (PRI, TRI). Returns are expressed in decimals. ―Std. Dev.‖ is the 

standard deviation; ―Skewness‖ (<0/>0) indicates left/right-tail asymmetry; ―Kurtosis‖ measures tail thickness (values 

far above 3 imply heavy tails). ―JB Stat‖ is the Jarque–Bera normality test; p-values are shown in parentheses below 

each row. The JB test rejects normality for all series at conventional levels (p = 0.000). ―ADF Stat‖ is the Augmented 

Dickey-Fuller test; p-values are shown in parentheses below each row. The ADF test rejects the unit root for all series at 

conventional levels. Volatility variables are strictly positive and extremely right-skewed with very high kurtosis, 

consistent with volatility clustering. Return means are close to zero with negative skewness and large kurtosis-typical of 

financial returns. PRI and TRI display positive skewness and elevated kurtosis, indicating episodic spikes in 

policy/transition risk. All statistics are computed on the full sample; minor discrepancies reflect rounding.  

5. Empirical Results  

This section presents the empirical findings on the spillover effects between equity markets and climate risk indices. 

Two complementary approaches are employed: the Diebold–Yilmaz (DY) method in the time domain and the Baruník–

Křehlík (BK) method in the frequency domain. The lag length of the VAR models for both returns and volatilities is 

determined using the Akaike Information Criterion (AIC). Using the generalized forecast error variance decomposition 

(FEVD), the DY approach captures how shocks are transmitted across markets over time. The BK method further 

decomposes these spillovers into three frequency bands: short term (1–5 days), medium term (6–20 days), and long 

term (≥21 days). 

Dynamic spillovers are then estimated through a rolling-window framework. The baseline window length is set to 200 

days, while alternative lengths (150 and 250 days) are used for robustness checks. Since the results remain consistent 

across specifications, only the 200-day case (w = 200) is reported. Section 5.1 discusses the full-sample spillover results 

in the time and frequency domains, while Section 5.2 summarizes the time-varying spillover dynamics. 

5.1 Static Analysis  

This subsection reports the spillover effects among index returns in both the time and frequency domains using the DY 

and BK approaches. Table 3 displays the spillover matrices for five variables. The upper panel presents the DY 

(Diebold–Yilmaz) results, while the lower panel provides frequency-specific results based on the BK (Baruník–Křehlík) 

decomposition. Each block lists the Total Connectedness Index (TCI) for its respective band (DY: 39.03; short term: 

24.88; medium term: 9.71; long term: 4.44). 

In each matrix, the rows represent the source markets and the columns represent the recipient markets. Each cell shows 

the directional spillover (%) from the row market to the column market. The rightmost ―From‖ column reports the total 

contribution a market sends to others (off-diagonal row sum), while the bottom ―To‖ row reports the total contribution a 

market receives from others (off-diagonal column sum). The last row provides the ―Net (= To − From)‖ measure, where 

positive values indicate net transmitters and negative values indicate net receivers. Under the BK framework, analogous 
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matrices and corresponding TCIs are presented for each frequency band—short, medium, and long term—as indicated 

in the table headings. 

Over the full sample, the Total Connectedness Index (TCI) of 39.03 indicates a moderate level of interdependence 

across markets. Based on the net spillover definition (Net = To − From), the SP500 (+4.94) and DSI (+3.39) act as net 

transmitters, whereas ICLN (−8.64) is a clear net receiver. Including both the SP500 and DSI in the model helps 

distinguish general market dynamics from ESG-specific behavior. When DSI diverges from SP500, it reflects 

incremental influences unique to ESG-oriented equities. Both PRI (+0.07) and TRI (+0.24) appear largely neutral. 

Bilaterally, the DSI↔SP500 channel stands out (DSI→SP500 = 38.06; SP500→DSI = 37.54), indicating strong 

comovement between these two indices. 

Turning to the frequency decomposition, the short-term (1–5 days) TCI of 24.88 accounts for the majority of total 

connectedness, confirming that spillovers are predominantly short-term in nature. In this frequency band, SP500 (+1.94) 

and DSI (+1.78) are net transmitters, while ICLN (−3.99) and TRI (−0.91) are net receivers, and PRI (+1.18) is slightly 

transmitter-leaning. In the medium term (6–20 days), the TCI declines to 9.71, with SP500 (+1.91) and DSI (+1.43) 

remaining transmitters, and ICLN (−3.33) continuing as a receiver. At this horizon, TRI (+0.46) switches to a 

transmitting role, while PRI (−0.47) becomes a receiver. In the long term (≥21 days), the TCI further decreases to 4.44. 

SP500 (+1.10) and DSI (+0.17) continue as net transmitters, ICLN (−1.33) and PRI (−0.61) act as receivers, and TRI 

(+0.68) remains a transmitter. The sum across the three bands (24.88 + 9.71 + 4.44 ≈ 39.03) aligns with the full-sample 

TCI, validating the decomposition. 

Overall, SP500 and DSI consistently serve as net transmitters of shocks, primarily through short-term channels, while 

ICLN remains a persistent net receiver across all frequencies. Interestingly, the roles of TRI and PRI vary with the time 

horizon—TRI behaves as a receiver in the short and medium term but becomes a transmitter in the long term, whereas 

PRI exhibits the opposite pattern. 

These results can be interpreted in two key ways. First, return spillovers are clearly dominated by short-term dynamics, 

highlighting the value of the BK decomposition alongside the DY framework. While the DY approach effectively 

captures the overall strength and direction of market spillovers, it does not distinguish between transitory and persistent 

effects. The BK method addresses this limitation by decomposing spillovers into short-, medium-, and long-term 

components using the Fourier transform of the VAR impulse response. The predominance of the short-term TCI implies 

that index returns respond quickly to climate-related shocks and news, though these effects tend to dissipate rapidly. In 

this sense, the BK framework provides more nuanced and temporally informative insights into financial connectedness 

than the aggregate DY measure alone. 

Table 3. Return Spillover Table 

DY spillover results: TCI = 39.03 

 DSI_Return ICLN_Return SP500_Return PRI TRI From 

DSI_Return 41.61  20.13  38.06  0.12  0.08  58.39  

ICLN_Return 24.13  49.84  25.74  0.13  0.16  50.16  

SP500_Return 37.54  21.22  41.01  0.15  0.08  58.99  

PRI 0.06  0.05  0.08  86.15  13.67  13.86  

TRI 0.05  0.12  0.05  13.53  86.24  13.75  

To 61.78  41.52  63.93  13.93  13.99  195.15  

Net(=To-From) 3.39 -8.64 4.94 0.07 0.24  

 

BK spillover results (Frequency 1-5 days): TCI = 24.88  

 DSI_Return ICLN_Return SP500_Return PRI TRI From 

DSI_Return 27.71  12.91  25.02  0.09  0.07  38.09  

ICLN_Return 14.68  30.05  16.23  0.06  0.08  31.06  

SP500_Return 25.12  14.08  28.06  0.13  0.07  39.40  

PRI 0.04  0.04  0.06  59.70  7.29  7.43  

TRI 0.02  0.05  0.03  8.32  59.88  8.42  

To 39.87  27.07  41.34  8.61  7.51  124.39  

Net(=To-From) 1.78 −3.99 1.94 1.18 −0.91  

BK spillover results (Frequency 6-20 days): TCI = 9.71 
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 DSI_Return ICLN_Return SP500_Return PRI TRI From 

DSI_Return 10.67  5.45  9.76  0.02  0.00  15.23  

ICLN_Return 7.17  14.75  6.97  0.03  0.02  14.19  

SP500_Return 9.46  5.39  9.70  0.01  0.00  14.86  

PRI 0.01  0.01  0.01  13.23  2.33  2.35  

TRI 0.02  0.03  0.02  1.83  11.53  1.90  

To 16.66  10.86  16.77  1.88  2.36  48.54  

Net(=To-From) 1.43 −3.33 1.91 −0.47 0.46  

BK spillover results (Frequency 21-infinity): TCI = 4.44 

 DSI_Return ICLN_Return SP500_Return PRI TRI From 

DSI_Return 3.24  1.78  3.28  0.01  0.00  5.07  

ICLN_Return 2.28  5.05  2.54  0.04  0.06  4.91  

SP500_Return 2.95  1.75  3.25  0.01  0.01  4.72  

PRI 0.01  0.00  0.00  13.23  4.05  4.06  

TRI 0.01  0.04  0.00  3.38  14.83  3.44  

To 5.24  3.58  5.82  3.45  4.12  22.21  

Net(=To-From) 0.17 −1.33 1.10 −0.61 0.68  

Note: The table reports the directional spillover matrix (percent) for five variables. The upper panel presents 

full-frequency results from the Diebold–Yilmaz (DY) framework, and the lower panel shows the Baruník–Křehlík (BK) 

frequency decomposition into short (1-5 days), medium (6-20 days), and long (≥21 days) bands. Off-diagonal cells 

report spillovers from row i to column j; diagonal entries are own contributions. The rightmost From column gives the 

off-diagonal row sum (total sent by that market), and the bottom To row gives the off-diagonal column sum (total 

received). Net (= To − From) is the difference between the two (positive = net transmitter; negative = net receiver). 

Each block also reports the band-specific Total Connectedness Index (TCI): DY = 39.03; short = 24.88; medium = 9.71; 

long = 4.44. Row totals are approximately 100% (subject to rounding). The sum of TCIs across the three BK bands 

approximately equals the DY TCI, with small differences due to rounding.  

/ 

Figure 1. Return-spillover heatmaps at the full frequency (DY) and by frequency bands (BK) 
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Note: Each off-diagonal cell shows the share (%) of the forecast-error variance of the column market (To) explained by 

shocks to the row market (From). Diagonal (own) contributions are left blank for readability. Numbers inside cells are 

rounded to one decimal. A common color scale is used across panels to permit cross-band comparison. Total 

Connectedness Index (TCI): DY = 39.03; BK short = 24.88 (1-5 days), BK medium = 9.71 (6-20 days), BK long = 4.44 

(≥21 days). 

Second, the contrasting transmitter–receiver roles of DSI and ICLN are economically intuitive. DSI serves as a 

benchmark ESG index composed mainly of large-cap U.S. firms such as NVIDIA Corporation, Microsoft Corporation, 

and Alphabet Inc. These firms are highly liquid, broadly held, and exert substantial influence on global financial 

markets, making DSI a natural transmitter of shocks. In contrast, ICLN is concentrated in renewable energy 

companies—including First Solar, Inc., Vestas Wind Systems A/S, and Iberdrola S.A.—that are more specialized and 

sensitive to fluctuations in capital flows and sector-specific shocks. Rather than driving broader markets, ICLN tends to 

respond to them. The difference in index composition (approximately 400 firms for DSI versus about 100 for ICLN) 

and geographic scope (U.S.-focused versus global) further reinforces these contrasting roles. Hence, our empirical 

results align with the expectation that DSI operates as a transmitter, while ICLN functions as a receiver across different 

horizons. 

Figure 1 visualizes the directional return spillovers using generalized FEVD at both the aggregate (DY) and 

frequency-specific (BK) levels. The figure confirms a moderate overall degree of connectedness (TCI = 39.03), with 

spillovers concentrated in high-frequency movements: the short-term band accounts for roughly 63.7% of total 

connectedness (24.88 / 39.03), the medium-term band for 24.9%, and the long-term band for 11.4%. Equity markets 

(DSI_Return and SP500_Return) exhibit strong bilateral spillovers, with large, reciprocal flows (e.g., DSI → SP500 = 

37.5%; SP500 → DSI = 38.1%). ICLN_Return consistently acts as a net receiver across frequency bands (negative Net 

values), while DSI_Return and SP500_Return behave as net transmitters (positive Net values). 

By contrast, PRI and TRI interact only weakly with equity markets but display a strong two-way linkage with each 

other (≈13–14% in the DY panel), with near-zero net effects. The BK decomposition shows that these directional 

patterns remain stable across horizons, although the magnitude of spillovers declines from short to long horizons. 

Table 4 reports the generalized FEVD–based directional spillovers among DSI_Vol, ICLN_Vol, SP500_Vol, PRI, and 

TRI. The full-frequency Diebold–Yilmaz (DY) results indicate an overall connectedness of approximately 41% (TCI, 

computed as the off-diagonal sum divided by the number of variables). Volatility transmission is concentrated within 

the equity and clean-energy block: SP500_Vol receives the largest inflows (To = 77.26), followed by DSI_Vol (65.06), 

while ICLN_Vol emerges as the only significant net receiver (Net = −28.60). In contrast, the policy and transition 

indices remain peripheral to the equity complex and mainly interact with each other (PRI → TRI = 13.53; TRI → 

PRI = 13.41), resulting in near-zero net effects for PRI (−0.05) and a small net receiver role for TRI (+0.77). Overall, 

SP500_Vol (+19.60) and DSI_Vol (+8.28) act as the dominant net transmitters of volatility. 

Turning to the frequency decomposition, the Baruník–Křehlík (BK) panels reveal that connectedness is almost entirely 

a low-frequency phenomenon. At the short horizon (1–5 days), the TCI is only 0.12%, and all cross-market linkages are 

economically negligible, aside from a faint PRI↔TRI interaction (TRI → PRI = 0.30; PRI → TRI = 0.25). At the 

medium horizon (6–20 days), the TCI rises to 4.03%, with transmission largely confined to the policy/transition risk 

pair: TRI acts as a net receiver (Net = −0.95), and PRI as a net transmitter (+0.57), while equity and clean-energy 

volatilities remain largely decoupled. At the long horizon (≥ 21 days), the TCI increases sharply to 36.96%—accounting 

for about 90% of total connectedness—and the structure observed in the DY panel fully materializes. A dense, 

bidirectional network emerges among ICLN_Vol, DSI_Vol, and SP500_Vol, with ICLN_Vol remaining the dominant 

receiver (Net = −29.29) and SP500_Vol (+19.76) and DSI_Vol (+8.42) acting as the main transmitters. PRI and TRI 

continue to exhibit modest bilateral links (PRI → TRI = 4.69; TRI → PRI = 3.83) and only weak ties to equity 

markets. 

Volatility spillovers across these markets are minimal at high frequencies, become modest at medium 

horizons—primarily within the policy and transition risk pair—and dominate at long horizons within the equity–

clean-energy cluster. This pattern, consistent with the network visualizations, underscores that slower-moving, 

structural forces rather than short-lived shocks drive the cross-market transmission of volatility in our sample. 
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Table 4. Volatility Spillover Table 

DY spillover results: TCI =  

 DSI_Vol ICLN_Vol SP500_Vol PRI TRI From 

DSI_Vol 43.22 16.08 40.27 0.09 0.34 56.78 

ICLN_Vol 25.97 36.62 36.84 0.17 0.39 63.37 

SP500_Vol 38.8 18.42 42.34 0.09 0.35 57.66 

PRI 0.16 0.07 0.05 86.2 13.53 13.81 

TRI 0.13 0.2 0.1 13.41 86.17 13.84 

To 65.06 34.77 77.26 13.76 14.61 205.46 

Net(=To-From) 8.28 −28.6 19.6 −0.05 0.77  

 

BK spillover results (Frequency 1-5 days): TCI = 0.12  

 DSI_Vol ICLN_Vol SP500_Vol PRI TRI From 

DSI_Vol 0.02  0.01  0.01  0.00  0.00  0.02  

ICLN_Vol 0.00  0.00  0.00  0.00  0.00  0.00  

SP500_Vol 0.02  0.01  0.03  0.00  0.00  0.03  

PRI 0.00  0.00  0.00  2.95  0.25  0.25  

TRI 0.01  0.00  0.01  0.30  3.17  0.32  

To 0.03  0.02  0.02  0.30  0.25  0.62  

Net(=To−From) 0.01  0.02  −0.01  0.05  −0.07    

BK spillover results (Frequency 6-20 days): TCI = 4.03 

 DSI_Vol ICLN_Vol SP500_Vol PRI TRI From 

DSI_Vol 0.88  0.27  0.67  0.00  0.00  0.95  

ICLN_Vol 0.03  0.13  0.02  0.00  0.00  0.06  

SP500_Vol 0.61  0.28  0.87  0.00  0.00  0.90  

PRI 0.07  0.04  0.02  66.09  8.59  8.72  

TRI 0.07  0.12  0.07  9.28  64.65  9.54  

To 0.77  0.72  0.79  9.29  8.59  20.16  

Net(=To−From) −0.17  0.66  −0.12  0.57  −0.95    

BK spillover results (Frequency 21-infinity): TCI = 36.96 

 DSI_Vol ICLN_Vol SP500_Vol PRI TRI From 

DSI_Vol 42.29  15.84  39.59  0.08  0.34  55.85  

ICLN_Vol 25.98  36.42  36.85  0.17  0.39  63.39  

SP500_Vol 38.15  18.16  41.44  0.08  0.34  56.73  

PRI 0.09  0.03  0.03  17.15  4.69  4.84  

TRI 0.05  0.07  0.02  3.83  18.35  3.97  

To 64.27  34.10  76.49  4.16  5.77  184.78  

Net(=To−From) 8.42  −29.29  19.76  −0.68  1.80   

Note: The table reports the directional spillover matrix (percent) for five variables. The upper panel presents 

full-frequency results from the Diebold-Yilmaz (DY) framework, and the lower panel shows the Baruník–Křehlík (BK) 

frequency decomposition into short (1-5 days), medium (6-20 days), and long (≥21 days) bands. Off-diagonal cells 

report spillovers from row i to column j; diagonal entries are own contributions. The rightmost From column gives the 

off-diagonal row sum (total sent by that market), and the bottom To row gives the off-diagonal column sum (total 

received). Net (= To − From) is the difference between the two (positive = net transmitter; negative = net receiver). 

Each block also reports the band-specific Total Connectedness Index (TCI): DY = 41.1; short = 0.12; medium = 4.03; 

long = 36.96. Row totals are approximately 100% (subject to rounding). The sum of TCIs across the three BK bands 

approximately equals the DY TCI, with small differences due to rounding. Both datasets, listwise deletion and 

forward-fill, can generate the similar table.  
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Figure 2. Volatility-spillover heatmaps at the full frequency (DY) and by frequency bands (BK) 

Note: Each off-diagonal cell shows the share (%) of the forecast-error variance of the column market (To) explained by 

shocks to the row market (From). Diagonal (own) contributions are left blank for readability. Numbers inside cells are 

rounded to one decimal. A common color scale is used across panels to permit cross-band comparison. Total 

Connectedness Index (TCI): DY = 41.09; BK short = 0.12 (1-5 days), BK medium = 4.03 (6-20 days), BK long = 36.96 

(≥21 days). 

These findings highlight two key contrasts with the return-based results. First, volatility spillovers are predominantly a 

long-term phenomenon, in sharp contrast to return spillovers that are short-term and event-driven. This structural 

difference suggests that return connectedness reacts quickly to new information, while volatility connectedness reflects 

deeper and more persistent sources of uncertainty. Second, the BK decomposition reveals virtually no cross-market 

linkages at short horizons, limited interactions at medium horizons, and a well-defined, dense network only at long 

horizons. These results underscore the importance of frequency-specific analysis—without the BK framework, the 

long-run dominance of volatility spillovers would remain obscured within the aggregate DY measure. 

Figure 2 visualizes the directional volatility spillovers based on the generalized FEVD at both the aggregate (DY) and 

frequency-specific (BK) levels. In the DY panel, equity volatilities (DSI_Vol, ICLN_Vol, SP500_Vol) are tightly 

interconnected—for example, DSI → ICLN = 26.0%, DSI → SP500 = 38.8%, ICLN → DSI = 16.1%, ICLN → 

SP500 = 18.4%, SP500 → DSI = 40.3%, and SP500 → ICLN = 36.8%—with the SP500 acting as the relatively 

stronger transmitter. 

By contrast, the risk indices (PRI and TRI) form a distinct and self-contained block, displaying sizable bilateral linkages 

(PRI → TRI = 13.4%; TRI → PRI = 13.5%) but negligible connections with equity volatilities (mostly within the 

0.0–0.4% range). 

The BK decomposition reveals virtually no short-term transmission, moderate medium-term effects concentrated within 

the PRI–TRI pair (8.6–9.3%), and pronounced long-term spillovers that closely mirror the DY pattern—for instance, DSI 
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→ ICLN = 26.0%, DSI → SP500 = 38.2%, ICLN → DSI = 15.8%, ICLN → SP500 = 18.2%, SP500 → DSI = 39.6%, and 

SP500 → ICLN = 36.9%. 

Overall, volatility shocks propagate slowly and persistently across markets, with long-horizon linkages dominating both 

among equities and within the PRI–TRI pair. This suggests that while short-horizon diversification remains largely 

effective, long-horizon risk management and hedging strategies should account for substantial and asymmetric volatility 

spillovers. 

5.2 Dynamic Analysis 

It is well established that both returns and volatilities evolve over time, and that market connectedness tends to intensify 

during periods of financial stress. To capture these dynamics, we apply a rolling-window approach to estimate the 

time-varying Total Connectedness Index (TCI). The results reported below are based on a 200-day rolling window, 

though the findings remain robust when alternative window sizes of 150 and 250 days are employed. 

Figure 3 illustrates the time-varying TCI of returns obtained from the Diebold–Yilmaz framework. The TCI fluctuates 

within a range of approximately 35–50% for most of the sample period but exhibits two distinct spikes. The first occurs 

around mid-2011, corresponding to the Libyan civil war, which sharply curtailed oil supply and pushed crude oil prices 

above USD 110 per barrel in the spring before retreating to around USD 90 by August. The second—and more 

pronounced—spike appears at the onset of the COVID-19 pandemic, when global equity markets declined abruptly, 

volatility indices such as the VIX surged, and overall uncertainty reached unprecedented levels. 

Taken together, these results indicate that return spillovers are largely event-driven and transitory, with sharp increases 

in connectedness observed during major crises such as the 2011 oil shock and the 2020 COVID-19 pandemic. 

Figure 4 displays the time-varying connectedness of returns based on the Baruník–Křehlík (BK) frequency 

decomposition. The results clearly show that spillovers are predominantly driven by short-term dynamics. The 

short-term component (orange line) accounts for the largest share of total connectedness, while the medium-term 

component (green line) plays a secondary role, and the long-term component (blue line) remains consistently subdued. 

 

Figure 3. Time-Varying Total Connectedness Index of Returns (DY Approach) 

Note: The figure shows the rolling Total Connectedness Index (TCI, %) computed within the Diebold-Yilmaz 

Framework using the generalized FEVD. Estimates are obtained from a VAR on the volatility of daily returns (lag 

length selected by AIC; forecast horizon H = 50) with rolling windows of w = 200. Higher values indicate stronger 

cross-market connectedness.  
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Figure 4. Time-Varying Total Connectedness Index of Returns (BK Approach) 

Note: The figure shows the rolling Total Connectedness Index (TCI, %) by Baruník–Křehlík frequency bands, 

computed from a VAR on daily returns (lag length selected by AIC; forecast horizon H=50) using the generalized 

FEVD. Bands are defined as short (1-5 days), medium (6-20 days), and long (≥ 21 days). At each date, the sum across 

the three bands equals the total TCI (up to rounding); higher values indicate stronger cross-market connectedness.   

 

Figure 5. Time-Varying Total Connectedness Index of Volatility (DY Approach) 

Note: The figure shows the rolling Total Connectedness Index (TCI, %) computed within the Diebold–Yilmaz 

framework using the generalized FEVD. Estimates are obtained from a VAR on the volatility of daily returns (lag 

length selected by AIC; forecast horizon H = 50) with rolling windows of w = 200. Higher values indicate stronger 

cross-market connectedness.  
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Figure 6. Time-Varying Total Connectedness Index of Volatility (BK Approach) 

Note: The figure shows the rolling Total Connectedness Index (TCI, %) by Baruník–Křehlík frequency bands, 

computed from a VAR on the volatility of daily returns (lag length selected by AIC; forecast horizon H=50) using the 

generalized FEVD. Bands are defined as short (1–5 days), medium (6–20 days), and long (≥ 21 days). At each date, the 

sum across the three bands equals the total TCI (up to rounding); higher values indicate stronger cross-market 

connectedness.  

Two major spikes emerge in 2011 and 2020. In both episodes, the short-term component rises most sharply, confirming 

that returns respond immediately to sudden shocks. The medium-term component increases modestly during crises, but 

its magnitude is far smaller than that of the short-term component. The long-term element remains relatively flat 

throughout the sample period. 

Overall, these findings suggest that return spillovers are primarily a short-term phenomenon. Returns react rapidly to 

climate-related news and global shocks, reflecting high market liquidity and the quick adjustment of investor sentiment. 

Figure 5 presents the time-varying connectedness of volatilities using the Diebold–Yilmaz (DY) framework. Compared 

with returns, the volatility-based TCI remains higher on average (around 50%) and exhibits four distinct spikes 

corresponding to major global events: the 2011 Libyan civil war and European debt crisis, the 2018 U.S. trade policy 

shocks (tariffs on steel, aluminum, and Chinese imports), the COVID-19 pandemic in 2020, and renewed U.S. trade 

measures in 2025. 

Unlike return spillovers, which are concentrated in the short term, volatility spillovers are more persistent and primarily 

reflect long-run structural factors. They rise not only in response to short-lived financial shocks but also during broader 

geopolitical and policy disruptions. 

For comparison with earlier figures, the 2011 oil price shock and the 2020 pandemic have already been discussed in 

Figure 3. Here, we emphasize the two tariff-related episodes. In March 2018, the United States imposed tariffs of 25% 

on steel and 10% on aluminum, citing national security concerns, while temporarily exempting certain countries such as 

Canada and Mexico. Later that month, the U.S. announced tariffs on approximately USD 60 billion of Chinese goods in 

response to alleged unfair practices in technology and intellectual property. Both measures generated substantial 

uncertainty in global trade and financial markets, as reflected in the spike in volatility connectedness. Finally, the 2025 

episode shows another pronounced increase linked to renewed tariff measures, again contributing to elevated volatility 

transmission across markets. 

Figure 6 illustrates the frequency decomposition of volatility connectedness obtained from the BK method. In contrast 

to returns, where spillovers are dominated by the short term, volatility spillovers are largely driven by the long term. 

The blue line (long term) is clearly dominant, and nearly all spikes occur in this band. The green line (medium term) 

exhibits moderate increases during crises, whereas the red line (short term) remains close to zero throughout. 

This pattern suggests that volatility spillovers are primarily shaped by persistent, structural forces such as monetary 

policy shifts, trade disputes, and geopolitical tensions. Short-term shocks exert minimal influence, while long-term 

movements capture enduring forms of systemic risk. Most of the major spikes in 2011 (oil price shock and Libyan 

conflict), 2018 (U.S. tariffs and trade war), 2020 (COVID-19 pandemic), and 2025 (renewed tariff measures) appear in 

the long-term component. Although short-term elements show limited responses—mainly to oil and pandemic 
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shocks—the medium- and long-term components capture all four episodes, underscoring their role in propagating 

persistent uncertainty. 

Taken together, the contrast with returns is striking. Return spillovers are short-lived and event-driven, whereas 

volatility spillovers are long-lasting and rooted in structural uncertainty. While the DY framework captures the overall 

level of interdependence, the BK decomposition reveals that volatility connectedness emerges predominantly at longer 

horizons, exhibiting a distinct ―long-term bias‖ relative to return spillover. (The time variation in the net spillovers for 

returns and volatilities is presented in Appendix B.) 

6. Discussion 

Our findings provide several insights into the transmission mechanisms of climate-related risks across financial markets. 

Unlike previous studies that emphasize strong spillovers from ESG indices and green finance to broader markets, we 

find that the news-based climate risk indices—PRI and TRI—show only limited interaction with equity markets. This 

indicates that media-driven attention to climate risks has not yet been fully reflected in equity spillover dynamics. This 

distinction does not contradict earlier evidence but instead highlights a difference in timing and integration: sentiment 

related to physical and transition risks, as measured by news analytics, may spread more gradually through financial 

systems than asset-based sustainability measures, such as ESG indices or green factor portfolios, which are already 

incorporated into institutional investment strategies. 

Another key contribution of our analysis is the distinction between return and volatility transmission channels. The 

predominance of short-term return spillovers indicates rapid, event-driven responses to shocks—whether from climate 

events or geopolitical tensions—aligning with the view that equity markets react quickly but often only temporarily to 

new information. In contrast, the strong long-term dominance of volatility spillovers suggests that deeper uncertainty 

persists, reflecting the gradual accumulation of structural risks. This asymmetry supports the argument that 

volatility-based connectedness offers a more reliable perspective for identifying systemic and policy-induced 

uncertainty than return-based measures alone. 

Finally, the heterogeneous roles of DSI and ICLN—where DSI consistently acts as a net transmitter of shocks and 

ICLN serves as a net receiver—highlight the importance of distinguishing between broad ESG indices and specialized 

clean energy benchmarks. DSI’s larger market capitalization, higher liquidity, and closer integration with mainstream 

financial flows likely explain its function as an information source. In contrast, ICLN’s narrower sectoral focus and 

greater sensitivity to capital inflows make it more reactive to external shocks. These differences indicate that 

climate-aligned investment vehicles are not homogeneous; their spillover dynamics depend on factors such as index 

composition, market depth, and investor base characteristics. Future research should examine these aspects more 

explicitly. 

7. Concluding Remarks  

This study examined the spillover effects of economic uncertainty between equity markets—represented by the SP500, 

DSI, and ICLN—and news-based climate risk indices, PRI and TRI, across time and frequency domains using the 

Diebold–Yilmaz (DY) and Baruník–Křehlík (BK) frameworks. By using PRI and TRI as proxies for climate-related 

uncertainty and combining them with three key equity benchmarks representing the U.S. large-cap, ESG-focused, and 

clean energy markets, we analyzed the magnitude and direction of spillovers between climate risk attention and 

financial market dynamics. The rolling-window approach enabled us to capture time-varying relationships during major 

global episodes, such as the Libyan conflict, U.S. tariff shocks, and the COVID-19 pandemic. 

First, PRI and TRI exert only limited influence on equity spillovers. This finding contrasts with previous studies that 

emphasized strong interconnectedness between ESG indices, green finance, and the broader market (Zeng et al., 2025; 

Mensi et al., 2022; Dogan et al., 2025). In our framework, the two climate risk indices primarily interacted with each 

other rather than with equities, suggesting that news-based measures of physical and transition risks have not yet been 

fully priced into equity markets. This difference indicates that sentiment extracted from textual analysis evolves more 

gradually than financial indicators based on ESG or clean energy portfolios already integrated into institutional 

investment strategies. 

Second, our results reveal a clear asymmetry between return and volatility spillovers across time horizons. Short-term 

spillovers are dominated by returns, indicating that equity markets respond quickly but only temporarily to shocks. In 

contrast, long-term spillovers are driven by volatilities, reflecting deeper and more persistent uncertainty related to 

structural or policy risks. This pattern supports earlier evidence on time–frequency asymmetry (Dogan et al., 2025) and 

reinforces the view that volatility-based connectedness offers a more comprehensive measure of systemic uncertainty 

than returns alone. 

Third, the time-varying analysis of returns identified two significant spikes: one during the 2011 Libyan conflict and 

related oil price surge, and a larger spike at the onset of the COVID-19 pandemic in 2020. These findings indicate that 
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return spillovers are strongly event-driven and typically dissipate rapidly after crises end. This observation is consistent 

with broader literature showing that market connectedness increases sharply during periods of acute stress, then 

stabilizes (Mensi et al., 2022). 

Fourth, the dynamic volatility analysis identified four major episodes of heightened spillovers: the 2011 Libyan conflict, 

the 2018 U.S. tariff shocks, the COVID-19 crisis in 2020, and renewed tariff shocks in 2025. Compared with returns, 

volatility spillovers showed more frequent and persistent spikes, highlighting volatility’s central role as the main 

channel for long-term uncertainty transmission. Unlike earlier studies that emphasized return spillovers, these findings 

indicate a structural shift toward volatility-driven contagion during global crises. 

Taken together, these results indicate that return spillovers reflect short-lived, event-driven reactions, whereas volatility 

spillovers represent deeper and more persistent aspects of financial uncertainty. 

Beyond their technical implications, these findings contribute to the broader discourse on sustainable finance and 

climate-related market dynamics. By integrating news-based climate risk indices with ESG and clean energy 

benchmarks, this study connects social awareness with financial market responses. Because PRI and TRI are derived 

from textual data, they capture real-time shifts in public attention, indicating that investor sentiment is influenced by 

both economic fundamentals and societal concern over environmental risks. The limited integration of these climate 

risk measures into equity spillovers suggests that financial markets continue to underreact to climate-related news—a 

gap that may narrow as sustainability considerations become more embedded in global investment practices. 

From a policy and investment perspective, the dominance of volatility spillovers highlights the importance of long-term 

risk management strategies aimed at mitigating persistent uncertainty. Reducing climate risks through effective policies 

and transparent transition frameworks can decrease volatility and promote greater market stability, thereby supporting 

long-term economic resilience. 

Finally, several avenues for future research remain. Although this study examined spillovers in returns and volatilities, 

recent studies have begun to examine higher-order moments, such as skewness and kurtosis (He and Hamori, 2021; He 

and Hamori, 2024). Extending the current framework to include these higher-moment dynamics would provide a deeper 

understanding of how climate and financial uncertainties propagate across markets and over time. 
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Appendix A 

Results of ARMA model 

Variable ARMA - GARCH JB test LB test LB2 test 

DSI_Return ARMA(1,4) 

-GARCH(1,1) 941.630 (0.000) 8.777 (0.553) 8.390 (0.591) 
ICLN_Return ARMA(5,0) 

-GARCH(1,1) 575.917 (0.000) 5.315 (0.869) 8.885 (0.543) 
SP500_Return ARMA(1,0) 

-GARCH(1,1) 1158.657 (0.000) 8.789 (0.552) 7.483 (0.679) 
Note: ARMA-GARCH indicates the selected orders of the ARMA and GARCH components of the model. JB test 

reports the Jarque–Bera test statistic and its corresponding p-value. LB test reports the Ljung–Box test statistic for 

residuals and its corresponding p-value. LB2 test reports the Ljung–Box test statistic for the squared residuals and its 

corresponding p-value. 

 

Appendix B 

 

Figure B1. Time-Varying Net Connectedness Index of Returns (DY Approach) 
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Figure B2. Time-Varying Net Connectedness Index of Returns (BK Approach) 

 

 

Figure B3. Time-Varying Net Connectedness Index of Volatilities (DY Approach) 
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Figure B4. Time-Varying Net Connectedness Index of Volatilities (BK Approach) 

 


