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Abstract 

In this study, we examine a p-hub location problem where the objective function encompasses regular transportation 

costs, fixed expenses, and congestion costs associated with hubs. We demonstrate that the model for this problem is a 

convex mixed integer programming problem. To solve the problem, we introduce a multi-cut cutting-plane method and 

compare its performance to the existing single cut version method. Our findings show that the multi-cut method 

outperforms the single-cut method in terms of the time required to reach a solution. The results of numerical 

experiments conducted to support this comparison are also presented. 
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1. Introduction 

In recent years, the hub location problem (HLP) has emerged as a focal point of research and practical applications. Its 

prominence stems from the potential to optimize transportation logistics by consolidating products at strategic hubs 

before final distribution, thereby mitigating transportation costs. Various types of HLP models have been developed to 

address diverse real-world transportation challenges. Ghodratnama et al. classify HLP into four main categories, each 

targeting specific optimization objectives: 

1. Hub Covering Problems: These seek to balance meeting demand while minimizing the costs associated with 

opening new hubs.  

2. Fixed Cost Hub Location Problems: The focus here lies in determining the optimal number of hubs, 

considering fixed costs. 

3. Median Hub Allocation Problems: These aim to streamline transportation costs by strategically locating hubs. 

4. Hub Center Location-Allocation Problems: The primary goal is to minimize the  

maximum transportation cost between nodes, optimizing network efficiency. 

In exploring prior research on HLP, O’Kelly conducted one of the earliest investigations into the field. Their study 

centered on a HLP variant where fixed costs are incurred for hub establishment, with the number of hubs serving as a 

decision variable. O’Kelly expanded on this work by highlighting the influence of flow scale economies on HLP 

decisions, underscoring the significance of considering such factors. Alumur and Kara provided an extensive review of 

HLP, offering a comprehensive classification of hub location models based on various objective functions, constraints, 

and demand patterns. Addressing delivery uncertainties, Mohammadi et al. investigated the single-allocation p-HLP, 

proposing a meta-heuristic algorithm to address uncertainty in deliveries. 

Azizi et al. advocated for the integration of backup hubs for demand nodes to mitigate disruptions in hub operations. By 

strategically incorporating backup infrastructure, the potential costs of operational disruptions can be significantly 

reduced, ensuring the continuity of logistics operations. In a similar vein, Rostami et al. proposed a single-hub 

allocation model that integrates backup hubs to bolster operational reliability. By augmenting existing hub infrastructure 

with backup facilities, the model enhances the robustness of hub operations, minimizing the impact of potential 
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disruptions.  

On a broader scale, Soylu et al. introduced a bi-objective multiple allocation phub median model that considers both 

transportation expenses and consumer satisfaction metrics. This holistic approach ensures that optimization efforts not 

only minimize operational costs but also prioritize customer satisfaction, reflecting a nuanced understanding of the 

multifaceted nature of hub management. In a complementary study, Karimi et al. addressed a single-allocation HLP 

with a multi-objective model that optimizes both transportation costs and travel time. By simultaneously considering 

these key performances metrics, the model offers a comprehensive framework for hub optimization, balancing 

cost-efficiency with operational effectiveness. 

In terms of solution strategies, Abdinnour et al. explored the efficacy of simulated annealing as an AI heuristic for 

solving the p-Hub Median Problem. Their comparative analysis highlights the potential of AI-driven approaches in 

addressing complex optimization challenges inherent in hub management. Mokhtar et al. focused on the uncapacitated 

p-hub median problem, employing Benders decomposition and proposing efficiency-enhancing strategies. By 

leveraging advanced mathematical techniques, their study contributes to the development of efficient solution 

methodologies for hub optimization. 

The Uncapacitated HLP has been formulated as a quadratic integer programming problem by Abdinnour et al. Their 

study presents a branch-and-bound solution approach along with a Genetic algorithm for solving the model, 

contributing to the development of efficient solution methodologies for this challenging optimization problem. 

Addressing the critical aspect of hub capacity, Boffey et al. provided a comprehensive review on hub capacity 

considerations and their implications, shedding light on key factors influencing hub operations. 

While congestion in HLP has been a relatively understudied aspect, Parajuli et al. attempted to model congestion costs 

arising from major disruptions using a convex function. Their approach, coupled with an enumeration algorithm, 

suggests the implementation of a decentralized protection system in the event of congestion, offering insights into 

effective congestion management strategies. Najy et al. addressed the uncapacitated HLP incorporating flow-dependent 

economies of scale and congestion considerations into the multiple-allocation version of the problem. They proposed a 

specific Benders decomposition strategy to solve the problem, contributing to the advancement of solution 

methodologies for complex HLP variants. 

In a nonlinear mixed integer programming model with congestion costs, De et al. employed the Benders Decomposition 

solution approach to strike a balance between transportation and congestion costs. Their study underscores the 

importance of considering congestion dynamics in hub location decisions, offering valuable insights for effective 

logistics management. Azizi et al. developed a mixed integer programming model with a nonlinear congestion penalty 

in the objective function. Leveraging a cutting plane approach under the single allocation assumption, their study 

employs linearization techniques to efficiently solve the problem, contributing to the arsenal of solution methodologies 

for congestion-aware hub location optimization. 

Including congestion costs is crucial across various industries, significantly impacting customer satisfaction, such as in 

the airline industry with connecting flights. Understanding how to effectively implement the cutting-plane algorithm 

when the model includes congestion is essential. However, existing studies, such as Azizi et al., primarily focus on 

multi-cut approaches without extensive examination of single-cut methods. This gap in literature prompts the need for a 

comparative analysis of single-cut versus multi-cut implementations. 

In our research, we extend the work of Azizi et al. by implementing their algorithm in C language and comparing two 

implementation approaches: single-cut and multi-cut. The cutting-plane method used by Azizi et al. introduces multiple 

cuts per iteration, where each cut corresponds to a node in the network. Our study presents a single-cut implementation 

and compares its performance with the multi-cut approach. The results demonstrate the efficiency of the single-cut 

method in solving the hub location problem. The rest of the paper is organized as follows. The problem definition is 

presented in Section 3. The two algorithms are then introduced in Section 4. Finally, in Section 5, we offer numerical 

results, and in Section 6, we present the conclusion. 

2. Problem Definition 

Suppose that there is a set of nodes N, which can be divided into two sets of origins and destinations. A collection of 

hubs is chosen instead of linking all origins to all destinations. Before reaching its final destination, the flow travels 

from the origin to a hub assigned to that origin, then from that hub to another hub linked to the destination. The location 

of hubs and the connections between non-hub nodes and hubs are the subject of this problem. In addition, assume that 

the demand is random. The goal of the problem is to reduce fixed costs, transit costs, and congestion costs. To 

investigate the solution approaches, we first introduce the model presented in. Here are some notations associated with 

this model. 
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The decision variable,       is a binary variable that equals 1 if the flow from node   to node   is routed through 

hubs located at nodes k and m; otherwise, it equals 0. The variable     is also binary and indicates whether node   is 

allocated to hub  ; a value of 1 signifies allocation, while 0 indicates no allocation. Finally,     is another binary 

variable that equals 1 if hub   is equipped with capacity level l; otherwise, it equals 0. The original model for this 

problem presented in is as follows: 

             (     )   
 

 
∑  ,  (   )-                                  (1a)   

                    .       ∑                                          (1b)         

                                                                                      (1c)  

                        ∑        𝑝                                      (1d) 

         ∑                                                    (1e)  

    ∑                   𝑚                                 (1f)     

                        ∑ ∑ ∑             ∑                                      (1g)         

                        ∑                                                     (1h) 

                    *0  +           𝑚                             (1i)  

where the objective function  (     ) is defined as: 

   (     )   ∑ ∑ ∑ ∑ 𝑐         
    

 ∑ ∑ 𝐹     
  

 

The objective function (1a) aims to minimize the total network cost, which includes transportation cost, hub fixed cost, 

and congestion costs. The function  (     ) comprises of two main parts: the first term represents the total 

transportation cost of the flow between all origin and destination nodes, and the second term calculates the cost of 

equipping hubs. The last term of the objective function incorporates the congestion cost of hubs. Constraint set (1b) 

ensures that every node is assigned to exactly one hub. Constraint (1c) guarantees that a node is assigned to an open hub. 

Constraint (1d) ensures that exactly 𝑝 hubs are opened in the network. Constraints (1e) and (1f) ensure that the arcs 

being used are hub arcs, and the capacities of the hubs are respected. Constraint set (1g) demonstrates the capacity 

constraints at hubs, which can be interpreted as keeping the queue system stable. Constraint set (1h) guarantees that a 

hub is quipped if it is opened. In this model. The congestion is represented by the expected value of the total number of 

demands waiting in the hubs. Based on [5], when arrival follows a Poisson process, it can be calculated as follows:
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where, 𝑐   is squared coefficient of variation of service times of node   when it is equipped by capacity l. We have 

𝑐  can be calculated as follows: 

𝑐  
  𝑐   

 𝜎  
  

So, because of the congestion cost structure, we have a nonlinear mixed-integer programming problem. [5] introduced 

the new variables       and  , where: 
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             𝑁  

and reformulated the model with linear objective function and nonlinear constraints as follows: 
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Because of the nature of the congestion cost, assuming 𝑐  ≥         𝑁 in equation (2), the coefficient of variables 

  are non-positive. So that the model tries to make them larger as much as possible, and we can transform (3e) as 

follows: 

   
  

    
      𝑁  

To verify the convexity of the problem, we calculated the Hessian matrix associate with each of the nonlinear 

constraints as follows:    

𝑀  [

0 0

0
 

(   )3
]  

The matrix 𝑀 has nonnegative eigen values and so is positive semi-definite. Thus, it is now verified that this is a 

convex programming problem. To linearize the model, [5] approximated the concave function in the right-hand side of 

constraint (??) by a set of upper-bounding affine functions and replaced the one     𝑁 by a set of constraints as 

follows: 

  − (
  
ℎ

    
ℎ  

− 

(    
ℎ) 

(  −   
ℎ))  0        

ℎ  𝑃  

where 𝑃  is a collection set of   
ℎ values. Because the upper bounds approximate the right-hand side of a set of 

constraints, the approximated problem is a relaxed version of the preceding one, and its best value is a lower bound. 

Algorithm 1 Single-Cut Algorithm 

1: Input:           0      . 

2: while    −    ≥   do 

3: To get the optimal values for variables  , solve the master problem and place them 

in   . 
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4: Build a cut as follows: 

                                                ∑   
 
  1  ∑ [

1

(1+𝑅𝑘
 )
    

.𝑅𝑘
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(1+𝑅𝑘
 )
 ]

 
  1                                 (4) 

5: Add the cuts to the master problem and set  . 

6:      . 

7: End 

3. Algorithm 

In this section, we have presented a single-cut version algorithm to solve the linearized model. Here, we go through the 

algorithm step by step. This algorithm requires an upper bound for problem (3). The other inputs are the acceptable 

optimality gap ϵ, the collection set of cuts H, the iteration counter h. At the beginning of iteration  , we set up and solve 

a master problem by modifying problem (3) replacing the constraint set (3e) with the set of approximating linear 

constraints in  . When we obtained the optimal solution (     
∗ℎ     

∗ℎ    
∗ℎ    

∗ℎ   
∗ℎ     

∗ℎ     
∗ℎ)  the set   is then 

updated by adding the new cut obtained by entering   
∗ℎ in (4). Next, we update the iteration counter   and go to the 

next iteration. In contrast to our work, the existing implementation of the algorithm presented by adds 𝑛 many cuts of 

every single   ,     𝑁 in each iteration. A comparison of these two methods is presented in the following section, 

which is based on the implementation of the two algorithms for a collection of problem instances. 

4. Numerical Results 

To implement the algorithm, we first wrote the model in AMPL and produced some instances in MPS format. The 

algorithm code is written in C language in Visual Studio 2019 and Gurobi solver is used to solve the master problems in 

iterations. The objective function value and CPU times are mentioned in the following table. The parameters N, P and L 

show the number of nodes, number of hubs and the number of possible capacities respectively. The code is run for 100 

iterations for both algorithms. Here, we have a comparison of the two algorithm’s implementation. 

Alg. N P L Upper Bound CPU 

SingleCut. 6 2 7 699.88 66.79s 

 7 3 7 954.25 1151.39s 

 8 2 8 1154.68  706.68s 

 10 3 7 1751.41  10182.31s 

MultiCut. 6 2 7 722.99  58.21s 

 7 3 7 1035.73  920.75s 

 8 2 8 1165.85  1175.61s 

 10 3 7 1894.33  20142s 

 

5. Conclusion and Future work 

The accurate method meets difficulty as the size of the problem grows larger, according to numerical results. The 

single-cut version provided in this work appears to outperform the multi-cut version presented by [5] for the same 

number of iterations, as it delivers roughly the same quality of solutions in a much shorter time. This conclusion is 

acceptable because increasing the number of cuts in each iteration results in curse of dimensionality. For future efforts, 

we propose using a heuristic algorithm before stating the iterations. This can increase the algorithm’s performance since 

cut production will be based on better points, and it will reduce the effort required in the initial iterations to determine 

the correct area for which affine functions must be built. 
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