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Abstract 

Around the world, equity markets draw the attention of investors and financial researchers, who share a common 

interest in searching for relatively more efficient portfolio strategies. Although numerous new allocation techniques 

have been proposed, the available literature still give emphasis to more traditional analytical systems. Accordingly, in 

this research, a large sample, with many stocks and long data series, is applied to the comparative analysis of widely 

used portfolio models trough results based on out-of-sample data. We also carry out a statistical evaluation of the 

sample distributions of returns in order to assess if the available data are consistent with the commonly accepted 

hypothesis that the effects of estimation risk are present in solutions based on the mean-variance model. The results 

obtained, contrary to many critical evaluations, highlight the superiority of portfolios derived from optimal allocation 

models over strategies based on market index and equal weights. 

Keywords: Equity markets, Asset allocation, Portfolio investment strategies, Portfolio performance, Mean-variance 

analysis 

1. Introduction 

Not long after the advent of mean-variance portfolio analysis (Markowitz, 1952), and despite the general recognition of 

its formal-theoretical refinement, it became clear that this model was subject to certain difficulties and inconsistencies – 

a finding based on evaluations of different types. In numerous articles on alternative portfolio strategies, it has been 

frequently mentioned that the application of the optimization model is not widespread among investment professionals, 

since the portfolios obtained by this method are often marked by weights considered "extreme" and "non-intuitive". In 

particular, a great number of assets are usually included with short positions – when the model is resolved without 

imposing non-negativity restrictions – or, when such constraints are introduced (long-only portfolios), solutions often 

include considerably large weights on assets with low liquidity (Michaud, 1989; Black & Litterman, 1992). 

Another type of problem perceived with Markowitz’s portfolio analysis is that, even with moderate revisions to the data, 

the weights in the portfolios are subject to exaggerated fluctuations. Moreover, in evaluations based on out-of-sample 

analyses, these solutions often do not perform favorably – in particular, when compared to straightforward portfolios 

with equal weights (DeMiguel, Garlappi & Uppal, 2009). Several authors have stated that, among the factors 

responsible for the shortcomings pointed out above, the problem of errors in the estimation of parameters stands out, 

especially in the case of expected returns – which has been called "estimation risk". Deng, Dulaney, McCann & Wang 

(2013) state that, in addition to errors in the estimation of means, risks, and correlations, the available data on returns 

are subject to high kurtosis and negative skewness. 

A development that results from the perception of the importance of estimation errors is the line of research focused on 

risk, or "risk-based strategies" (De Carvalho, Lu & Moulin., 2012), since the absence of estimates of expected returns 

reduces the effects of estimation risk. In this context, the most common portfolio strategies can be prioritized according 

to the potential effects of estimation risk. Portfolios with equal weights should come first, given that this risk is not 

present. Secondly, should appear portfolios based exclusively on risk, a group that includes the minimum-risk portfolio 

obtained from the mean-variance model. At the other extreme in this hierarchy should be included strategies that also 

use mean estimates and, in particular, portfolios that maximize the "ex-ante" Sharpe ratio. 

The general objective of this paper is to pursue a comparative assessment of Markowitz’s portfolio analysis from the 
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perspective of the plentiful criticism available in the literature. To reach this overall aim, alternative strategies are 

evaluated using, on a monthly basis, out-of-sample data obtained for a large number of stocks in the Brazilian market. 

Each month, the portfolios were rebalanced by incorporating the latest data – a procedure that uses a fixed-sized 

"window" of data, which is periodically shifted. In this way, each month, ex-post returns that result from the solutions 

obtained in the previous period are available. In this evaluation, we consider both the unrestricted and restricted (long 

only) versions of the optimization model. We also impose an upper limit on the individual assets’ weights in order to 

keep the results more closely related to the intuitive behavior of a typical investor.  

In this study, the portfolio strategies that were used were: equal weights, sample-based mean-variance (global minimum 

variance), maximum ex-ante Sharpe ratio; global minimum variance with short-sale constraints; and maximum Sharpe 

ratio with short-sale constraints. Additionally, results for the major stock-market index in Brazil (Ibovespa) are used as a 

benchmark. A second objective of this study is the statistical evaluation of the sample distributions of monthly returns in 

order to assess if the available data are consistent with the general hypothesis that the effects of estimation risk are 

present, especially in the case of solutions that maximize the Sharpe ratio. In this second type of comparison, the pattern 

observed in the equal weights’ portfolios play a central role. 

Contrary to many of the critical evaluations available in the literature, but in accordance with the findings in a more 

recent study (Theron & van Vuuren, 2018), the overall Markowitz’s analysis does not present an unfavorable 

performance in the data sample that was used. In particular, the global minimum-variance portfolios have indeed met 

this target – they had the lowest risk. In addition, solutions that maximize the ex-ante Sharpe ratio, based on the mean 

return and risk of the portfolio, effectively obtained the best results from ex-post data. 

2. Review of Literature 

One early reference that brought attention to the counter-intuitive nature and the problem of excessive variability in 

portfolios based on mean-variance analysis is Michaud (1989). This author also emphasizes that the data used in the 

optimized solutions were subjected to an acute problem of estimation error. As examples of problems of this kind, Black 

& Litterman (1992) point out that “when investors impose no constraints, the models almost always ordain large short 

positions in many assets” (p. 28). On the other hand, when non-negativity constraints are imposed, the optimizing 

solutions often contain “unreasonably” large weights in not-so-liquid assets.
1
  

Zakamouline & Koekebakke (2009) affirm that, when one cannot conclude that the returns are normally distributed, 

solutions based on the maximum ex-ante Sharpe ratio can be “misleading” and “unsatisfactory”. Additionally, Deng et. 

al. (2013) emphasized that, since the Sharpe ratio implicitly assumes that the returns are independently distributed 

normal random variables, this approach suffers from the problem of estimation errors given that this assumption is not 

valid in financial markets.  

Among the articles investigating the efficiency of alternative portfolio allocation methods, one should mention Haugen 

& Baker (1991). These authors verify that indices based on market capitalization are not efficient in several situations. 

For example, this loss of efficiency is observed when investors disagree about the risk and expected return, in cases of 

short selling being restricted, and when investment income is taxed. Also, this problem is perceived when investment 

alternatives are not included in the benchmark, and when foreign investors are present in the domestic capital market. 

The authors conclude that, in these situations, there are alternatives to portfolios based on market capitalization that 

obtain the same expected return, but with less volatility. Alternatively, Grinold (1992), using an approach that was 

proposed in Gibbons, Ross & Shanken (1989), conducted tests on the possibility of outperforming the benchmark for 

five equity markets: German, American, Australian, British, and Japanese. The results indicated that for four of the five 

markets, the benchmarks (respectively: DAX, S&P 500, ALLORDS, FTA and TOPIX) were not efficient in the period 

analyzed. 

Moreover, in terms of comparing alternative portfolio allocation models, a classic reference is DeMiguel et al. (2009), 

where several different models are examined and contrasted. These authors analyze out-of-sample data to access the 

potential effects of estimation risk of solutions based on mean-variance optimization. In particular, strategies with equal 

weights, minimum variances and maximum Sharpe ratios are included in the evaluation that was performed. 

Additionally, many authors consider that the problem of estimation errors is more pronounced in the case of expected 

returns than in moments of second order. This realization leads to the use of portfolio strategies that rely only on risk 

and diversification. De Carvalho et al. (2012) develop a very detailed empirical study to compare the main alternatives 

based on this approach, which also include minimum-variance solutions. In Braga (2015), a similar methodology is 

pursued of comparing portfolio strategies that require a smaller number of parameters in their solutions, since they are 

                                                        
1
 Nevertheless, in the case of this latter problem, one way out is to introduce additional restrictions, with maximum 

values for the portfolio’s weights – an approach that was in fact adopted in this research (Section 3). 
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less exposed to estimation risk. 

On the other hand, a recent article that is closer to the present study is Dolinar, Zoričić & Kožul (2017). These authors 

seek to evaluate the efficiency of market-capitalization-weighted indices (benchmarks) through the comparison with 

results obtained from traditional models: equal weights (naïve), and the maximization of the Sharpe ratio. However, the 

authors did not consider the alternative of imposing non-negative solutions, as was contemplated in the present work. 

Theron & van Vuuren (2018) also present a comparative empirical analysis of portfolio strategies based on the 

mean-variance model and derive conclusions similar to the ones in this research. 

An earlier paper, that uses data for the Brazilian equity market, is Zanini & Figueiredo (2005). Although the approach 

followed in that text is different from the present research, the general objective is also to apply alternative portfolio 

models to data for the Brazilian stock market. In a contemporaneous work, Farias, Vieira & dos Santos (2006), using 

data for Brazilian equities, also present a comparative analysis for some portfolio selection models. More recently, 

Santos & Tessari (2012) assess out-of-sample performances of three portfolio allocation models, and contrast those with 

the Ibovespa benchmark. They also apply alternative estimators for the covariance matrix. In a different perspective, 

Naibert & Caldeira (2015), using data for Brazilian equities, examine minimum-variance models with alternative 

covariance matrix estimation methods. Also, Caldeira, Moura, Perlin & Santos (2017), investigate the eventual benefits 

of using high frequency data to construct optimal minimum-variance portfolios. 

3. Mathematical Overview 

With the exception of the allocation strategy based on equal weights, the portfolio models in this paper are, from a 

mathematical perspective, examples of restricted optimization problems given that, in all of them, there is an equality 

constraint that is used to establish the main characteristic of a portfolio – represented by the vector x (n×1). This 

constraint can be formulated as the linear function s
T
x = 1, where s

T
 = [1   1 … 1]. The general problem of 

optimization (minimum) with constraints can be represented by: 

Min         (x)                          (1) 
x   

subject to    h
 
i (x) = 0, i = 1, ..., m;                   (2) 

g
 
j (x) ≥ 0, j = 1, ..., p.                              (3) 

In the case of portfolio optimization models that do not allow for short selling, besides the basic linear restriction of a 

portfolio, inequality constraints x
 
j ≥ 0; j = 1, …, n; are also present. In fact, in this research, additional restrictions were 

introduced in these versions of the optimization problem with the objective of imposing a maximum weight a given 

stock can have in the portfolio (25%) – which, from the perspective of an investor, does seem reasonable. Therefore, in 

these versions of portfolio optimization, the additional restrictions are: 0,25 – x
 
j ≥ 0; j = 1, …, n.  

The solutions of models that do not include inequality constraints have relatively simple analytic representations. 

However, models that include inequality constraints can most often only be solved through numerical methods. In all 

cases, however, the fundaments of these solutions are the same, and the general aspects are presented below (Simon & 

Blume, 1994; Gárciga-Otero, 2011). 

The most common method to solve an optimization problem with constraints is based on the Lagrange function, which 

includes multipliers λ 
i and μ 

j: 

L (x, λ, μ) = (x) –〈 λ, h (x)〉–〈 μ, g (x)〉                      (4) 

Proposition 1 (Karush-Khun-Tucker). Necessary conditions for a solution (x
*
, λ*

, μ*
): Assuming that the partial 

derivatives of the functions , h
 
i, g

 
j are well defined, then if x

*
 is a local solution (minimum point) of problem (1) – (3), 

there are unique values x
*
, λ*

, μ*
such that: 

∇x L (x
*
, λ*

, μ*
) = 0n;  h (x

*
) = 0m;  g (x

*
) ≥ 0p;  μ ∗ ≥ 0p;  and〈 μ∗, g (x

*
)〉 = 0    (5) 

Proposition 2. Sufficient conditions for a solution (x
*
, λ*

, μ*
): Assuming that the first and second partial derivatives of 

the functions , h i, g j are well defined, then one can construct the Hessian matrix B = ∇2
x x L (x

*
, λ*

, μ*
) which, being 

symmetric, represents a quadratic form Q
 
(x) = x

T
B x. If Q

 
(x) > 0, ∀ x | x ≠ 0n (positive definite), then a solution (x

*
, λ*

, 

μ*
) that satisfies Proposition 1 is a local solution (minimum point) of problem (1) – (3). 

From the perspective of a solution method and assuming (x) is quadratic and all restrictions are linear – which is the 

case of the portfolio optimization problems examined in this study –, Proposition 1 transforms the original (nonlinear) 

optimization problem into a linear problem. When inequality constraints are present, numerical solution methods must 
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be used. One such approach is the so-called complementarity method (Murty, 1988; Miranda & Fackler, 2002). 

It is well known that, in Markowitz's analysis, portfolios are associated with two variables, namely risk (or volatility) 

and expected return. In the R
2
 space for these variables, the efficient frontier can be specified as the locus of portfolios 

with the highest expected return for a given level of risk (or variance). For the general mean-variance problem,  (x) is a 

positive definite quadratic function, and the sufficient conditions for a minimum (Proposition 2) apply. This 

optimization problem is (Vanini & Vignola, 2001): 

General mean-variance portfolio optimization. 

        Min:         
1

2
 x

T
Vx                        (6) 

   x 
   subject to     x

T
s = 1                      (7) 

         x
T
 Er = rp                       (8) 

Matrix V in eq. (6) contains variances and covariances. Further, in eq. (8), Er represents a vector with the mean returns 

of the n assets, and rp is a given value on the vertical axis. On the other hand, if restriction (8) is not included, then we 

have a global minimum-variance problem. When there are no inequality constraints – in particular, short sales are 

allowed –, the portfolio-optimization problem has a straightforward analytical solution. 

Theorem 1. The solution of the global minimum-variance portfolio (6) – (7), without inequality restrictions, is x
*
 = 

(1/a) V
 –1 

s; a = s
T
V

 –1 
s. 

For a proof, see Vanini & Vignola (2001) and Da Fonseca (2003). 

By introducing in the above analysis the return of a risk-free asset, specified on the vertical axis, an optimum point on 

the frontier of efficient portfolios can be determined by a tangent line to the curve that contains the risk-free return. In 

this problem, restrictions (7) and (8) are altered to include a risk-free asset (rf, with proportion invested x0): 

Optimum (tangent) portfolio on the efficient boundary. 

   Min:        
1

2
 x

T
Vx                        (6) 

      x 
        subject to   x

T
s = 1 – x0                         (7a) 

                       x
T
 Er = rp – rf x0                          (8a) 

One aspect that deserves mention is that problem (6) – (8a) is equivalent to the maximization of the well-known Sharpe 

ratio.
2
 

Theorem 2. The solution for the optimum (tangent) portfolio (6) – (8a), without inequality restrictions, is x
*
 = V

 –1 
(Er – 

rf s) (b
 
–

 
a

 
rf)

 –1
. In this solution, a is defined in Theorem 1, and b = (Er)

T 
V

 –1 
s. 

For a proof, see Vanini & Vignola (2001) and Da Fonseca (2003). 

4. Methodological Elements and Sample Description  

Generally, the stocks in the sample used in this research are the ones included in the benchmark index for the Brazilian 

equity market – the Ibovespa. The total number of equities in this benchmark is not fixed, since it usually changes with 

each revision of the index. In the three revisions that occurred in 2023, the total number of stocks were, respectively, 88, 

85 and 86. 

Initially 178 stocks were considered for inclusion in the sample. These stocks were available in a broader index for the 

Brazilian equity market – the IBrA-B3 – at the end of 2023. Then, from this initial set, only the stocks that were traded 

in the entire research period and, at the same time, were part of the Ibovespa in at least one edition during this period, 

were included in the sample that was actually used. The total number of equities incorporated in this final version was 

72. The Appendix contains statistical indicators for the sample. 

As previously stated, the main objective of this paper is to apply five alternative portfolio selection models to data 

available for Brazil’s equity market from 2015 to 2023. In the context of the earlier researches mentioned in Section 2, 

                                                        
2
 Strictly speaking, for a given portfolio, the Sharpe ratio usually includes the (ex-post) return that was observed in a 

previous period.  
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the present work analyzes the following models: a) Equal weights (naïve); b) Sample-based mean-variance (global 

minimum variance); c) Global minimum variance with inequality constraints; d) Maximum Sharpe ratio; and e) 

Maximum Sharpe ratio with inequality constraints.
3
 Additionally, a comparison is also made with a benchmark for 

Brazil’s equity market. In order to achieve this paper’s goal, three basic procedures were implemented:  

1. For the 72 stocks, estimates of mean returns, covariances and standard deviations were obtained based on 

data available daily for the previous two years up to the last trading day of the month of reference.  

2. Solutions are constructed for the alternative portfolio strategies using the estimates obtained in Stage 1. 

3. For each portfolio selection model, out-of-sample returns were computed using data for the following month. 

That is, effective returns were obtained for the 72 stocks and these data were used to calculate the actual 

performance of the portfolio – from the perspective of an investor, these are the gains or losses that would 

occur by applying a given model.  

Procedures 1, 2, and 3 were repeated for each month from January 2017 onwards through a “rolling window”, and this 

scheme provided out-of-sample results for 82 months.
4
 In the models based on the Sharpe ratio, it was used the 

reference rate for Brazil’s Treasury bonds (Selic) for the riskless interest rate. 

All computations were performed in the software environment R, using several R financial functions available in the 

package fPortfolio that was developed by Rmetrics (Würtz, Setz, Chalabi, Chen & Ellis, 2015).  

5. Analysis of the Results 

5.1 Out-of-Sample Performances of Alternative Strategies 

As mentioned above, the Ibovespa was used as the benchmark for Brazil’s equity market. The use of weights based on 

broad indices like the Ibovespa is perhaps the most commom procedure that investors apply for portfolio allocation in 

equities – a solution that unfolds from the established CAPM model. Figure 1 gives a general perspective of the changes 

in this index in the 82 months for which sample data were used in the present study. As can be perceived in the Figure, 

there were no substantial changes in this benchmark during the research period. 

 

Figure 1. Ibovespa index: Equities with greater weights 

                                                        
3
 The Sharpe ratio is not being considered here as an ex-post indicator of portfolio performance. Instead, the portfolio’s 

ex-ante data are used in the traditional formula. 

4
 It is important to emphasize that the procedure in Stage 3 creates a “real world” situation, in the sense that it simulates 

what would effectively happen to values invested in the portfolios with a one-month maturity. 
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From the perspective of an investor in equity markets, the portfolios derived from the optimization models with 

inequality constraints – non-negative restrictions and maximum portfolio weights – certainly seem feasible and not too 

difficult to implement. This important aspect, from a practical standpoint, is illustrated in Figures 2 (global minimum 

variance) and 3 (maximum Sharpe ratio). Further, these Figures also reveal that, as intuition would suggest, the 

maximum Sharpe ratio portfolio is much more diversified and subjected to greater changes in its weights. 

 

Figure 2. Global minimum variance portfolios with inequality constraints: Equities with greater weights 

Note: Optimal solutions with non-negativity and maximum-weight inequalities. 

Furthermore, Figure 4 and Table 1 illustrate the results that should be considered the most relevant given that they both 

are based on out-of-sample data that show the effectiveness of alternative portfolios – that is, the gains and losses that 

would occur from a “real-world” investment strategy established at the beginning of each month. 

In Figure 4, only returns are considered and, in relation to this variable, the huge disparities in the portfolio's 

performances are evident. It is especially noteworthy that one of the most common allocation strategies – perhaps the 

most common – based on passive investment in a benchmark portfolio has shown considerably lower results. In 

particular, it can be seen that the global minimum-variance portfolios were more successful in terms of cumulative 

return than the Ibovespa. In the case of models that maximize the Sharpe ratio, the more favorable performances in 

terms of cumulative returns strike out. Also, the very positive performance of the strategy based on equal weights 

should be highlighted.  

Table 1, in turn, includes indicators for both average return and portfolio risk, as well as the ratio that combines them. 

Based on out-of-sample data, it can be seen that global minimum-variance portfolios have indeed met this target – they 

have the lowest risk. In addition, models that maximize the ex-ante Sharpe ratio, effectively obtained the best 

performance from ex-post data based on the mean return and risk of the portfolios. These very favorable results of the 

solutions from Markowitz’s portfolio analysis are in distinct contrast with a handful of published researches that point 

out to problems resulting from the presence of estimation risk. 

By far the worst result in terms of the Sharpe ratio is that of the Ibovespa, which was outperformed by the equal weights 

and global minimum-variance portfolios. Additionally, as an example of the comparison between alternative strategies, 

Figure 5 presents the monthly frequencies for the best and worst portfolios in terms of the Sharpe ratio.  
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Figure 3. Maximum Sharpe ratio portfolios with inequality constraints: Equities with greater weights 

Note: Optimal solutions with non-negativity and maximum-weight inequalities. 

 

Figure 4. Accumulated returns: Out-of-sample data 

Notes: Monthly returns from Jan. 2017 to Oct. 2023. MSR – Max. Sharpe ratio; EW – Equal weights (naïve); GMV – 

Global min. variance. 
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Table 1. Out-of-sample portfolio performance: Monthly returns 

 
Ibovespa 

Equal 
Weights 

Global Minimum Variance 
(GMV) 

Maximum Sharpe Ratio 
(MSR) 

    Unrestricted Restricted Unrestricted Restricted 
Average return 0.0099 0.0149 0.0126 0.0116 0.0216 0.0206 
Acumulated return 1.8786 2.6706 2.5378 2.3131 4.7507 4.2455 
Portfolio risk 0.0647 0.0733 0.0489 0.0500 0.0699 0.0737 
Sharpe ratio 0.0415 0.1045 0.1100 0.0866 0.2057 0.1819 

Note: In the maximum Sharpe ratio portfolios, the average risk-free monthly rate is 0.0072. 

 

 
Figure 5. Comparative frequencies for portfolios with highest and lowest ex-post Sharpe ratios 

5.2 Analysis of Sample Returns 

The purpose of this Section is to evaluate whether the statistical analysis of the monthly returns available in this 

research is consistent with the common perception of the presence of estimation errors in the solutions based on 

Markowitz’s optimization model. In particular, we sought to access whether the potential effects of this type of problem 

could be captured in the sample distribution of returns and whether, in comparison with portfolios with equal weights, 

which are not affected by estimation risk, we could perceive in the other portfolios a more acute presence of asymmetry 

and kurtosis. In addition, we evaluate whether these distributions can be considered approximately normal. Table 2 

contains the key statistics for the portfolios examined. 

As it can be perceived from the information in Table 2, and contrary to the commonly accepted view, the returns of 

portfolios derived from mean-variance analysis do not present a graver problem of asymmetry and kurtosis. In fact, the 

opposite is true, that is, the unrestricted optimized solutions have the most favorable indicators and, even more 

importantly, according to the Jarque-Bera statistical test, the unrestricted maximum-Sharpe-ratio portfolio is the only 

one for which the assumption of normality cannot be rejected. 
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Table 2. Sample statistics: Monthly returns 

  Ibovespa Equal Global Min. Variance (GMV) Max. Sharpe Ratio (MSR) 

    Weights Unrestricted Restricted Unrestricted Restricted 

Mean 0.009913 0.014887 0.012602 0.011553  0.021610 0.020625 

Median  0.008577 0.018694 0.009705 0.008958 0.026153 0.024715 

Minimum –0.299043 –0,333991 –0.178126 –0.225065 –0.175900 –0.323878 

Maximum 0.159027 0.159517 0.146255 0.131861 0.173239 0.184228 

Std. Deviation 0.064707 0.073314 0.048877 0.049994 0.069941 0.073667 

Std. Error 0.007146 0.008096 0.005398 0.005521 0.007724 0.008135 

Skewness –1.253510 –1.265025 –0.229562 –1.048348 –0.416481 –1.202172 

Kurtosis 7.954595 7.713524 5.323047 8.042968 3.169955 7.479945 

Jarque-Bera 105.347 97.7797 19.1584 101.911 2.46926 88.3235 

Probability 0.000000 0.000000 0.000069 0.000000 0.290942 0.000000 

From a different perspective, the information available in Figures 6 and 7 complement the previous results. In these 

Figures, it is possible to identify the strong impact of the month most affected by the covid epidemic on the sample 

distributions. As can be seen in the histograms in Figure 6, the portfolio obtained from the solution of the unrestricted 

maximum Sharpe ratio was the least affected by these adverse effects. On the other hand, the Q-Q plots in Figure 7 

indicate that, if this strongly negative period were discarded, the equal-weight portfolio and the solution of the restricted 

maximum Sharpe ratio would be those closest to the pattern of the normal distribution. 

In summary, it seems appropriate to conclude that what this research fundamentally shows is that the data available for 

the Brazilian stock market point to the superiority of portfolios based on Markowitz's mean-variance analysis, 

especially in the case of maximum Sharpe-ratio portfolios. 

 

Figure 6. Comparative histograms for portfolio strategies 
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Figure 7. Comparative Q-Q plots for portfolio strategies 

6. Conclusions 

It is probably appropriate to affirm that, in the available literature on comparative analysis of portfolio models, 

emphasis continues to be placed on traditional analytical systems and, especially, on Markowitz's mean-variance model. 

Following this general trend, five models – four of them based on optimized solutions – and one benchmark index 

(Ibovespa) were contrasted and compared in this research using data from Brazilian stock market over a relatively long 

period of time. It should also be mentioned that quite a few published studies have pointed out that traditional 

optimization models are affected by errors in parameter estimation, especially in the case of expected returns. In 

addition, this perceived deficiency would be one of the factors explaining that, in some applied studies, mean-variance 

models underperform the commonly used (naïve) strategy of assigning equal weights to a relatively large number of 

assets. 

In this study, the sample includes only the stocks that were traded in the entire research period and, at the same time, 

were part of the Ibovespa in at least one edition during this interval – the total number of equities was 72. For each 

portfolio selection model, out-of-sample returns were computed using data for the following month after the period that 

was used in the estimation and solution. In this way, effective returns were generated for alternative portfolios. When 

only portfolio returns are considered, it can be seen that the global minimum-variance portfolios were more successful 

in terms of cumulative return than the Ibovespa. In the case of models that maximize the Sharpe ratio, an even more 

favorable performance in cumulative returns was obtained. Also, according to both accumulated returns and the Sharpe 

ratio, the positive performance of the strategy based on equal weights might be highlighted (Table 1).  

Considering indicators for portfolio’s return and risk, and especially the Sharpe ratio, it can be seen that, based on 

out-of-sample data, global minimum-variance portfolios have indeed met this target – they have the lowest risk. In 

addition, models that maximize the ex-ante Sharpe ratio effectively obtained the best results from ex-post data. By far 

the worst result in terms of the Sharpe ratio is that of the Ibovespa, which was outperformed by the naïve and global 

minimum-variance portfolios. Further, another aspect that deserves mention is that, considering the Sharpe-ratio results, 

the differences between optimization with and without restrictions were not very large. One additional conclusion is that 

out-of-sample returns derived from mean-variance analysis do not present a graver problem of asymmetry and kurtosis 

in comparison with equal weights’ portfolios. In fact, the opposite is true, and according to the Jarque-Bera statistical 

test, the unrestricted maximum-Sharpe-ratio portfolio is the only one for which the assumption of normality cannot be 

rejected. 

Therefore, it seems adequate to conclude that this research essentially shows that, taking into account indicators of both 

risk and return, available data for the Brazilian stock market point to the superiority of portfolios based on Markowitz's 

mean-variance analysis, especially in the case of maximum Sharpe-ratio portfolios. 
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Appendix: Sample statistical indicators 

Daily returns (%), Jan. 2015 – Oct. 2023 

Equities Min. Max. Mean St.Dev. Skew. Kurt. 

ABEV3 -8.649 8.17545 0.02546 1.38147 -0.0935 3.33286 
ALOS3 -7.7601 9.69873 0.08828 1.76708 0.57509 2.65997 
ALPA4 -11.676 13.815 0.14524 2.18915 0.1183 2.68745 
ARZZ3 -11.778 8.29469 0.08133 2.27285 -0.1298 1.67649 
B3SA3 -8.8165 9.63918 0.13258 2.07654 0.10257 1.21475 
BBAS3 -23.789 13.4291 0.08189 2.80685 -0.477 7.999 
BBDC3 -13.926 11.4074 0.0689 2.0192 -0.0395 2.84419 
BBDC4 -14.056 12.2462 0.07196 2.06041 -0.0123 3.3952 
BBSE3 -10.786 10.3523 0.03981 1.96205 -0.0402 2.57612 
BEEF3 -8.2917 8.59033 0.00788 2.25774 0.15861 1.38153 
BPAN4 -12.558 20.958 0.11887 3.16932 1.30138 7.08235 
BRAP4 -28.085 15.3775 0.09719 3.12091 -0.4495 5.97215 
BRFS3 -21.999 11.5806 -0.0442 2.2051 -0.5165 9.57721 
BRKM5 -22.042 19.3927 0.05865 2.63072 -0.1403 10.0019 
CCRO3 -15.415 10.5884 0.02762 2.31923 -0.2401 2.63373 
CIEL3 -10.257 14.264 -0.0561 2.30788 0.35323 2.81565 
CMIG4 -23.639 16.3848 0.02896 2.90892 -0.4499 7.77956 
COGN3 -16.498 13.5223 -0.0222 2.93037 -0.0546 2.09887 
CPFE3 -18.597 8.58726 0.06076 1.68999 -0.9601 14.2281 
CPLE6 -13.477 8.98062 0.07762 2.40199 -0.2392 2.20887 
CSAN3 -10.477 10.8449 0.07718 2.15076 -0.106 1.40418 
CSNA3 -22.951 18.7511 0.05717 3.97169 0.19068 2.70897 
CVCB3 -15.502 8.86188 0.09623 2.3182 -0.4173 3.71493 
CYRE3 -17.749 11.0435 0.09593 2.27002 -0.2989 4.20235 
DXCO3 -14.133 12.2486 0.07242 2.36826 0.1983 2.21913 
ECOR3 -16.002 8.79688 0.06181 2.55369 -0.129 1.63166 

https://public.websites.umich.edu/~murty/books/linear_complementarity_webbook/
https://www.bm.com.tn/ckeditor/files/markowitz.pdf
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EGIE3 -7.9922 6.37632 0.07577 1.46281 0.01155 2.12385 
ELET3 -23.534 40.0759 0.14703 3.54509 1.25805 15.3772 
ELET6 -18.587 27.8243 0.12425 3.1679 0.72171 6.85489 
EMBR3 -16.783 20.2928 -0.0098 2.13957 -0.2407 13.0941 
ENEV3 -44.183 28.7682 0.005 4.12125 -1.5359 24.8136 
EQTL3 -6.4386 7.139 0.12637 1.48138 -0.0867 1.00619 
EVEN3 -20.489 11.1005 0.09886 2.61566 -0.2088 3.69234 
EZTC3 -13.777 10.2523 0.12543 2.32089 0.00975 1.48801 
FLRY3 -7.0261 10.5318 0.12229 1.88372 0.20233 1.10403 
GFSA3 -14.64 19.5131 -0.0551 3.18372 0.34078 2.57026 
GGBR4 -12.81 14.9188 0.05133 3.03531 0.11576 1.54651 
GOAU4 -20.955 16.2707 -0.0255 3.50688 -0.1712 3.34232 
GOLL4 -22.444 40.7641 0.08786 4.49217 1.11252 10.3657 
HYPE3 -15.383 19.18 0.07304 1.79186 0.4442 15.1094 
ITSA4 -10.129 9.77579 0.08176 1.86249 -0.0672 2.15389 
ITUB4 -12.836 10.3684 0.07263 1.90775 -0.0678 3.24672 
JBSS3 -37.605 20.3245 0.07325 3.23634 -0.7193 18.3953 
JHSF3 -19.807 25.4234 0.07358 3.22362 0.78116 5.22312 
KLBN11 -6.6559 6.31171 0.04616 1.71487 0.0944 0.70082 
LREN3 -8.0651 9.34271 0.12862 1.97652 0.17355 0.83232 
MGLU3 -17.751 31.6912 0.30684 3.99687 0.95732 8.30178 
MRFG3 -10.583 17.2358 0.04276 2.63692 0.6363 3.53496 
MRVE3 -8.6136 12.1949 0.11649 2.17324 0.18969 1.33659 
MULT3 -13.293 6.69031 0.0666 1.80422 -0.1001 2.80589 
NTCO3 -12.506 13.6711 0.06895 2.46927 0.35952 2.73693 
PETR3 -16.154 14.9662 0.0712 3.1187 -0.021 3.01135 
PETR4 -17.149 15.0858 0.06752 3.19845 -0.1391 3.33562 
POMO4 -10.178 13.6361 0.01981 2.60887 0.29573 1.71455 
POSI3 -16.252 31.3483 0.12715 3.33236 0.97549 9.45775 
PRIO3 -26.358 60.7989 0.15916 4.5917 2.47063 30.8367 
QUAL3 -34.77 31.2153 0.0705 2.87051 -0.763 30.3462 
RADL3 -6.636 8.84554 0.1213 1.83815 0.24332 0.96868 
RENT3 -7.3285 8.02942 0.12929 2.23208 0.04611 0.58522 
SANB11 -11.819 8.45574 0.12059 2.121 -0.1107 1.77555 
SBSP3 -12.386 10.4021 0.10088 2.25769 -0.2811 2.41951 
SLCE3 -9.323 9.30265 0.11032 2.26761 0.08426 1.39214 
SMTO3 -9.6412 9.68997 0.05936 1.79218 0.09813 2.33309 
TAEE11 -8.674 8.37174 0.08679 1.5851 -0.1759 1.66165 
TIMS3 -8.9029 10.7098 0.02354 2.01964 0.01881 1.54117 
TOTS3 -7.4662 8.27476 0.05799 2.05971 0.0702 1.052 
UGPA3 -10.717 8.32473 0.00931 1.86238 -0.1859 2.51572 
USIM5 -17.598 30.0892 0.04546 3.94261 0.47645 4.91697 
VALE3 -28.135 13.7685 0.07905 3.10285 -0.5497 6.75426 
VIVT3 -10.831 8.72521 0.04321 1.8545 -0.0148 2.28373 
WEGE3 -9.5453 6.85752 0.09657 1.76426 -0.127 1.06274 
YDUQ3 -16.434 21.2984 0.06069 3.09667 0.02274 3.37932 

 

 

 

 

 

 

 

 

 


