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Abstract 

Social cash transfers (SCTs) are considered a priority in least-developed countries, where the gap between the need for 

basic social protection and existing provisions is greatest. This study represents one of the first comprehensive 

treatments of the impact of social cash transfers in low-income sub-Saharan Africa, and the first for Zambia's oldest 

SCT scheme. The results, based on propensity score matching and fully efficient odds-weighted regression, and data 

from the Kalomo SCT pilot scheme, confirm positive SCT effects on per capita consumption expenditure. We also 

discover threshold effects with SCT mostly impacting food expenditure among poorer beneficiary households and 

non-food expenditure among wealthier beneficiaries.  

Keywords: Social cash transfers, impact, consumption expenditure, propensity score matching, odds-weighted 

regression 

JEL codes: C14, C21, D63, I38.  

1. Introduction 

Poverty reduction is of concern in countries that have the majority of their citizens living in poverty. Most strategies to 

reduce poverty aim to provide economic opportunities to the poor and to mobilize their productive potential. However, 

households that lack the necessary human and other forms of capital to participate in these programs are excluded from 

such poverty-reduction efforts. This sub-group of the poor has been the target of social protection interventions such as 

food aid, input support, asset distribution, and social cash transfers (SCTs). SCTs have become increasingly popular 

because of their inherent flexibility in helping with the target households’ varied needs (Commission for Africa 2005). 

SCTs have also been known to lead to investment in productive enterprises that may lead to permanent welfare 

improvements for beneficiaries (Gertler, Martinez & Rubio-Codina, 2006) as well as their communities (Angelucci and 

De Giorgi, 2009; Wietler, 2007).
1
  

SCT programmes, with conditionality attached, are quite well-established in many Latin American countries, such as 

Brazil, Mexico, and Honduras. Non-contributory pension schemes are rapidly expanding and have taken root in a 

number of countries in Asia, such as China, India, Bangladesh, and Nepal; and southern Africa (South Africa, Namibia, 

Botswana, Lesotho, and Mauritania). The concept of regular and reliable assistance in cash is relatively new in most 

other sub-Saharan African countries. A few, such as Ethiopia, Malawi, Mozambique and Zambia, have piloted 

small-scale social assistance programmes. In Zambia, pilot SCT schemes have been in existence since 2003 with the 

primary aim to reduce extreme poverty among the poorest households with insufficient or no labour capacity. From the 

maiden pilot scheme in Kalomo in 2003, SCT schemes have since spread to 18 more districts and preparations are under 

way to add another 31 (see Section II). 

Although a number of studies have been conducted on different aspects of the oldest SCT scheme, none have been 

                                                        
1
 See Tabor (2002) for comprehensive characterization, advantages and challenges of social cash transfers (SCTs) in 

both developed and developing countries. 
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designed to measure the schemes’ impact on household welfare in a scientifically robust way. An initial impact 

evaluation on the Kalomo pilot scheme that followed beneficiary households for a year, found improvements in a 

number of indicators, including school enrolment rates (by 3 percent), nutrition (both quantity and quality of meals), 

asset endowments, ownership of small livestock, and self-perception of social status (Schüring, Michelo, & 

Boonstoppel, 2007). However, this study lacked a control group and did not quantify the size of the impact. The lack of 

a control group proved particularly problematic as the pilot region was hit by a drought during the evaluation year. 

Rigorous impact studies are a valuable source of lessons for subsequent project design and roll-out and provide an 

evidence base with which to solicit political will.  

This study uses survey data from Zambia's oldest scheme, Kalomo, to determine the impact of SCTs on household 

welfare. To the best of our knowledge, this study represents one of the first comprehensive treatments of the impact of 

SCT programmes in low income countries of Sub-Saharan Africa. Recent SCT impact evaluation work in Zambia has 

focused on the more recent schemes such as the Monze SCT scheme (Handa et al., 2012; Seidenfeld et al., 2011) and 

the Child Grant Program (Handa et al., 2013a; Handa et al., 2013b; Daidone et al., 2013). No such study has been done 

on the oldest SCT program in Zambia. Moreover, neither the Monze model nor the CGP model is identical in design 

and/or implementation to the Kalomo model. The Monze program, while using the same inclusive targeting mechanism 

as the Kalomo program, experimented with educational and health conditionality on the beneficiaries Our paper 

contributes to the growing literature on the impacts of SCTs in Zambia and sub-Saharan Africa in general, extending the 

debate by measuring not only aggregate effects but also heterogeneous impact across household wealth strata.  

A flexible and fully efficient version of propensity score matching (PSM) that uses odds-weighted regression analysis 

(Hirano, Imbens, & Ridder, 2003) was used to estimate aggregate and heterogeneous impact on household consumption. 

Heterogeneous impact was estimated across wealth strata as defined by an asset wealth index generated using principal 

components analysis (Pritchett & Filmer, 2003). The results indicate significant positive aggregate welfare effects. The 

impact was especially large with respect to non-food expenditure. This effect was greatest among asset non-poor 

households while food expenditure effects were greater among the poorer households. This seems to suggest, as 

expected, beneficiary households in general prioritize food items, and that there exist wealth threshold effects related to 

non-food expenditure effects.  

The rest of the paper is organized as follows. Section II presents a brief overview of the pilot SCT schemes in Zambia 

and other African countries. The conceptual framework, on which the empirical models were based, is presented in 

Section III. Section IV presents the methods and procedures, followed by the empirical results in Section V, and 

summary and conclusions in Section VI. 

2. Social Cash Transfers in Africa and Zambia 

In the recent past, Social Cash Transfers (SCT) have gained popularity in many countries around the world, including 

Africa. Among the first African countries to adopt this concept were South Africa (Aguëro, Carter & Woolard, 2006; 

Duflo, 2000; Case and Deaton, 1998) and Mozambique (Datt, Payongayong, Garret & Ruel, 1997) and have since 

spread to several other countries in Sub-Saharan Africa (SSA) and beyond. Garcia and Moore (2012) show that there 

are few countries in Sub-Saharan Africa that have not taken the initiative. These programs have been shown to have 

desired impacts on aspects such as health (Lagande, Haines & Palmer, 2009), food security (Miller et al., 2011), basic 

income (Standing, 2008) and poverty reduction (Barrientos & Dejong, 2006). 

Zambia has a population of 13 million, of which 64 percent and 54 percent are classified as poor and extremely poor, 

respectively (CSO, 2006). An estimated 200,000 households have been classified as being critically poor and 

incapacitated, characterised by high dependency ratios, elderly heads, and high incidences of Orphans and Vulnerable 

Children (OVCs) as high as 60 percent (Schüring, Michelo, & Boonstoppel, 2007). Social cash transfers (SCTs) in 

Zambia started with a pilot scheme in Kalomo in 2003. By 2008, SCTs had been rolled out to four other districts: 

Chipata, Katete, Kazungula, and Monze. The Kalomo scheme pioneered the notion that the destitute with limited 

productive capacity comprise about 10 percent of Zambia’s population. With the exception of Katete, the other three 

pilot schemes have been used systematically to test variants of the Kalomo model and to learn lessons for scaling up the 

cash transfers.
2
  

SCTs were first identified in the 2005 Social Protection Strategy of the Ministry of Community Development, Mother 

                                                        
2
 This figure is empirically based. It constitutes the proportion of households found in the 2004 LCMS to have a per 

capita food consumption under 1400 kcal per day and also lack able-bodied labor. This category of households is 

sometimes referred to as the ‘nonviable’ poor and tends to comprise elderly single-person households, elderly 

households with young children and orphans, households headed by HIV/AIDS widows, and households containing 

individuals with disabilities that make it very difficult for them to gain a living. A pilot survey conducted before 

Kalomo got under way apparently confirmed the validity of this proportion in a sample of the district population. 
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and Child Health (MCDMCH) as one of the strategies for providing social assistance through the Public Welfare 

Assistance Scheme (PWAS). Since inception, the pilot SCT schemes have enjoyed the financial and technical support of 

a range of cooperating partners such as GIZ, DfID, CARE International, Irish Aid and UNICEF. In 2010, the 

Government of the Republic of Zambia (GRZ) and cooperating partners signed a memorandum of understanding (MOU) 

and a joint financing agreement to facilitate further scale-up of SCT programming from 5 to 15 districts over a period of 

7 years. The MOU is a 10-year agreement, with initial funding of US $60 million, subject to a major mid-term review 

and impact evaluation after the first three years of implementation (i.e. up to 2013). As part of this MoU, the Ministry of 

Community Development, Mother and Child Health (MCDMCH) has geographically targeted districts on the basis of 

incidence of extreme poverty.  

Two types of SCT interventions were envisioned. First, an updated version of the community-based targeting (CBT) 

model intended to reach the population understood to be vulnerable was extended to five new districts (Chienge, 

Luwingu, Senanga, Serenje, and Zambezi). However, after much brainstorming with cooperating partners and 

consultants and an analysis of the 2006 Living Conditions Monitoring Survey (LCMS), the ministry later decided to 

change from CBT to categorical targeting (CT). This variant of the scheme has categories determined through a 

principal components analysis (PCA) and a poverty-based vulnerability index. The desired households, as determined 

by the PCA, are those that host orphaned and vulnerable children (OVC), among other things. Thus, this variant of the 

SCT program is sometimes referred to as the OVC model. The scheme is also referred to as the Multi-Category 

Program (MCP).
3
 Second, the child grant program (CGP) involving distributing SCTs to all mothers of children under 

the age of 5 was also established in five districts most affected by under-5 mortality and extreme poverty (Chilubi, 

Kalabo, Kaputa, Milenge, and Shang’ombo). Reaching an estimated 50 percent of the households in each district, the 

scheme is intended to have a more intensive effect on vulnerable households in remote areas of deeply entrenched and 

widespread chronic poverty.  

 

Table 1. Scale-Up Plan for the OVC/MCP and Child Grant Models  

 Scale-up Districts by Program Type 

Year OVC/MCP Model Child Grant 

2010 Serenje, Luwingu, Zambezi Kalabo, Kaputa, Shang’ombo 

2012 Chiengi Chilubi 

2013 Senanga Milenge 

Source: Ministry of Community Development, Mother and Child Health (2011) 

Table 1 summarizes the scale-up plan for two versions of the expanded scheme under the 2010 MoU. Implementation of 

the OVC/MCP and Child Grant Program (CGP) scale-ups has been staggered, with each of the two program variants 

first starting in three of the five districts and then scaling up to a fourth and a fifth district when certain performance 

indicators have been met. In 2010, the child grant scheme was successfully introduced in three of the five districts 

(Kaputa, Kalabo, and Shang’ombo), following a baseline survey conducted in November of the same year.
4
 The 

baseline survey for the other new SCT model was conducted in Luwingu and Serenje districts in November 2011. 

Implementation of the transfers in the two districts began shortly after that, in December 2011. As in Monze, the CGP 

and OVC schemes are also designed to facilitate comprehensive impact evaluation. Multiple follow-up surveys for the 

two new variants of the SCT intervention were planned for between 2012 and 2014. 

The addition of CGP and OVC districts brought the total number of cash transfer beneficiaries in the country to 48,000 

households. At the time of this paper, the number of beneficiaries had risen to 61,000 households across 19 districts. 

However, in 2014, due to significant impacts shown by impact evaluation studies, especially on the CGP (Handa et al., 

2013a; Handa et al., 2013b; Daidone et al., 2013), and following an eight-fold increase in the Government budget 

allocated to the programme, the SCT interventions are being expanded to an estimated total of 189,000 recipients in 50 

districts. This latest scale-up wave is using a substantially enhanced version of the inclusive model first pioneered by 

the oldest SCT scheme. The use of this type of targeting for the scale up was based on recommendations from a recent 

targeting assessment exercise (Carraro & Marzi, 2013). Thus, the results of this study, based on the Kalomo scheme, 

provide valuable lessons going forward.  

                                                        
3
 The ministry refers to this version of the cash transfer scheme as the inclusive model. 

4
 However, owing to high security risks associated with the handling of the transfers by the Pay-Point Managers, there 

was a proposal to halt the scale-up to the new districts until a new payment mechanism was put in place. This 

necessitated the amendment to the Joint Financing Agreement. 
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3. Conceptual Framework 

Social cash transfers are motivated by extreme liquidity constraints that households experience during less productive 

stages in their life-cycle, during income shocks and situations of extreme poverty. These liquidity constraints are 

exacerbated by inherently imperfect credit markets (Gertler, Martinez, & Rubio-Codina, 2006). Cash transfers can 

smoothen consumption and ensure that households do not fall below a critical threshold that is necessary to make a 

‘decent’ living. 

In Zambia, SCTs are to a great extent targeted at the poor and incapacitated households (Schubert & Slater, 2006). Thus, 

the most anticipated effect of the SCT programmes in Zambia is increased welfare levels in the immediate and short 

terms but with long term implications. The idea is that better nourishment could improve the general condition, 

education and health outcomes as well asfuture productivity of the members of the incapacitated households and, hence, 

reactivate their latent potential to further improve their welfare both in the immediate and long terms. By providing 

some of the daily requirements, the SCT can free up time previously used to look for food, which could then be applied 

towards improving agricultural and non-agricultural production. School-age children may also be encouraged to enrol 

and, for those already enrolled, to increase their attendance rates, both with long term implications on welfare.  

One of the most reliable measures of welfare in the literature is consumption expenditure.
5
 SCTs have significantly 

affected consumption levels of beneficiary households but also non-beneficiary households. Gertler, Martinez, & 

Rubio-Codina (2006) found that beneficiary households of Mexico’s OPORTUNIDADES programme (formerly called 

PROGRESA) were able to increase their consumption levels by as much as 34 percent through investment in productive 

activities.
6

 Angelucci & De Giorgi (2009) provide a concise description of the design and structure of 

OPORTUNIDADES and demonstrate evidence of positive indirect effects on consumption levels of ineligible 

households, operating through informal insurance and credit markets. Sadoulet, de Janvry & Davis (2001) estimate an 

income multiplier effect of 1.5-3.6 for the PROCAMPO cash transfer program in Mexico. These program effects on 

consumption do not necessarily have to be homogeneous across all beneficiary households. For example, relatively less 

poor households may have the relevant preconditions to use the SCTs to attain some of the outcomes quicker than their 

poorer counterparts. Conversely, poorer households may have had very low consumption levels to start with, leading to 

huge effects of the SCTs.  

3.1 Identification of Impact 

Identifying project-induced changes is often confounded by the fact that communities and individual households are 

inherently heterogeneous and participants are seldom selected randomly. Typically, projects use pre-determined criteria 

to locate their interventions and to identify the direct beneficiaries. This non-random selection of participants implies 

that the observed mean differences between project and non-project communities and households do not necessarily 

represent project impact (Ravallion, 2001).  

Impact is commonly measured as the average treatment effect on the treated (ATT), defined as the expected value of the 

difference between the level of the outcome variable attained by participating households and that which they would 

have attained had they not participated in the project.
7
 That is, 

  1 0 | 1t tATT E Y Y w   , (1) 

where 1

tY  is the outcome variable in period t if household i participated in the program, 0

tY is the outcome variable in 

period t  had household i not participated in the treatment, and w is the treatment indicator and is equal to 1 if the 

household is a participant and zero otherwise.
8
  

A common challenge in impact evaluation is that only 1

tY  or 0

tY , and not both, is observed for any given community, 

household or individual, as the case may be. This is so because it is not possible for the same unit of study to be both a 

                                                        
5
Although expenditure and income are supposed to be equivalent, the latter tends to be more volatile and prone to 

under-reporting bias 
6
 In addition to immediate consumption and investment, evidence of increased savings has been found in some SCT 

programmes (Ravallion & Chen, 2005). 
7
 That is, confining ourselves to the definition of impact often referred to, in the literature, as the average treatment 

effect on the treated or ATT (Wooldridge, 2006; Ravallion 2001, 2003; Cameron & Trivedi, 2005). See Imbens (2004), 

and Wooldridge (2002) for a comprehensive discussion of other treatment effects. 
8
 Subscript i has been suppressed to simplify notation. 
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participant and a non-participant. Thus, with 1w   only 1

tY  is observed and 0

tY  is missing data. Estimation of the 

counterfactual constitutes the greatest challenge and a subject for much of the econometric literature on impact 

evaluation. In randomized experiments, 0

tY  can be estimated from control communities and households.
9
 This makes 

it possible to attribute any systematic differences in the outcome variable between treated and control units to the 

program in question. In a non-randomized study, such as the one reported in this paper, the counterfactual has to be 

estimated from the controls through carefully chosen statistical tools. 

4. Methods and Procedures 

4.1 Data and Data Sources 

This study uses cross-sectional survey data from the Kalomo SCT schemes in southern Zambia. The survey was 

conducted in 2007 by MASDAR International Consultants (MIC) and Palm Associates Limited (PAL). The sample was 

selected through two-stage stratified cluster sampling in which the primary sampling units (PSUs), the CWACs, were 

selected using probability proportional to size (PPS) and each household in either stratum (participants or comparison) 

in the selected PSU had an equal probability of being selected into the sample.
10

 Comparison households were selected 

from among households that had qualified to be in the programme based on the selection criteria but were left out only 

on account of the 10 percent cut-off point. The sample was designed to identify consumption impact at 80 percent 

power. With 88 percent response rate, the survey had a realized sample of 886 households, of which 45 percent were 

SCT beneficiaries. 

4.2 Impact Estimation 

Ravallion (2001; 2003) characterizes the various methods used to estimate impact under quasi-experimental conditions. 

Although the SCT schemes targeted households in the top 10 percent on an implicit index of vulnerability, there were 

no consistent data on household orderings available at the project offices.
11

 However, due to the fuzziness of the cutoff 

point and the fact that the ranking process was abandoned half way (Hamoonga, 2007), it was possible to find matches 

between those in the programme and those just above the cutoff. Thus, impact was estimated by propensity score 

matching (PSM).  

PSM presents a unique set of techniques for reconstructing an experimental environment out of a non-random, 

quasi-experimental design. The treatment or participation relationship was modeled through a probit framework with 

the aim to estimate the conditional probabilities of participation (given the observed characteristics), also known as the 

propensity scores (PS). The probit model was specified as:  

 Prob    /1|w      x δ x , (2) 

where w is a dichotomous variable equal to one if the household is an SCT beneficiary and zero otherwise, The Ministry 

offices had lists of beneficiaries and households that had qualified (based on targeting criteria) but were not included in 

the programme due to the 10 percent requirement.  is a standard normal cumulative distribution function (CDF);  is 

the error term;  and δ are parameter and vector of parameters to be estimated; and x is a vector of household and 

community covariates used in the beneficiary selection process. Equation (2) was estimated using maximum likelihood 

(ML) procedures in Stata. 

Beneficiary households in the scheme had been selected using a community-based approach in which a specific set of 

criteria were used (MCDSS and GTZ SSN 2007a; Watkins 2008).
12

 This list and information gathered by talking to 

MCDSS staff were used to specify x. However, the final specification of x took cognizant of the variables’ relative 

effects on the variance and bias of the estimates. Brookhart et al. (2006) contend, based on simulation experiments, that 

variables that are unrelated to the treatment but are related to the outcome should always be included as their inclusion 

                                                        
9
 Although randomization does not necessarily get rid of selection bias, it balances the bias between the treatment and 

comparison groups (Barker, 2000). 

10
 Different administrative and geographic units are used to divide a district for the purpose of efficient and effective 

targeting and programme implementation. The CWACs and ACCs are the grassroots structures of the Public Welfare 

Assistance Scheme (PWAS), which is a national social welfare scheme responsible for coordinating all social welfare 

interventions down to the grassroots levels. Both the CWACs and ACCs are committees elected by members of their 

respective communities. As geographic units, the CWACs are used to define specific areas with a certain number of 

villages, and in turn the CWACs are nested within ACCs. 
11

 This made it impossible to account for the ranking through appropriate statistical techniques, such as the 

regression-discontinuity design (RDD). 

12
 Notice that there were differences in the combinations of variables used for targeting in the different districts. 

Watkins (2008) recognizes this and argues for greater harmonization in future. 
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will decrease the variance of an estimated treatment effect without increasing bias. They also demonstrate that including 

variables that are related to the treatment but not to the outcome will increase the variance of the estimated treatment 

effect without decreasing bias.Thus, following Brookhart et al. (2006), we include in x all covariates that are 

significantly correlated with the outcome variable, whether or not they are correlated with the treatment variable. We, 

however, exclude all covariates that are themselves affected by the treatment, such as income and asset endowment 

(Maertens and Swinnen 2009; Brookhart et al. 2006).   

Impact was estimated using propensity score matching (PSM) and Hirano, Imbens & Ridder’s (2003) propensity score 

weighting (PSW), or odds-weighted regression, approach. PSM involves finding, for each treatment unit, matches in the 

control group based on observable characteristics (Abadie & Imbens, 2005; Dehejia & Wahba, 2002). Thus, the ATT 

was computed as the weighted average of the difference in the outcome variable between treatment households and 

matched control ones. We match using kernel functions and perform inferences using bootstrapped standard errors.
13

 

The kernel matching estimator is given as (Heckman, Ichimura, & Todd 1997; Smith & Todd, 2005; Gilligan & 

Hoddinott, 2007) 
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where T is the treatment group participants, C refers to the comparison group, K is the kernel function, and 
na is the 

kernel bandwidth.  

Unlike PSM, which is consistent, PSW has been shown to produce fully efficient estimates (Hirano, Imbens and Ridder 

2003). Under the PSW framework, impact is the estimated slope coefficient 
1

̂  in the weighted-regression model  

 
  1ln y w e   

0 ,  (4) 

where the observations are weighted by 1 for treatment households and by the odds ratio,     ˆ ˆ/ 1P Px x , for 

comparison households;    ˆ 1|P E w x x  is the conditional probability of participation estimated in (2); 0  and 1
 are 

parameters to be estimated; and e is a zero-mean error term. The dependent variable,  ln y , is the natural logarithm of 

per capita consumption expenditure on food, non-food or both.  

4.2.1 Heterogeneous Impact 

One of the advantages of the weighted-regression approach to PSM is that it can be readily extended to measure 

differential impacts across some defined sub-groups of the population. In our case, two groups were formed based on an 

asset-wealth index constructed using principal components analysis (Filmer & Pritchett, 2001). Disaggregating impact by 

asset wealth helped to test whether the SCTs benefitted the poorer of the ultra poor the most. Based on this index, 

households were grouped into two categories (see Figure A1): i) the asset poor households (i.e. the 60 percent with an 

asset wealth index of zero or less), and ii) the relatively less asset poor (i.e. those with wealth index above zero). Thus, 

heterogeneous impact was estimated as  

 
  0 1 2ln *y w w D u      , (5) 

where D is a dummy variable equal to 1 if the household was categorized as asset poor and zero otherwise; 0
 , 1

 , and 

2
 are parameters to be estimated; and u is a zero-mean error term. As in Equation (3), the observations are weighted by 

1 for treatment households and by     ˆ ˆ/ 1P Px x  for comparison households. Based on (4), the impact of the 

programme on the outcome variable is equal to 1̂  for the relatively less poor households (D = 0) and 1 2
ˆ ˆ  for the 

poorer ones (D = 1). Thus, 2
̂ is the additional impact that a poor household would experience relative to its less poor 

counterparts. 

4.2.2 Balancing Tests and Common Support 

The propensity score is only as good as the quality of the matching, and any propensity-score-based estimator would be 

unbiased only under certain identifying assumptions. The balancing effects of the propensity score were tested using a 

number of procedures, including t tests for the differences in covariate means between the two groups (participants and 

non-participants) before and after the matching (Rosenbaum and Rubin 1985), effectiveness in reducing standardized 

bias to within acceptable levels (no more than 5 percent), and ability to drive the overall probit relationship to 

                                                        
13

 Kernel matching, unlike nearest-neighbor matching, arguably leads to more valid bootstrapped standard errors 

(Abadie & Imbens, 2005; Gilligan & Hodinott, 2007). 
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insignificance as measured by a joint likelihood ratio (LR) test and pseudo R
2
 (Caliendo & Kopeinig, 2008).

 14
 The 

results show that all these balancing requirements were satisfied using our specification of the propensity score model 

(see Table A1).
15

 The estimated propensity scores also satisfied the common support requirement, with the region of 

common support being within (0.113, 0.968) of the propensity score distribution (see Figure A2).  

5. Results 

5.1 Descriptive Statistics 

The descriptive results confirm that the SCT target population is extremely poor, characterized by elderly (59 years old 

on average) and lowly educated heads (2.7 years), high dependency ratios (8.6 effectively inactive members for every 

active member), and high incidences of female- and widow-headed households (Table 2).  

Table 2. Characteristics of the SCT target population in Kalomo District 

Variable label Full sample 

Sub-samples 

Control Treatment 

Male-headed households (%) 36.0 41.0 31.0 *** 

Age of household head (years) 58.91 55.08 63.47 *** 

Education level of household head (years) 2.67 3.30 1.92 *** 

Widow-headed households (%) 63.0 56.0 71.0 *** 

Effective dependency ratio 8.60 6.73 10.83 *** 

Number of children 14 years or younger 2.03 2.13 1.91 * 

Number of male members 15-30 years 0.55 0.58 0.51      

Number of female members 15-30 years 0.50 0.55 0.43 ** 

Number of male members 31-45 years 0.10 0.12 0.08 * 

Number of female members 31-45 years 0.18 0.22 0.15 ** 

Number of male members 46-60 years 0.11 0.14 0.07 *** 

Number of female members 46-60 years 0.29 0.34 0.23 *** 

Number of members 61 years and above 0.69 0.54 0.85 *** 

Orphaned children 16 years or younger (%) 47.0 43.0 53.0 *** 

Value of main house (million ZMK) 0.20 0.24 0.15 * 

Asset wealth index1 0.00 0.04 -0.05 

 Landholding size (ha) 2.38 2.71 1.99 ** 

Cropped land area in 2006/07 (ha) 1.46 2.00 0.81 ** 

Per capita income (‘000 ZMK) 115.78 141.40 85.29 *** 

Per capita expenditure (‘000 ZMK) 138.59 126.50 152.98 *** 

Distance to nearest main road (km) 1.13 1.27 0.96      

Distance to nearest secondary school (km) 26.13 24.47 28.12 ** 

Distance to nearest under-five post (km) 4.21 4.60 3.75 * 
1
A unitless index computed from asset endowment using principal components analysis (PCA) 

About 47 percent of children under 16 years were orphaned. An average household owns 2.4 hectares of land, of which 

1.5 (or 61 percent) is cultivated and planted to crops. Income levels are generally very low, averaging about 115,780 

Zambian Kwacha (or USD 31.30) per capita.   

Compared to the control group, treatment households are significantly more likely to be female- and elderly-headed, 

                                                        
14

 A well-balanced propensity score is necessary for artificially constructing an experimental environment from a 

quasi-experimental situation. The idea is that there should be no association between treatment status and each covariate 

once the observations have been restricted to the region of common support. Estimation of the propensity score and 

generation of balancing tests were achieved by using psmatch2 (Leuven and Sianesi 2003), pscore (Becker & Ichino, 

2002) and pstest (Leuven & Sianesi, 2003) procedures in Stata (StataCorp, 2003). 
15

 A key identifying assumption for the PSM is that there should be no unobserved factors (not explicitly accounted for 

in Equation 2) that influence both participation and the outcome variable. This is variantly known in the literature as the 

conditional independence assumption (CIA), matching on observables, unconfoundedness, etc. More generally, PSM is 

prone to what has come to be known as ‘hidden bias’ if there are unobserved factors that influence both participation 

and the outcome variable (Rosenbaum & Rubin, 1983; Caliendo & Kopeinig, 2008; Jalan & Ravallion, 2003). Hidden 

bias arises from two sources, omitted variables and/or unobserved and unknown factors (Cameron & Trivedi, 2005). 

The standard procedure of using interaction terms and higher order polynomials in the specification of the propensity 

score (as explained above) helps to deal with the former. The latter, on the other hand, is non-testable but is not an issue 

if we assume that the unobserved factors are equally distributed between the two groups. 
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and to host orphaned children and elderly members. They also have significantly lower per capita income, landholding 

sizes, and cultivated land area. 

Table 3. Probit results for the household participation model in Kalomo 

Variable Variable description Parameter estimate Marginal effect 

  

(1) (2) 

Constant 

 

-0.216 

 

  

(0.46) 

 hage Age of the household head (years) -0.0391*** -0.0155 

  

(0.014) 

 hag2 Age of head squared 0.0006*** 0.0002 

  

(0.00013) 

 dmar Marital status of head, 1=married -0.143 -0.0563 

  

(0.17) 

 dwido Marital status of head, 1=widowed 0.207 0.0817 

  

(0.24) 

 maxedu Education of most educated member (years) 0.0124 0.0049 

  

(0.028) 

 edwid maxedu x dwido interaction -0.0136 -0.0054 

  

(0.031) 

 m15to30 Male members 15-30 years old -0.0297 -0.0118 

  

(0.058) 

 f15to30 Female members 15-30 years old -0.0643 -0.0255 

  

(0.064) 

 f31to45 Female members 31-45 years old 0.0678 0.0268 

  

(0.11) 

 dovc Orphaned children dummy, 1=yes 0.1950** 0.0771 

  

(0.096) 

 tland Landholding size (ha) -0.0164 -0.00650 

  

(0.013) 

 kmroad Distance to nearest main road (km) -0.0116 -0.0046 

  

(0.020) 

 kmsec Distance to secondary school (km) 0.0076*** 0.003 

  

(0.0026) 

 kmhosp Distance to nearest hospital (km) -0.0013 -0.0005 

  

(0.0058) 

 kmu5 Distance to nearest under-five post (km) -0.0079 -0.0031 

  

(0.0078) 

 Joint significance of location dummies 12.58**   

Goodness-of-fit Chi-square 133.78*** 

 Log likelihood -530.82 

 Cragg & Uhler's R2 0.191 

 Observed probability of participation 0.457 

 Predicted probability of participation 0.451 

 Number of observations 867 

 Level of significance: *=10 percent, **=5 percent, ***=1 percent  

Source: Data from Kalomo household survey, 2007 

 

5.2 Propensity Score Model Results 

Table 3 presents the parameter estimates and marginal effects from a probit model of participation for eligible 

households. Overall, the model was a very good and significant fit  2χ 133.78;  p-value < 0.001 . The results also indicate 

interesting systematic differences between participating households and their non-participating but eligible counterparts. 

The probability of participation in the SCT scheme was directly and significantly correlated with hosting of orphaned 

children, the age of the household head and distance to the nearest secondary school. In much of rural Zambia, 

secondary schools are located in or close to district urban area.  

That participants were more likely to be further from towns and to host orphans is consistent with a priori expectations. 

Households that hosted orphans were 7.7 percent more likely to be in the scheme than those that did not whereas an 

additional kilometre away from town raised the probability of participation by 0.3 percent. The specific geographical 

location of the household also mattered as indicated by significant joint test of location dummy variables. 
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The age of the households head was also a significant determinant of participation at 1 percent level. Age also exhibits 

an expected U-shaped relationship with the probability of participation. That is, the probability of being a beneficiary 

declines at a decreasing rate as the age of the household head increases. This is consistent with expectations and 

targeting criteria as it implies that child-headed and elderly-headed households are more likely to be in the scheme than 

their counterparts that are headed by prime-age adults. 

It should be noted that these results do not constitute an assessment of targeting effectiveness. As earlier stated, our 

sample was drawn from the programme participants (i.e. the 10 percent most incapacitated of the ultra poor) as well as 

from those that had qualified to be in the programme but were left out only because of the 10 percent ceiling. Thus, the 

probit model represents only the selection process from among the eligible group.
16

  

 

Table 4. Propensity score matching and odds-weighted regression estimates of the impact of the Kalomo SCT pilot 

scheme on per capita consumption expenditure 

    Propensity score 

matching 

Odds-weighted regression 

Variable Variable description Overall Heterogeneous 

  

(1) (2) (3) 

Constant  - 11.28*** 11.278*** 

   (0.070) (0.096) 

w Treatment indicator, 

1=participant 

0.270*** 0.314*** 0.334*** 

 (0.085) (0.085) (0.090) 

w x D w interacted with wealth dummy 

(D, 1=poor) 

- - -0.034 

   (0.093) 

Goodness of fit (F statistic) - 13.65*** 7.61** 

Number of observations 845 845 845 

Level of significance: *=10 percent, **=5 percent, ***=1 percent  

Dependent variable: Natural logs of per capita consumption expenditure  

Source: Data from Kalomo household survey, 2007 

 

5.3 Impact on Consumption Expenditure 

Table 4 presents propensity score matching (Column 1) and odds-weighted regression (Columns 2 & 3) estimates of the 

impact of social cash transfers on per capita consumption expenditure. While columns 1 and 2 assume a common mean 

impact, column 3 tests the assertion that the impact will differ by the household’s wealth status. Overall, the impact of 

the SCT scheme on consumption expenditure was unambiguously positive and statistically significant, accounting for 

27-33 percent of the beneficiary households’ per capita consumption expenditure (Table 4). The impact was especially 

large for relatively wealthier households although the difference was not statistically significant (Column 3). 

 

Table 5. Propensity score matching and odds-weighted regression estimates of the impact of the Kalomo SCT pilot 

scheme on per capita food consumption expenditure 

    Propensity score 

matching 

Odds-weighted regression 

Variable Variable description Overall Heterogeneous 

  

(1) (2) (3) 

Constant  - 10.872*** 10.872*** 

   (0.081) (0.081) 

w Treatment indicator, 

1=participant 

0.205*** 0.256** 0.203* 

 (0.085) (0.100) (0.105) 

w x D w interacted with wealth 

dummy (D, 1=poor) 

- - 0.088 

   (0.112) 

Goodness of fit (F statistic) - 6.49*** 3.25** 

Number of observations 845 845 845 

Level of significance: *=10 percent, **=5 percent, ***=1 percent  

Dependent variable: Natural logs of per capita consumption expenditure  

Source: Data from Kalomo household survey, 2007 

                                                        
16

 The correct comparison group for a targeting evaluation is all households other than the participants. 
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The general results do not change much when analysis is confined to per capita expenditure on food-related items only 

(Table 5). However, the magnitudes of the impact are slightly lower at 20-26 percent though still statistically significant. 

Another distinct difference is that, for food expenditure poor households seem to gain 8.8 percent more from 

participation than their wealthier counterparts though, as before, the difference is not statistically significant. 

 

Table 6. Propensity score matching and odds-weighted regression estimates of the impact of the Kalomo SCT pilot 

scheme on per capita non-food consumption expenditure 

    Propensity score 

matching 

Odds-weighted regression 

Variable Variable description Overall Heterogeneous 

  

(1) (2) (3) 

Constant  - 8.896*** 8.896*** 

   (0.194) (0.194) 

w Treatment indicator, 

1=participant 

0.758*** 0.733*** 1.299*** 

 (0.246) (0.239) (0.251) 

w x D w interacted with wealth 

dummy (D, 1=poor) 

- - -0.962*** 

   (0.260) 

Goodness of fit (F statistic) - 9.37*** 15.15*** 

Number of observations 845 845 845 

Level of significance: *=10 percent, **=5 percent, ***=1 percent  

Dependent variable: Natural logs of per capita consumption expenditure  

Source: Data from Kalomo household survey, 2007 

 

Table 6 presents PSM and OWR impact estimates on consumption expenditure on non-food items. The results seem to 

suggest that SCTs are especially effective in raising non-food consumption expenditure, contributing 73-76 percent to 

beneficiary households’ per capita non-food consumption expenditure. When disaggregated by asset wealth, the impact 

of participation on per capita non-food expenditure was significantly larger among non-poor households (130 percent) 

compared to their poorer counterparts (34 percent).   

6. Summary and Conclusions 

This paper reports the impact of the Kalomo social cash transfer scheme, Zambia’s oldest SCT scheme, on consumption 

expenditure. Impact results suggest that the scheme is achieving its primary objective of improving immediate welfare, 

as indicated by its consistently positive impact on per capita consumption expenditure. That the impact on non-food 

expenditure is greater among non-poor households suggests that these households use a substantial portion of their cash 

transfers to further re-enforce their asset base. It also signifies the presence of possible threshold effects, where a 

minimum level of asset base is required for a beneficiary household to be able to use a substantial portion of the transfer 

on asset accumulation. This assertion is further reinforced by the finding that poorer households experience greater 

impact on per capita food consumption expenditure. These variations of the nature and distribution of impacts across 

wealth levels identify the need for impact studies to not only measure aggregate impact but also to measure 

heterogeneous effects of the interventions. .  
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Figure A1. Distribution of asset wealth index 

 

Figure A2. Region of common support: Kernel density functions for control and treatment households 
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Table A1. Balancing properties of covariates in treated and control groups in Kalomo 
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Variable Sample t Prob > | t |

(1) (2) (3) (4) (5) (6)

hage Unmatched 63.474 55.077 57.7 8.48 0.000

Matched 63.474 62.309 8.0 86.1 1.12 0.263

hag2 Unmatched 4,243.6 3,240.8 62.6 9.23 0.000

Matched 4,243.6 4,094.8 9.3 85.2 1.26 0.208

dmar Unmatched 0.210 0.323 -25.8 -3.76 0.000

Matched 0.210 0.202 1.7 93.5 0.25 0.799

dwido Unmatched 0.712 0.552 33.6 4.91 0.000

Matched 0.712 0.716 -0.8 97.5 -0.12 0.903

maxedu Unmatched 6.116 6.452 -10.3 -1.51 0.131

Matched 6.116 6.026 2.8 73.1 0.37 0.708

edwid Unmatched 4.220 3.403 20.6 3.02 0.003

Matched 4.220 4.123 2.4 88.2 0.34 0.732

m15to30 Unmatched 0.513 0.582 -8.0 -1.16 0.245

Matched 0.513 0.496 1.9 75.8 0.27 0.785

f15to30 Unmatched 0.439 0.565 -16.3 -2.38 0.018

Matched 0.439 0.439 0.0 99.7 0.01 0.994

f31to45 Unmatched 0.146 0.221 -17.7 -2.60 0.010

Matched 0.146 0.162 -3.6 79.6 -0.54 0.589

tland Unmatched 2.000 2.721 -15.6 -2.23 0.026

Matched 2.000 2.032 -0.7 95.6 -0.17 0.862

kmroad Unmatched 0.953 1.274 -11.1 -1.60 0.110

Matched 0.953 0.902 1.8 84.0 0.33 0.742

kmsec Unmatched 28.371 24.460 17.7 2.62 0.009

Matched 28.371 28.668 -1.3 92.4 -0.18 0.859

kmhosp Unmatched 9.748 9.812 -0.7 -0.10 0.918

Matched 9.748 9.756 -0.1 87.9 -0.01 0.990

kmu5 Unmatched 3.785 4.645 -13.0 -1.90 0.057

Matched 3.785 3.720 1.0 92.4 0.16 0.874

acc4 Unmatched 0.179 0.172 1.9 0.28 0.778

Matched 0.179 0.171 2.1 -7.6 0.29 0.771

acc5 Unmatched 0.104 0.102 0.5 0.08 0.938

Matched 0.104 0.117 -4.5 -748.9 -0.62 0.536

acc11 Unmatched 0.149 0.115 10.2 1.50 0.135

Matched 0.149 0.133 4.6 54.3 0.63 0.527

acc12 Unmatched 0.086 0.191 -30.8 -4.45 0.000

Matched 0.086 0.103 -5.1 83.6 -0.83 0.406

dovc Unmatched 0.530 0.431 20.0 2.93 0.004

Matched 0.530 0.543 -2.6 87.0 -0.36 0.715

Balance summary statistics

Sample Pseudo R
2

LR chi2 p>chi2

Unmatched 0.112 133.78 0.000

Matched 0.004 4.49 1.000

H0: mean (treated) = 

mean (control)
% bias between 

treated and 

controls

Mean 

control 

units

Mean 

treated 

units

% 

reduction 

in |bias|
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