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Abstract 

Opioid mortality rates have been increasing sharply, but not uniformly by age. Peak ages have recently dropped from 
the mid-40s to the mid-30s. There are two age peaks that have been moving up diagonally, with years of birth around 
1960 and 1980 staying near the tops, and those around 1970 generally lower. We model this history with the Lee-Carter 
plus cohorts mortality model, which includes variable trends by age, and a generalization of it. This can be fit by 
maximum likelihood estimation (MLE) but statistical methods that shrink parameters towards zero (regularization) give 
lower predictive variances than MLE does. We address how to apply regularization to age-period-cohort models. 
Frequentist and Bayesian regularization are explored. The latter has some practical advantages. 

Keywords: MCMC, Lee-Carter, regularization, cohorts, opioid mortality 

1. Introduction 

Demography, epidemiology and sociology have used age-period-cohort (APC) models since Greenberg, Wright, and 
Sheps (1950). The bilinear AP Lee-Carter model, extended with cohort effects, is an example. A generalization is the 
model of Hunt and Blake (2014), which can include multiple trends to address changes in the ages that have the 
strongest trend, for instance from medical research focusing on different diseases. 

APC models can easily become over-parameterized, risking increased projection errors. Common ways to deal with this 
include putting the parameters on smoothed curves, like the Gompertz curve for mortality, or on cubic splines. We follow 
Barnett and Zehnwirth (2000), who put the parameters on piecewise-linear curves in the age, period, and cohort directions 
separately, and then shrink the second differences of the fitted parameters. The parameters to estimate then become the 
slope changes between the line segments of the piecewise-linear curves. Eliminating or shrinking a slope change 
continues the previous trend at that point, or at least flattens out the slope change. If no slope-change parameters are shrunk, 
the model gives the same fit as using APC level parameters. 

We refine the approach by using Bayesian regularization for the parameter shrinkage. The APC level parameters are 
cumulative sums of the slope changes, and the fitting can be set up as a regression with dummy variables for each slope 
change. The dummies specify how many times a given slope change is summed in the calculation of the level parameter for 
a data point. Venter and Şahin (2017) use a similar approach. A related paper is Gao and Meng (2017), who use 
Bayesian regularization for cubic spline fitting of an age-cohort model. 

The goal of regularization is to reduce the predictive variance by shrinking all parameters except the constant to or 
towards zero. This usually shrinks fitted and forecasted values towards the mean. The shrinkage implies that the fitted 
values are no longer unbiased, but that allows lower error variances than those of the minimum variance unbiased MLE 
estimates. A precursor is the James-Stein estimator of Stein (1956). He found that when estimating three or more means, 
some shrinking of the estimates towards the overall mean always reduces error variances from those of MLE. Typically 
in linear modeling, the fitted values are means of the data points, so many means are being estimated. 

Regularization traces to Hoerl and Kennard (1970). Estimation methods like lasso and ridge regression simply shrink 
regression parameters towards zero. This is controlled by a selected shrinkage scale λ. For instance, ridge regression 
minimizes the negative log likelihood (NLL) plus λ times the sum of the squared parameters. Lasso minimizes NLL+ 
λƩ |parameters|. How much to shrink is informed by cross-validation, that is, by measuring how well the model predicts 
on holdout samples as λ changes. It is unusual for the no-shrinkage limit of MLE to be optimal, but it is generally 
included. Usually the variables are standardized to have mean zero, so shrinking the parameters shrinks the fitted values 
toward the overall mean. 
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Bayesian shrinkage is done by giving the parameters mean-zero prior distributions, like normal, double exponential, or 
Cauchy. The double exponential prior produces the lasso estimates as the posterior mode, and the normal prior does this 
for ridge regression. The Bayesian versions have a few advantages: 

• They come with a goodness-of-fit measure that can be calculated quickly. Traditional measures like AIC are not 
applicable in that the effective number of parameters is not clear when parameters are shrunk. A fit measure 
based on leave-one-out cross-validation, the loo information criterion, or looic, can be computed efficiently 
from the MCMC (Markov Chain Monte Carlo) estimation of the posterior distribution. This measures the 
relative predictive accuracy of different choices of λ. 

• Fischer information for parameter error ranges assumes MLE. MCMC produces parameter ranges directly, as it 
generates a sample of the posterior distribution of the parameters. 

• It is not necessary to select a single degree of shrinkage. Putting a prior distribution on λ itself generates a 
posterior sample of the parameters including a range of λ values. Using such "hyper-priors" is considered the 
fully Bayesian method in that it is not optimizing looic but rather is based purely on the posterior distribution. It 
usually gives models that are close to the optimum looic fit, but Bayesians would tend to favor the posterior 
distribution over the best fitting if they differed, based on issues of fitting the population vs. fitting the data. 

Vehtari, Gelman, and Gabry (2017) derive the looic computation. Although their calculations measure the predictive 
accuracy of the left out points, their derivation is based on adjusting the loglikelihood for sample bias, just as the AIC 
aims to do. Thus looic evaluates the parameter shrinkage on how well the model fits the data after considering sample 
bias, and so can be viewed as measuring the NLL of the fit on the population instead of on the sample. 

2. Opioid Mortality Application 

The opioid overdose epidemic is of particular concern due to the sharply rising period trends. Understanding the age 
and cohort effects could help target ameliorative resources. Overdose mortality rates incorporate fairly complex trends 
that modeling can help identify. The data used is for the US population of non-Hispanic white males ages 17–65 for 
1999-2016, from the National Center for Health Statistics (2017), including underlying causes of death unintentional 
drug poisoning (X40-X44), suicide drug poisoning (X60-X64), assault by drugs (X85), and drug poisoning of undetermined 
intent (Y10-Y14), as coded in the International Classification of Diseases, 10th Revision. 

Figure 1 shows the evolution of these mortality rates by age over the period. Each year’s curve consists of centered 
weighted moving averages of seven ages, with weights of (1,2,3,4,3,2,1)/16. A few year-of-birth cohorts are highlighted. 
The mortality for most of the ages is increasing but there seem to be two waves of ages with higher mortality and a dip 
between them. These waves and the dip are moving to the right as they move up, which could be related to cohorts 

aging. However they are moving to the right slightly more slowly than the cohorts are aging. The model to be fit 
accounts for that as a more rapid increase in the mortality rates for the younger ages with a cohort effect superimposed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Mortality Rates by Age and Year with Selected Year-of-Birth Cohorts 
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APC models of population trends can be used when the data comes in cells, each for a specific age group from a specific 
year of origin (like year-of-birth cohort) observed at a specific time (the period). Often the estimate of the mean for the 
cell is the product of an age factor, a period factor, and a cohort factor with an overall constant term. In that case, the 
logs of the cell observations have an additive APC model. 

Of course two of the three age, period and cohort indicators determines the other, usually with period = cohort + age. 
The parameters too have an identifiability feature – there are offsetting transforms of the parameters that will give the 
same fitted values for every cell. This was already well understood by the time of Fienberg and Mason (1978), who 
conclude that APC models require an arbitrary choice of constraints in order to get unique parameters. 

The identifiability problem raises a question if there are actually any true or meaningful age, period and cohort effects 
that can be defined independently of each other. Bijlsma et al. (2017) challenge this notion, for example. But to some 
extent outside data, like from surveys of attitudes, even though perhaps not specific enough to quantify any absolute true 
effects, can help inform the choice. One possible constraint is to assume that all the cohorts are identical. Then the age 
and period parameters would be the same as in the simpler AP model. That is a strong assumption and it is testable, for 
example by looking at residuals by cohort. Thus AP model parameters are those from an APC model having the testable 
arbitrary constraint that there are no cohort differences. 

Rather than looking for true effects in the three directions, we try to select constraints that are admittedly arbitrary but 
which make the parameters interpretable. We attribute the entire time trend to the period parameters, with no overall 
trend allowed in the cohort direction. This is done by making the cohort parameters the residuals of a time trend through 

proposed parameters. The cohort factors then represent differences among cohorts relative to the assumption that there is 
no long-term cohort trend. Doing this does not necessarily force the earliest and latest cohorts factors to be similar, but 
in the opioid mortality model fit they turn out to be. 

The earliest and latest generational cohorts in this data are pre-boomers and post-Millennials. They both end up with 
lower fitted mortality rates than the generations in between. This is plausible from what we know outside of this data. 
Survey data discussed in Section 5 finds the post-Millennials to be strongly anti-drug use in general, and pre-boomers 
have been regarded similarly. There could in fact be a long-term upward or downward cohort trend, separate from the 
period trend, that would make one of these generations a bit higher or lower than the other. Instead of the flat cohort 
long-term trend constraint, we could have assumed that the latest group is 2% higher than the earliest group, or vice 
versa, in addition to any period trend. This would result in about the same fitted values, as the period trends would 
adjust for this. Either of those could be as true as our assumption, but would be a little more complicated to interpret, 
and would not change the relative relationships among boomers, Gen X, and Millennials to any great degree. 

Because we fit parameters on piecewise-linear curves, the points where slopes change form a set of constraints 
themselves, which could be enough to produce unique APC parameters. In fact we find that works for the linear APC 
model here. This does not make these the true effects however – they are just conditional on those constraints, which are 
not as easy to interpret as is the constraint of moving any long-term cohort trend into the period parameters. Other 
complicated estimation methods also can result in unique APC parameters, but also would essentially constitute a set of 
difficult-to-interpret constraints. 

3. Methodology 

3.1 General Background on Frequentist and Bayesian Regularization 

The double exponential, or Laplace, prior, is the starting point for Bayesian lasso. It has the shape of an exponential 
distribution for positive values, and this is mirrored for negative values. The density for a parameter b, with the 
exponential scale λ, is p(b) = 0.5λe−λ|b|. It pushes the posterior of b towards zero. 

MCMC estimation of the set of parameters b for observations y starts with Bayes Theorem: P (b|y) = P (y|b)P (b)/P (y). P(y) 
is assumed to be an unknown constant, so the posterior probability P(b|y) is proportional to the numerator P(y|b)P(b), 
which is the likelihood times the prior. That property is enough to generate samples from the posterior, using MCMC 
algorithms, or even to find the b that maximizes it, i.e., the posterior mode. 

For a model with k parameters, the negative log of the numerator is N LL + k(log2 − logλ) + λƩ|bj|. The posterior 
mode is thus produced by minimizing N LL + λƩ|bj| − k(logλ). With a pre-selected value of λ, the final term is a 
constant that can be dropped. That leaves minimizing NLL + λƩ|bj|, which is what is done in classical lasso. That 
is why using the Laplace prior is called Bayesian lasso, especially when the posterior mode is taken as the estimator. If λ 
is itself a parameter to be estimated, the −k(logλ) term cannot be dropped, and then the minimization gives a joint 
estimate for b and λ. In that case, however, a prior would also have to be specified for λ. If a uniform prior is used, that 
adds a constant that can be dropped, so the joint posterior mode would just minimize NLL + λƩ|bj| − k(logλ). 



Applied Economics and Finance                                          Vol. 5, No. 4; 2018 

15 
 

Doing this same calculation starting with a mean-zero normal prior in σ2 gets the posterior mode by minimizing N LL + 
λƩbj

2 − (k/2)logλ, where 1/λ = 2σ2. For a selected value of λ, the last term is a constant, so N LL + λƩbj
2 is minimized. 

This is ridge regression. 

An increasingly popular shrinkage prior is the Cauchy distribution with 1/p(b) = π(λ2 + b2)/λ and −log(p(b)) = 
−logλ + logπ + log(λ2 + b2). For a fixed λ, the posterior mode minimizes NLL + Ʃlog(λ2 + b2). This is an 
alternative to both lasso and ridge regression. The Cauchy prior often yields more parsimonious models with better 
looic than the normal or Laplace priors give. It has more weight near zero but is also heavier tailed, which allows a few 
larger parameters when they are called for. We use the Laplace prior below, but checked the final model by refitting it 
with the Cauchy prior. The fit was very similar in this case. 

Bayesians often prefer the posterior mean, as the posterior mode is just a single parameter sample. The parameters that 
maximize the posterior probability could be doing so by over-fitting some features of the particular sample, whereas the 
posterior mean considers all parameter sets that provide a plausible explanation of the data. For the Laplace prior, the 
posterior mode shrinks some parameters exactly to zero, which also happens in classical lasso. This makes lasso a 
method for variable selection as well as for parameter shrinkage. The posterior mean does not do this, as usually the 
zero parameters differ among the samples. Then dropping parameters that are near zero, especially if the sample values are 
equally spread across positive and negative values, is a practical alternative. In fact, doing this often improves the 
adjusted loglikelihood, looic. 

Leave-one-out model evaluation for MCMC traces to Gelfand (1996), who developed an approximation for a point’s 
out-of-sample loglikelihood by using the numerical integration method importance sampling over the parameter samples. 
He found that a good estimate of the loo loglikelihood at a data point is the harmonic mean of the point’s loglikelihood 
over all the MCMC-generated parameter samples. This gives greater weight to the samples that fit the point poorly, 
which presumably would resemble parameters fit without it. With this, the generated posterior distribution of the 
parameters provides a ready estimate of the out-of-sample NLL. 

That gave good but volatile estimates of the loo loglikelihood. Vehtari, Gelman, and Gabry (2017) improved on it by 
using an approach similar to extreme value theory – they fit a Pareto to the probability reciprocals and use the fitted 
Pareto values instead of the actual values for the largest 20% of the sample. They call this “Pareto-smoothed importance 
sampling.” It has been extensively tested and has become widely adopted. The penalized likelihood measure is labeled 

, standing for “expected log pointwise predictive density.” 

We use the Stan MCMC software platform here. It provides a loo estimation function that can work on posterior 
samples from any MCMC package. It calculates  as well as the implied loglikelihood parameter penalty, and 
something they call looic – the loo information criterion – which is  in accord to standards of information theory. 
Since the factor of 2 is not critical, here the term looic is used for , which is half of the usual looic but 
conveniently is the NLL increased by the parameter penalty. 

The derivation of looic, like that of AIC, starts by assuming that the data is generated by the model. This is increasingly 
problematic in some areas, like consumer finance, which tries to optimize interest income by design of credit card terms. 
The data is generated by a massive collection of neural processes across the population, influenced in part by competitor 
behavior, and the models do not attempt to represent that process. They can still generate good profits in the short run, but 
have to be changed often. Areas like this pose a challenge to the idea that the data is generated by the model process. A 
common response is to use slightly more parsimonious models than the statistical measures suggest, and that could be 
advisable with the APC models here as well. 

3.2 Methodology for Opioid Application 

A Poisson distribution is used here for mortality counts. Theoretically as a sum of Bernoulli processes, these should be 
binomial, but for low frequency the two are virtually indistinguishable. We tested the negative binomial, as that 
sometimes captures contagion by other processes, but it closely approximated the Poisson limit. The Poisson mean for 
the cell at age i, period j is µi,j×populationi,j. In the linear APC model with a constant term, 

                                  (1) 

where p, q, r are the age, period, and cohort parameters, respectively. Some constraints are necessary for identifiability. To 
begin with, we assume that the p, q, r parameters all start at the second value of their subscripts, but other constraints are 
discussed below. The Lee-Carter model is a bilinear AP model, with another set of age parameters vi that allow the 
period trend to vary by age: 

                                  (2) 
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Cohorts can be added to this. The Hunt-Blake model does that but also allows more than one period trend so that it can 
handle changes in the trending by age: 

                              (3) 

The age weights on the period trends can capture mortality changing faster for some ages. Including multiple trends can 
allow the fastest-trending ages to change over time. For identifiability we assume that these weights are all positive and 
the weight for the age with the greatest trend is 1.0. (This age might vary across the parameter samples in MCMC, 
however.) With this convention, the weights vi can start with the earliest age, even though the age terms pi start at the 
second age. 

We follow Venter and Şahin (2017) in assuming there is no overall trend across the cohorts. This can be forced by 
fitting a linear trend to the cohort parameters rj−i and subtracting it from the parameters. This is the kind of arbitrary 
choice needed for identifiability, but at least it allows a consistent interpretation of the parameters: 

• The period trend is the trend for the age with the greatest trend, given that there is no overall trend across the 
cohorts. 

• The cohort effect measures the relative differences among the cohorts given that the overall trend is entirely in 
the period parameters. 

This allows the period parameters to also start at the first period. 

For the estimation, it can be helpful to string out the array of observations into a single vector. It is also helpful to keep 
two columns that identify the age and period for each observation. For direct estimation of the age, period, and cohort 
parameters, each parameter can be given a dummy variable that has value 1 for a cell that it affects, and 0 for the other 
cells. For the second difference variables, the dummies are a bit more intricate. 

The second difference parameters, starting from the first age, period, and cohort, add up cumulatively to be the first 
differences, and these add up cumulatively to be the APC level parameters. The dummy variable value for such a 

parameter for a given cell is the number of times that second difference parameter gets added up for that cell. If aw is the 
second difference parameter for age w, and a cell is for age i, the aw dummy variable has value max(0, 1 + i − w) at that 
cell. This is the same for the period and cohort second difference dummy variables. 

4. Model Estimation and Results 

Here we fit the data by building up from simpler to more complex models, starting with a basic AP model, then a linear 
APC model, then Lee-Carter with cohorts, and finally the Hunt-Blake model. The fit, as measured by looic, but also by 
NLL, improves at each step. We do not claim that this fitting process or the final model are optimal. 

The slope change variables are negatively correlated, which can give MCMC software problems in finding good starting 
parameters. Lasso estimation of the AP model provides a starting point for Bayesian lasso. Then MCMC output gives 
good indications of insignificant variables that can be eliminated. We started with that and then put in the cohort 
variables, with starting values of zero for these and the AP fit for the AP variables. Eliminating insignificant variables 
then makes this the starting point for the Lee-Carter with cohorts model, which adds age weights to the period trends. 
We then address some weaknesses with the Lee-Carter assumptions and add a secondary trend. 

The starting point is a model with the age and period variables in a multiple regression for the log of the OD mortality 
rate, using the R glmnet lasso package. The R code to run this is fairly simple: 

 

 

 

 

 

 

 

This package quickly does the lasso modeling for 100 values of λ that it picks, ranging from a large value that leaves only the 
constant term down to a small value that produces straight MLE. Typically in lasso the variables are standardized by a 
linear transform to have mean zero and variance one, so that the scale of the variables does not influence which are 

library(glmnet) 

y = scan('ody.txt') 

x = as.matrix(read.table('odx.txt', header = FALSE)) fit1 

= glmnet(x, y, standardize = FALSE) 

plot(fit1, label=TRUE) 
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eliminated for each λ. We do not do that, as the variables are counts that indicate how many times each coefficient 
should be summed for an observation. 

There are 18 years of data, 17 of which have parameters, and 49 ages with 48 parameters, which gives 65 parameters 
plus the constant. The standard lasso plot, displayed in Figure 2, shows how the parameters for each variable shrink to 
zero as λ increases, from right to left. The two X-axis labels are for the L1 Norm, which is the sum of the absolute 
values of the parameters, and for the number of non-zero coefficients. Both of these increase as λ decreases. The graph 
here is somewhat unusual, as parameters go to zero then come back as others are eliminated. This is probably due to the 
negative correlation of the parameters. 

The cv.glmnet function uses cross validation as the start of a process to select λ. It produces a suggested range, from 
lambda.min, which is a small value of λ that does not eliminate very many variables, to lambda.1se, which is higher. We 
take all the non-zero variables from lambda.min as input to Stan – 57 of them in this case. The graph in Figure 2 is 
actually for the lasso model rerun using those 57 variables. 

 

Figure 2. Parameters for Each Variable as λ Decreases 

In Stan we fit the Poisson model for number of deaths, selecting the posterior mean of the parameters. With the posterior 
mean, MCMC does not eliminate variables like classical lasso does, but Stan outputs the mean and standard deviation for 
each variable, and those with means near zero and high standard deviations were dropped from the model. We also used a 
uniform prior for λ, and this generated a small ranges of λs in the sampling. 

The fitting produced an AP model with 14 age variables and 10 period variables. Looic was 5470.5, with NLL of 
5348.1 and so a penalty of 122.4. We used this as the starting point for a linear APC model. There are 66 cohorts in this 
data, 1934–1999, which gives 65 cohort variables, leaving out the first one. We added these 65 variables to the 
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remaining 24 variables from the AP model, then estimated them with Stan. After again taking out the parameters near 
zero, there were 24 cohort slope-change variables left. Also three more age parameters went to zero, and were dropped as 
well. That left 11 age variables, 10 period variables, and 24 cohort variables, so 45 in total. This was a much better 
fitting model, with NLL of 3934.6, looic of 4000.7 and a penalty of only 66.1. With penalty rules like AIC, etc., more 
parameters would always give a higher penalty. With shrinkage, however, the penalty has to do with how well the 
left-out points are estimated, and more parameters can sometimes do better at this. The parameters may have been 
shrunk more towards zero as well. 

 

 

 

 

 

 

Figure 3. AP and APC Parameters. Left Panel: Cohorts Factors with Fitted Trend. Center Panel: Period Factors. Right 
Panel: Age Factors 

Figure 3 shows the resulting age, period and cohort parameters for the linear AP and APC models as factor contributions to 
the Poisson mean. The cohort parameters were not constrained to have zero trend. Keeping the slope-change positions for 
the age and period parameters provides a degree of constraint for the cohorts. We also constrained the constant to stay in 
a somewhat narrow range around what it was for the AP model, which forces the average log cohort term to stay near zero. 
This was enough to get a unique set of parameters in this case, but it is not easy to interpret them. They are conditional 
on the constraints provided, but those are somewhat complex. 

In any case, the years of birth 1956–62 show up as high-risk cohorts, as do several years around 1980. These correspond to 
the mid-to-late baby boom generation and the early Millennials. There is a dip from about 1968–1977, which is largely 
Gen X. The pre-boomer and late Millennial groups show relatively lower opioid mortality effects. The fact that the late 
Millennials are showing as lower than the pre-boomers may be real or may be an artifact arising from not constraining 
the cohorts enough. The period factors look very similar for both AP and APC models. The age factors in the graph are 
flatter with the cohorts included, but have a similar shape in both models, peaking at about age 45. 

We included all of these variables for the Lee-Carter plus cohorts model, and added age weights for the period parameters 

for all 49 ages. After doing the initial estimation and eliminating the zero parameters, there were 59 parameters in total, 
consisting of 10 each for age and period variables, 19 cohort variables, and 20 age weights for the periods. The age 
weight on the period trend interacts with the cohorts factors, as the cohorts an age is in at the beginning and ending of 
the data influence the overall trend for the age. Thus it is more critical here to constrain the cohorts to have no overall 
trend, which we did for this model. The NLL now comes down to 3764.9, with looic at 3823.0 and a penalty of 58.1. 
The penalty continues to decrease as the fit improves, even with nominally more parameters. 

The greatest weight on the trend is for the younger ages, with the weight decreasing by age. The initial mortality curve 
by age is highest for the oldest ages. This was never the actual experience, but the earliest periods here had the 
pre-boomers at those ages, so adjusting for the cohort effect could have given that result. Figure 4 shows the evolution of 
the mortality curve prior to the application of the cohort effect as it rises over the periods. The peak is at age 45 for most 
of the earlier years, but the curve was pretty flat until recently. Gradually age 33 takes over as the peak age, which is also 
happening in the data. The cohort factors now peak at year of birth 1962, and compared to the linear APC model have less 
of a dip for Gen X and a more minor peak for the early Millennials. 
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Figure 4. Lee-Carter Plus Cohorts. Left Panel: Mortality Factors by Age for Each Period before Cohort Factors. Right 
Panel: Cohort Factors with Trend Line 

Comparing the cohort graphs for the linear HPC model in Figure 3 with that for the Lee-Carter plus cohorts model in 
Figure 4 shows the effects of the degree of shrinkage on the slope changes. Both graphs have slope changes at the same 
places, but they are generally smaller in Figure 4. Letting trend vary by age apparently picks up some of the patterns 
that cohorts were accounting for in the linear APC model. 

Although varying the trend by age improves the fit, a problem with the Lee-Carter model is that each age gets the same 
percentage of the annual trend every year. It is quite possible that the trends for different ages are not proportional over 
time. Figure 5 shows the raw cumulative trend since 1999 for several age groups. The left panel divides the data into 
age ranges of seven years each. The right panel shows the ages above and below 40.5. In both panels, the younger ages 
show a steadier upward trend, while the older ages trend more slowly for a while then accelerate near the end. This is a 
somewhat systematic deviation from the Lee-Carter assumption, although it has cohort influences in it. 

The Hunt-Blake model with multiple trends is designed to address violations of the Lee-Carter trend-by-age assumption. It 
is flexible as to how varying trend can be treated. Here we try a simple version, where all ages stay included in the main 
trend, adding a secondary trend that affects only ages above 40 and is otherwise constant by age. 

This model ends up with 7 age variables, 9 period variables, 19 variables each for cohorts and age weights to trend, and 
13 for the secondary trend, and so 67 variables in total. The looic is 3778.4, which is an improvement of 50 over 

 

Figure 5. Cumulative Trend by Age Group. Left Panel:7-Year Groups. Right Panel: Split at Age 41 
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Lee-Carter with cohorts. NLL is 3717.9, so the penalty is 60.5. The extra parameters now have increased the penalty 
slightly, but looic and NLL are both quite a bit lower. Figure 6 shows the age weight factors for trend for this and the 
Lee-Carter plus cohorts model, and the secondary trend factors that apply to the older ages only. The latter factors are 
fairly small – ranging from 0.915 to 1.02. The cohort parameters and the resulting progress of the ex-cohort mortality 
curve are as in Figure 4. 

Fitted Poisson means by age and year are in Figure 7, shown as lines, with the data shown as points. The fitted means 
combine the curve excluding cohort effects, which moves upward each year, especially for younger ages, with the 
cohort curve, which moves one year to the right at each step. (It is actually the reflection of the cohort curve across a 
vertical axis that so moves, as the earlier cohorts represent the older ages.) The fits show seemingly random fluctuation of 
the points around the lines, but some areas could possibly benefit from still better models. More detailed modeling of 
the age weights for both trends would be a possible direction. However we stop here, as the example has shown the 
application of parameter shrinkage of slope changes and the benefits of cohort, trend-weight, and multiple trend 
variables in capturing the behavior of this data, and the second trend is already fairly subtle. 

 

 

Figure 6. Hunt-Blake Model Left Panel: Trend Weights by Age for Main Trend Comparison with Lee-Carter Plus Cohorts. 
Right Panel: Secondary Trend Factor for Ages 41+ 
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Figure 7. Data (Circles) and Estimated Poisson Means, with Focus on 1999, 2003, 2007, 2013, and 2016 

5. Discussion 

The bilinear APC models provide better accounts of the data trends, but in some ways the linear model is more intuitive. Its 
mortality curve by age looks more like the raw curves do, and its cohort effects largely track the two-wave pattern in the 
data over time. The bilinear versions have the peak age becoming younger throughout the observation period, with a fairly 
flat age curve for ages 30–50 until after 2010. Then the ages in the 30s start to predominate, although the cohort effects 
prevent this from showing up in the raw data before 2014, when the raw peak rate starts a rapid transition from the 
mid-40s to the mid-30s. The bilinear model cohort curve is similar to that for the linear model, but the second peak 
around 1980 is much less pronounced in it. 

In the bilinear models, the wave on the right side of the observed rates in Figure 1 is accounted for as the boomer effect. 
The peak on the left comes from the higher trend for the younger years. The dip between is somewhat from Gen X 
cohort rates being less than those for the early Millennials, but is also from the stepping to the right each year of the 
generally declining post-boomer cohort rates combined with the trend growing more strongly on the left. 

The highest age-trend rate is for ages 18-22, which are known to be peak years for risk-taking behavior in males. 
Mortality in general has a local peak for this group. A bit wider range may be similarly affected. For instance, auto 
insurance rates tend to gradually decline until age 30. One reason that the peak overdose mortality was previously at 
older ages may have been increasing availability by age. This seems to no longer be the case. An internet search for 
“fentanyl online” appears to be all it takes to find sources. The shift to earlier ages could thus be a risk-taking plus 
availability effect. 

Both Miech et al. (2017) and Schulenberg et al. (2017) discuss cohort effects in drug use. They identify relative cohort 
trends by changes in drug use and attitudes about it that go opposite to the secular trend, or accelerate beyond it. They do 
not attempt to quantify the trends specifically. One finding from the second volume is similar to some of the results here 
on mortality: “. . . in 1996 and 1997 both 10th and 12th graders actually had higher annual prevalence levels for illicit 
drug use . . . than either college students or all young adults. This changed somewhat after 2001, as the earlier, 
heavier-using cohorts of adolescents began to comprise the college student and young adult populations, while at the 
same time use among the incoming secondary school students was declining.” Approximating the year of birth by 
year − grade − 5 gives the higher-use cohorts as 1978–1982, with their predecessors being the Gen X group, and their 
successors those born five-plus years later. Also this study finds that attitudes towards drug risk parallel usage. 

The fact that these cohort changes are so apparent makes the stronger effects in the linear model appealing, especially 
for Gen X. The bilinear model explains the Gen X trends as only partly from cohort effects, as it is also driven by the 
shift in age rates. However the bilinear model better accounts for the fact that the waves and dip between in the raw data 
move to the right a bit more slowly than the cohorts are aging. 
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Going forward, the population above 30 is aging away from the highest risk ages, and those younger than that are from 
cohorts with lower rates. While the trend to higher mortality rates appears to be continuing, the model suggests that the 
peak age range will be widening. 

Causes of the cohort differences are beyond the scope of this paper, but possible research directions on that include: 

• The baby boomers had a new outlook on drug use, but since then the cohort effects are similar to the cohorts 
20-25 years earlier, which raises the possibility of parental influence. The parents of Gen X were early boomers 
or pre-boomers, and their children are late Millennials or even later cohorts. The early Millennials parents would 
have been baby boomers. 

• Military service apparently has an impact on overdose mortality. Many Iraq war veterans would be early 
Millennials. 

• Entering the workforce during financial downturns seems to depress long-term earnings, especially at lower 
income levels. This would create differentials among cohorts in economic fortunes, which could easily be 
related to drug use. 

Bohnert, Ilgen, and Galea (2011) discuss veterans’ drug mortality, and Oreopoulos, Wachter, and Heisz (2006) study 
career implications of economic conditions when entering the workforce. 

6. Conclusion 

Adding cohorts and multiple trends to the Lee-Carter model increases the number of parameters, which is high to start 
with. Parameter shrinkage methods reduce estimation and predictive variances compared to MLE while easily fitting 
more complex models like the ones here. Estimating the second differences of piecewise linear curves fit to the usual 
parameters allows parameter shrinkage for APC models. 

We reviewed the framework of lasso and Bayesian lasso then applied these to fit the Hunt-Blake generalization of the 
Lee-Carter model to opioid mortality rates. The fitting proceeded by using classical lasso initially to identify parameters 
that could be eliminated from the linear age-period model, then fitting that with Bayesian lasso. We added cohort effects, 
then age-sensitive trends, and finally multiple trends. Goodness of fit improved at each step. This sequential approach 
led to a reasonably-fitting model, but is not guaranteed to find the optimal fit. With 49 ages, each with both an age 
parameter and an age weight for the trends, 18 periods with two trends, and 65 cohorts, there were nearly 200 APC 
parameters. Putting these on piecewise linear curves and shrinking the slope changes ended up with a parameter penalty to 
the NLL of 60.5, and so probably fewer effective parameters than that. 

The later stages of the baby-boom generation had the highest cohort parameters, with a smaller cohort peak around 
1980. The cohorts before 1950 and after 1990 have the lowest parameters. Absent cohort effects, the ages under 30 end up 
with the greatest mortality risk, but currently those ages are from low-risk cohorts, which is consistent with the raw data 
that currently shows ages 30–40 to be most vulnerable. The cohort parameters need to be interpreted according to the 
constraint that there is no overall trend in the cohorts – the trend is entirely in the period parameters – so the cohort effects 
are relational, not absolute. 
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