
Applied Economics and Finance 

Vol. 5, No. 1; January 2018 

ISSN 2332-7294   E-ISSN 2332-7308 

Published by Redfame Publishing 

URL: http://aef.redfame.com 

14 

 

DCCs among Sector Indexes and Dynamic Causality between Foreign 

Exchange and Equity Sector Volatility: Evidence from Egypt 

Amira Alk Ahmed1,2, Rania Ihab Naguib2 

1Department of Economics, Faculty of Commerce, Benha University, Egypt  

2Department of Economics, Faculty of Business, Plymouth University, England  

Corresponding author: Amira Akl Ahmed, Department of Economics, Faculty of Commerce, Benha University, Egypt. 

 

Received: October 4, 2017      Accepted: November 20, 2017      Available online: December 4, 2017 

doi:10.11114/aef.v5i1.2842         URL: https://doi.org/10.11114/aef.v5i1.2842 

 

Abstract 

The objective of the current paper is to explore the co-movements between domestic equity sectors in the Egyptian 

Exchange (EGX), using the dynamic conditional correlation (DCC) model, and to examine the time-varying causal 

links between the exchange rate volatility (EXVOL) and sector volatility (SVOL) using the bootstrap Granger 

non-causality tests in a bivariate VAR, where conditional volatility series are extracted from GARCH(1,1) model. We 

employ weekly data. Results show that all estimated DCCs are positive with a clear heterogeneity between the sector 

pairs. They do not exhibit stable correlation pattern for a prolong time, implying that DCC estimates change in response 

to price increment shocks to each sector in the pair. Hence, the assumption of static inter-sectoral correlations between 

domestic sector indexes is invalid when forming and periodically re-balancing portfolios. The global financial crash and 

the political instability in early 2011 have significantly increased the level of DCCs for four and ten out of fifteen pairs, 

respectively. Thus, the recent political turmoil in Egypt has widely affect diversification opportunities in the EGX 

whereas the global financial crash has not. The volatility transmission between SVOL and EXVOL is subject to 

structural breaks. The bootstrap rolling window estimations show that the casual relationship between SVOL and 

EXVOL varies across time. These findings would be of great importance to market participants in their hedging and 

investment decisions since investors and firms are more concerned with industrial sector exposure estimates. 

Keywords: exchange rate, sector indexes, dynamic conditional correlation, bootstrap, time-varying causality.  
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1. Introduction 

By early 1990s, Egypt adopted an Economic Reform and Structural Adjustment Programme with the aim of overcoming 

some macroeconomic imbalances and enhancing the role of stock market to achieving higher economic growth rates. 

Egypt has taken considerable actions to enhance the role of its stock market (Ahmed, 2014). Since January 2011, Egypt 

has witnessed a series of political changes and tensions with significant influence on capital and foreign currency 

markets. Political instability included the January revolution in 2011, the presidential election in 2012, the outset of the 

president in June 2013, another presidential election in 2014, and the wild clashes between supporters of the outset 

president and the police. In the two consecutive trading days following 25th of January 2011, panic selling hitting the 

stock market resulted in a sharp decline of share values by nearly US $12 billion (corresponding to 12% market 

capitalization). Thus, the market authorities suspended trading for around eight weeks. Over the period extending from 

January 2011 to October 2015, the market capitalisation decreased by 18%, the Egyptian pound fell sharply by 34.3% 

against the US dollar, and net foreign reserves shrank by 52% (Ahmed, 2016, 2017). In the beginning of 2007, the 

Egyptian Exchange (EGX) constructed for the first time 12 equity sector indexes to track the movements of equity 

prices. The objective of this study is to examine co-movements between domestic equity sectors in the EGX, using the 

dynamic conditional correlation (DCC) model of Engle and Sheppard (2001) and Engle (2002), and to explore the 

time-varying causal relation between the exchange rate volatility (EXVOL) and sector volatility (SVOL) using the 

bootstrap Granger non-causality tests recommended by Balcilar, Ozdemir, and Arslanturk (2010) and Su, Yu, Chang, 

and Li (2016) because such relationship is subject to structural shifts during financial crises and recessions. According 

to the flow-oriented approach, causality runs from foreign exchamge (EX) market to equity market (Dornbusch & 

Fisher, 1980) whereas it runs in the opposite direction according to the stock-oriented approach (Branson,1983; Frankel, 
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1983). The increasing correlations between national stock markets overtime are likely to erode benefits from 

international diversification (Goetzmann, Li & Rouwenhorst, 2005; Hatemi-J & Roca, 2006; Mollah, Zafirov, & 

Quoreshi, 2014). Investors have higher tendency to allocate more capital in domestic financial assets than in their 

foreign counterparts (Fidora, Fratzcher, & Thimann, 2007; Baele, Pungulescu, & Ter Horst, 2007). Fidora et al., (2007) 

found empirical support that the real exchange rate volatility is an important explanation for the cross-country 

differences in bilateral home biases in bonds and in equities, with real exchange rate volatility explaining about 20% of 

the cross-country variation in equity and bond home biases. This is because exchange rate volatility induces a bias 

towards local financial assets since it puts additional risk on holding foreign securities from a domestic (currency) 

investors’ perspective. Investing in sector-index offers investors instant diversification benefit besides reduction in 

trading and functional costs of managing an index portfolio (Ngene & Gordon, 2015). The importance of industrial 

(sector) effects relative to country effects has been increasing in explaining variation of international portfolio returns 

(Ferreira & Ferreira 2006; Phylaktis & Xia, 2006). Hence, there would be periods of increased co-movements between 

assets held domestically across different sectors in investors’ portfolios (Katzke, 2013). 

To avoid problems associated with daily data (e.g. non-synchronous trading, bid-ask spread and non-trading associated 

with daily prices), we employ weekly data of the most actively traded sectors. The trade-weighted exchange rate 

(calculated by J.P. Morgan) is used to better measuring the competitiveness of the economy (Kanas, 2000). We question 

the following: Do information flows across sectors exhibit heterogeneous patterns of the estimated DCCs? Do the 

global financial crash and political instability cause structural breaks in the estimated DCCs? Do causal links between 

the EXVOL and SVOL exist? If yes, is it stable or time-varying? We hypothesize that: (1) the time-varying correlations 

between sector volatilities exhibit heterogeneous patterns (2) there is time-varying bi-direction causality between 

EXVOL and SVOL. The two-step DCC-multivarte GARCH (DCC-MGARCH) model enables us to estimate SVOL in 

the first step. There is an increasing need to study volatility at disaggregated levels [i.e. sector level]. Ewing, Forbes, & 

Payne (2003) indicated that financial market participants are concerned not only with how individual equity perform, 

but also in how sector indices perform. According to the best of our knowledge, this is the first study to examine 

volatility transmission between sector volatilities for the EGX. Modern portfolio theory stresses upon the importance of 

correlations in the portfolio selection process. Investors must be aware that correlations between domestic sectors are 

dynamic and can change sharply given certain trigger events. Studying the interlinks between equity and EX markets is 

of crucial importance for regulators and investors. Examining the interdependence between these financial markets 

would help regulators trigger preventive action before the spread of a crisis. Investors are concerned with volatility 

spillover between the stock and EX markets because variation in equity variance affect optimal investment strategy and 

diversification. Investors and fund managers would benefit from exploring these interlinks in managing and hedging the 

risk proficiently given that foreign currency is widely being included as an asset in investment funds’ portfolios. More 

importantly, studying these interlinks at the sector level would be of great use to market participants in their hedging 

and investment decisions because investors and firms are more concerned with industrial sector exposure estimates 

(Dimitrova, 2005; Fu, Holmes, & Daniel, 2011; Kumar, 2013). 

Results reveal that DCCs amongst employed local sectors show significant variations over time and that they are 

positive for all sector pairs. There is a clear heterogeneity in the DCCs between the sector pairs. Sector pairs do not 

exhibit stable correlation pattern for a prolong period, implying that DCC estimates change in response to price 

increment shocks to each sector in the pair. These conclusions conform to those of Katzke (2013) and Ngene and 

Gordon (2015). Our results show that DCCs significantly increased for four (ten) out of fifteen DCC pairs during the 

global financial crash (political instability in Egypt accompanying the 25th of January revolution). These results are 

consistent with those of Katzke (2013) who did not find any clear consistent increase or decrease in DCCs for South 

African domestic sectors during the global financial crisis. However, Tamakoshi and Hamori (2016) found a sharp 

increase in the DCCs for all UK financial sector pairs after the bankruptcy of Lehman Brothers. The parameter stability 

tests reveal the presence of structural shifts in the relationship between EXVOL and SVOL, confirming empirical 

evidence that the relationship between share volatility and macroeconomic volatility is subject to structural shifts during 

financial crises and recessions (Stock & Watson, 2002; Beltratti & Morana, 2006). Hence, inferences made using the 

full-sample results are invalid. Results obtained from the bootstrap rolling window procedure confirmed that the casual 

relationship between the EXVOL and SVOL varies across time. Results are consistent with findings of Chinzara (2011) 

who documented bidirectional volatility transmission between the EXVOL and SVOL in South Africa.    

The rest of the paper is structured as follows. Section 2 provides brief literature review. Section 3 introduces the 

econometric methodology whereas section 4 presents data and empirical results. Finally, section 5 concludes.  

2. Brief Literature Review 

Volatility transmission between financial variables have been investigated using MGARCH models (e.g. Hassan & 

Malik, 2007; Katzke, 2013). Hassan and Malik (2007) found significant transmission of shocks and volatility among 
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employed US sectors. Tamakoshi and Hamori (2014) detected significant causality-in-variance running from the US 

financial services sector index to the banking sector index during January 2004 to December 2011. Katzke (2013) and 

Ngene and Gordon (2015) documented heterogeneous DCCs in pairs of sector returns volatility. In addition, Katzke 

(2013) did not find any clear consistent increase or decrease in co-movements of volatility of South African domestic 

sectors during the global financial crisis. In contrast, Tamakoshi and Hamori (2016) found a sharp increase in the DCCs 

for all UK financial sector pairs after the bankruptcy of Lehman Brothers, and decreases for two pairs (banking-life 

insurance and life insurance-other financial) after the summit of the European debt crisis in September 2011, implying 

the emergence of diversification opportunities. Kanas (2000) documented volatility spillovers from stock market to EX 

market for all six industrial countries except Germany whereas no evidence was found of volatility spillovers in the 

opposite direction for any country. Furthermore, Caporale, Hunter, & Ali (2014) found causality in variance from stock 

returns to EX changes for US during 2007-2010 and in the opposite direction for the Euro area and Japan, while an 

evidence of bidirectional feedback was documented for Switzerland and Canada during the same period. Volatility 

spillover research carried on emerging stock and foreign exchange markets (e.g. Choudhry (2004); Morales (2008); and 

references cited in Kumar (2013)) gave similar results to those studies done on developed markets. MGARCH models 

have been employed to explore volatility spillovers between EX and equity markets (Caporale et al., 2014; Choudhry, 

2004; Kanas, 2000; Kumar, 2013; Morales, 2008). Volatility transmission between financial markets could be examined 

using the two-step GARCH-VAR framework, whereby conditional volatility of financial variables is extracted from 

univariate GARCH models and, then, VAR model is used to test for causality between their conditional variances [e.g. 

Kumari & Mahakud (2015) and Morelli (2002) who found unidirectional causality from EX to stock market volatility in 

the UK and bidirectional causality for India, respectively]. Using sector index is recommended since sector-specific 

responses to macroeconomic volatility may not be identical due to underlying differences in market and industrial 

characteristics (Chinzara, 2011; Ewing et al., 2003; Fu et al., 2011; Jayasinghe & Tsui, 2008; Koutmos & Knif, 2003; 

Koutmos & Martin, 2003). Chinzara (2011) found bidirectional causality between EXVOL and SVOL of retail, and 

mining sectors in South Africa. Empirical evidence supports that the relationship between share volatility and 

macroeconomic volatility is subject to structural shifts during financial crises and recessions (Stock & Watson, 2002; 

Beltratti & Morana (2006); Chinzara (2011)]. 

3. Methodology 

3.1 DCC - GARCH 

In the first step of estimating the DCC- MGARCH model of Engle and Sheppard (2001) and Engle (2002), univariate 

GARCH(1,1) model is fitted for returns of each sector index. Then, the standardized residuals resulting from the first 

step are employed to estimate a simple GARCH-like time varying correlation. This parameterization preserves the 

simple interpretation of univariate GARCH models. This methodology could be expressed as follows. 

𝑟𝑡 = 𝜑0 + 𝜑1𝑟𝑡−1 + 𝜀𝑡 , 𝜀𝑡|𝛺𝑡−1~𝑁(0,𝐻𝑡)                                              (1) 

ℎ𝑖,𝑡 = 𝜔 + 𝛼1𝜀𝑖,𝑡−1
2 + 𝛽1ℎ𝑖,𝑡−1,                                                                              (2) 

            𝜔 > 0; 𝛼1 > 0;  𝛽1 > 0  ; 𝛼1 + 𝛽1 < 1 

𝜀𝑡 = 𝐻𝑡
1/2
 𝑢𝑡  ,      𝑢𝑡 ~𝑁(0, 𝐼)                                                                                (3) 

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡                                                                                                             (4) 

where 𝑟𝑡  is the 𝑘 × 1 vector of asset returns, including each first difference of employed sector indexes with 

conditional mean assumed to follow an AR(1) model. 𝜀𝑡 is a 𝑘 × 1 vector of asset returns innovation with zero mean 

conditional on information available at time t-1. 𝛺𝑡−1 is the information set at time t-1. 𝑢𝑡 is 𝑘 × 1 vector of the 

standardised residuals. ℎ𝑖,𝑡 is the conditional variance which is assumed to follow a GARCH(1,1). 𝐻𝑡 is 𝑘 × 𝑘 

matrix of conditional variance-covariance. 𝐷𝑡 is the diagonal matrix of the conditional standard deviation, and 𝑅𝑡 is 

the time-varying correlation matrix. We represent the DCC model as: 

𝑄𝑡 = (1 − 𝜃1 − 𝜃2)�̅� + 𝜃1 𝑢𝑡−1𝑢𝑡−1
′ + 𝜃2 𝑄𝑡−1                                                      (5) 

Where �̅� is the unconditional covariance matrix of 𝑢𝑡. Hence, non-negative scalar variables, 𝜃1, and 𝜃2, must satisfy 

the condition 𝜃1 + 𝜃2 < 1  to ensure mean reverting property. The matrix containing time-varying conditional 

correlations is derived by Equation (6). Where 𝑄𝑡
∗ is a diagonal matrix including the square root of the diagonal entries 

of 𝑄𝑡. The typical element of 𝑅𝑡 is of the form 𝜌𝑖𝑗𝑡 =
𝑞𝑖𝑗𝑡

√𝑞𝑖𝑖𝑞𝑖𝑖
. 
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To test for structural shifts in the level of the pairwise DCCs, we follow Mollah et al. (2014) through employing model 

illustrated in Equation (7). If dynamics in the second moment of the DCCs are detected, we follow Muñoz, Marquez, & 

Sánchez (2011) by applying the methodology, illustrated by Equations (7) and (8).  

𝑅𝑡  ≡ 𝑄
𝑡
∗−1 𝑄

𝑡
 𝑄

𝑡
∗−1                                                                                           (6) 

ρ
ij,t
= 𝜌

0
+ ρ

ij,t−1
+ 𝛾

𝑘
 𝐶𝑟𝑖𝑠𝑖𝑠𝑘,𝑡 + 𝑒𝑖𝑗,𝑡                                                              (7) 

ℎ𝑖𝑗,𝑡 = 𝜔 + 𝛼1𝜀𝑖𝑗,𝑡−1
2 + 𝛽

1
ℎ𝑖𝑗,𝑡−1 + 𝛿𝑘  𝐶𝑟𝑖𝑠𝑖𝑠𝑘,𝑡                                                         (8) 

𝐶𝑟𝑖𝑠𝑖𝑠𝑘 for k=1,2 is a dummy variable for the global financial crash (1/9/ 2008 to 31/12/2009) and the political 

instability in 2011 (26/1/2011 to 30/3/2011), respectively. Following Mollah et al. (2014), we specify the start date of 

the recent global financial crash as the beginning of September 2008. Crisis variables take the value of one during the 

crisis and zero otherwise. A significant estimated coefficient for the dummy variable would be interpreted as a 

structural shift in the mean and/or variance of the pairwise DCCs 

3.2 Bootstrap Granger Causality Test 

The residual bootstrap (RB) based modified-LR statistics is employed to investigate the presence of causality between 

SVOL and EXVOL in the EGX. The robustness of the RB based modified-LR statistics over standard asymptotic 

Granger non-causality tests, irrespective of integration properties sample sizes, integration orders, and error term 

processes (homoscedastic or ARCH), have been documented (see for example, Balcilar et al., 2010). Consider the 

following bivariate VAR(p) process: 

y
t
= α0 + α1yt−1 +⋯+ αpyt−p + ϵt      t = 1,2, … , T                                                      (9) 

where 𝜖𝑡 = (𝜖1𝑡, 𝜖2𝑡)′ is a zero mean IID process with non-singular covariance matrix Σ and p is the order of the 

process which is determined according to the Akaike Information Criterion (AIC). If y
t
= (𝑦

𝐸𝑋𝑉𝑂𝐿
, 𝑦

𝑆𝑉𝑂𝐿
)′ is divided 

into sub-vectors, 𝑦
𝐸𝑋𝑉𝑂𝐿

 and 𝑦
𝑆𝑉𝑂𝐿

, Equation (9) can be re-written in the following form. 

[
𝑦
𝐸𝑋𝑉𝑂,𝑡

𝑦
𝑆𝑉𝑂𝐿,𝑡

] = [
𝛼10
𝛼20

] + [
𝛼11(𝐿) 𝛼12(𝐿)

𝛼21(𝐿) 𝛼22(𝐿)
] [
𝑦
𝐹𝑋𝑉𝑂,𝑡

𝑦
𝑆𝑉𝑂𝐿,𝑡

] + [
𝜖1𝑡
𝜖2𝑡
]                                             (10) 

where 𝑦𝐸𝑋𝑉𝑂,𝑡 and 𝑦𝑆𝑉𝑂𝐿,𝑡 represent EXVOL and SVOL, respectively. 𝛼𝑖𝑗(𝐿) = ∑ 𝛼𝑖𝑗,𝑘𝐿
𝑘, 𝑖, 𝑗 = 1,2 

𝑝
𝑘=  and L is the 

lag operator defined as 𝐿𝑘𝑋𝑡 = 𝑋𝑡−𝑘. The null hypothesis that SVOL does not Granger-cause EXVOL is tested by 

imposing the restrictions 𝛼12,𝑖 = 0 for  𝑖 = 1,2,… 𝑝  whereas the null hypothesis that EXVOL does not Granger-cause 

SVOL is tested by imposing the restriction α21,i = 0 for  i = 1,2, …p. In the presence of structural changes or regime 

shifts, inferences made about the full-sample causality link are misleading (Balcilar et al., 2010; Balcilar & Ozdemir, 

2013; Su et al., 2016). Thus, we test for parameter stability using the Sup-LR, Mean-LR and Exp- LR tests, proposed by 

Andrews (1993) and Andrews and Ploberger (1994), based on the sequence of Lagrange multiplier statistics. If 

parameter instabilities are detected, then the rolling window procedure, that uses a fixed-length moving window, will be 

applied through dropping the first observation in the window and moving forward and adding a new observation. For 

every sub-sample, the RB-based modified-LR test can be performed using a large number of repetitions, say 2000, to 

ensure accuracy of the results. The time-varying causality between the EXVOL and SVOL can be observed by 

computing the bootstrap p-values of these estimations (Balcilar et al., 2010; Su et al., 2016). The window size is set to 

be 150 and 200 observations, corresponding to around 3 and 4 years of weekly data, respectively. An important 

advantage of the bootstrap method is its ability to effectively increase the accuracy of estimates by increasing the 

number of replications when the window size is small (Su et al., 2016). 

4. Data and Empirical Results  

4.1 Data 

Wednesday closing prices of the most active sector indexes, accounting for around 70% of total market capitalization 

during 2007-2015, are employed. These sectors are Banks (BAN), Chemicals (CHM), Construction and Materials 

(COM), Financial Services excluding Banks (FNS), Industrial Goods and Services and Automobiles (ING), and 

Telecommunication (TEL). The study period extends from 3rd of January 2007 (the day of inception) to 3rd of February 

2016. We collect sector data from the Egyptian Exchange website. The weekly trade-weighted index of exchange rate is 

obtained from Bloomberg. In total, 463 observations are included in this analysis. Returns are defined as the difference 

of the logarithm of the price index scaled by 100. 

4.2 Preliminary Analysis of the Data1 

All series are likely not to be drawn from normal distribution according to skewness kurtosis, and Jarque-Bera test 

statistic. All financial series exhibit substantial significant second moment dependence according to the Ljung-Box Q 

statistic for squared return. Moreover, the significance of Ljung-Box Q statistic for return series of some indexes (e.g. 
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FNS and TEL indexes) indicates that these series exhibit weak first moment dependence. ADF test of Dickey and Fuller 

(1981) indicates that all return series are stationary. All unconditional correlation coefficients are positive and 

significantly different from zero. However, such static estimates of correlation between returns are likely to be 

misleading given the dependence in the second moments of individual return series.  

4.3 Results of Univariate GARCH Models 

Table 1 presents the parameter estimates of AR-GARCH(1,1) model, their corresponding p-values, log-likelihood, and 

diagnostic tests. Diagnostic tests include the Box-Pierce portmanteau statistic for the first ten autocorrelations of 

standardised residuals and squared standardised residuals (i.e. LB Q(10) and LB2 Q(10), respectively), and the 

LM-ARCH(10) test procedure of Engle (1982) which tests the joint significance of the regression coefficients of the 

squared residuals on their own past values up to lag 10. The test statistic is distributed as 𝜒2(𝑝) where p is the number 

of lags. Estimates of AR-GARCH(1,1) model are obtained using the quasi-maximum likelihood estimator of Bollerslev 

and Woolbridge (1992). For BAN and CHM returns and EX series, a mean equation that includes only a constant is 

found adequately to describe their first moments, given that standardised residuals up to lag 10 are found free from 

serial correlation. The constant term in the mean equation is found statistically insignificant for all series except that of 

BAN. The mean equation that includes an intercept and an AR(1) term is found adequate for TEL’s returns whereas that 

with an intercept and an AR(2) is found adequate to fit returns of COM, FNS, and ING sectors, because standardised 

residuals up to lag 10 are free from autocorrelation. The GARCH(1,1) model is found adequate to fit the second 

moment of all employed series since squared standardised residuals are found free from autocorrelation and ARCH 

effects up to 10 lags. Moreover, the estimated models are found to be stable since the joint Nyblom-Hansen test statistic 

joint LC , is found less than critical one at 5% for all return series. The joint LC statistic tests the null that the entire 

vector of parameters is stable against the alternative that the entire vector may be unstable (i.e. following a martingale 

process). As argued by Nyblom (1989), this encompasses the case of one or more structural breaks. The test statistic has 

an asymptotic distribution which depends only on the number of estimated parameters. Nyblom (1989) and Hansen 

(1990) tabulated this distribution. The test statistic is robust for heteroscedasticity.   

Table 1. Estimates results of univariate GARCH(1,1) model 

Coefficients Sector  
EX BAN CHM COM FNS ING TEL 

Mean equation 
 ̂0 

p-value 
0.388** 
[0.02] 

0.023 
[0.88] 

0.065 
[0.71] 

-0.107 
[0.62] 

0.148 
[0.39] 

-0.316 
[0.24] 

-0.008 
[0.79] 

 ̂1 
p-value 

- - - - - 0.116** 
[0.02] 

- 

 ̂2 
p-value 

- - 0.094** 
[0.05] 

0.124* 
[0.01] 

361.0* 
[0.00] 

- - 

Coefficients Variance equation 
�̂� 

p-value 
1.23** 
[0.03] 

3.82** 
[0.02] 

1.11** 
[0.04] 

5.37** 
[0.05] 

2.24 
[0.09] 

11.22 
[0.09] 

0.030** 
[0.050] 

α̂1 
p-value 

0.079** 
[0.05] 

0.196* 
[0.00] 

0.114** 
[0.03] 

0.123** 
[0.04] 

0.129** 
[0.04] 

0.093** 
[0.05] 

0.162* 
[0.00] 

�̂�1 
p-value 

0.857* 
[0.00] 

0.592* 
[0.00] 

0.839* 
[0.00] 

0.678* 
[0.00] 

0.783* 
[0.00] 

0.623* 
[0.01] 

0.813* 
[0.00] 

Model diagnostics 
�̂�1 + �̂�1    0.936 0.788 0.953 0.801 0.912 0.716 0.975 

Log-Likelihood -1319.4 -1295 -1330.6 -1402.3 -1357.17 -1493.5 -554.26 
LB Q(10)   11.62 

[0.31] 
7.48 

[0.76] 
9.99 

[0.18] 
5.92 

[0.82] 
12.77 
[0.23] 

5.81 
[0.83] 

8.13 
[0.61] 

LB2 Q(10)    5.24 
[0.87] 

12.75 
[0.23] 

10.32 
[0.41] 

6.22 
[0.79] 

3.25 
[0.97] 

11.74 
[0.30] 

1.68 
[0.99] 

LM-ARCH(10)   5.69 
[0.84] 

11.95 
[0.28] 

9.11 
[0.52] 

6.48 
[0.77] 

3.25 
[0.97] 

10.76 
[0.37] 

1.79 
[0.99] 

Joint 𝐿   
Critical value 

0.480 
[1.24] 

1.22 
[1.24] 

1.35 
[1.47] 

1.280 
[1.47] 

1.06 
[1.47] 

1.30 
[1.47] 

0.851 
[1.24] 

Half-life period  10.48  2.91  14.39  3.12  7.52  7632  27.3 

Source: Authors’ calculations 

All coefficients in variance equations are found to be significantly different from zero at the conventional levels of 

significance. All ARCH coefficients are lower than their GARCH counterparts implying that the last week shock tends 

to have less influence on future volatility compared to old shock. The sum of the estimated ARCH and GARCH 

coefficients  α̂1 + β̂1, shown in Table 1, is less than one for all series implying that models are covariance stationary 
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and that volatility is mean reverting. The volatility persistence measured by the sum of the estimated ARCH and 

GARCH coefficients varies across sectors. The persistence is higher than 0.9 for Banks, Construction and Materials, 

and Financial Services excluding Banks and for the EX series. The high level of persistence in volatility can be 

described by the half-life period, which shows the number of periods a shock takes to reduce to half its original size. It 

is calculated as [log (0.5)/log (�̂�1 + �̂�1)]. The half-life of volatility implied by estimated GARCH(1,1) models for 

employed sectors are around 11, 3, 15, 3, 8 and 2 weeks for BAN, CHM, COM, FNS, ING, and TEL sectors. Thus, a 

shock to returns of the Construction and Materials sector, with the highest volatility persistence, takes around 15 weeks 

to move halfway back towards its unconditional mean following a deviation from it. On the other hand, the 

Telecommunications sector with lowest volatility persistence, takes around 2 weeks for a shock of price increments to 

shrink half its original size. Thus, there is an evidence of significant heterogeneity in persistence of volatility. The 

statistical significance of all the variance coefficients indicates presence of conditional heteroscedasticity in returns of 

all employed sectors greatly undermines the accuracy of static unconditional correlations of returns across sectors. Thus, 

an important step is then to use the standardized residuals obtained from the estimated univariate GARCH(1,1) models 

above to estimate the time-varying DCC series by maximizing the aforementioned log-likelihood functions.  

4.4 Dynamic Conditional Correlation Patterns among Sectors 

Table 2. DCC(1,1) estimates 

Sector BAN CHM COM FNS ING TEL 

𝜃1 𝜃2 𝜃1 𝜃2 𝜃1 𝜃2 𝜃1 𝜃2 𝜃1 𝜃2 𝜃1 𝜃2 

CHM 

 

Mean of 𝜌𝑖𝑗,𝑡   

Std. of 𝜌𝑖𝑗,𝑡  

0.061 

 [0.08] 

*** 

0.755 

[0.00] 

* 

          

0.562 
0.069 

     

COM 

 

 

Mean of 𝜌𝑖𝑗,𝑡   

Std. of 𝜌𝑖𝑗,𝑡  

0.028 

[0.05] 

** 

0.927 

[0.00] 

* 

0.053 

[0.00] 

* 

0.895 

[0.00] 

* 

        

0.612 
0.071 

0.558 
0.115 

    

FNS 

 

Mean of 𝜌𝑖𝑗,𝑡   

Std. of 𝜌𝑖𝑗,𝑡 

0.079 

[0.07] 

*** 

0.565 

[0.07] 

*** 

0.053 

[0.11] 

0.780 

[0.00] 

* 

0.017 

[0.11] 

0.940 

[0.00] 

* 

      

0.710 
0.053 

0.685 
0.056 

0.718 
0.037 

   

ING 

 

 

Mean of 𝜌𝑖𝑗,𝑡   

Std. of 𝜌𝑖𝑗,𝑡 

0.053 

[0.02] 

** 

0.864 

[0.00] 

* 

0.095 

[0.05] 

** 

0.567 

[0.04] 

** 

0.025 

[0.04] 

** 

0.919 

[0.00] 

* 

0.095 

[0.05] 

** 

0.567 

[0.04] 

** 

    

0.707 
0.068 

0.778 
0.095 

0.678 
0.055 

0.778 
0.051 

  

TEL 

 

 

Mean of 𝜌𝑖𝑗,𝑡   

Std. of 𝜌𝑖𝑗,𝑡 

0.123 

[0.03] 

** 

0.225 

[0.52] 

0.051 

[0.02] 

** 

0.839 

[0.00] 

* 

0.163 

[0.00] 

* 

0.532 

[0.00] 

* 

0.161 

[0.00] 

* 

0.544 

[0.00] 

* 

0.108 

[0.00] 

* 

0.533 

[0.00] 

* 

  

0.610 
0.069 

0.671 
0.111 

0.588 
0.115 

0.775 
0.083 

0.707 
0.060 

 

*,**, *** indicate statistical significance at 1%, 5%, and 10% levels, respectively. 

Source: authors’ calculations 

Table 2 summarize the estimates of 𝜃1,  2 , the mean and standard deviation of the DCC coefficient (𝜌𝑖𝑗,𝑡). The 

necessary condition of stability,  1 +  2 < 1, has been met for all sector pairs.  1 is significant at conventional levels 

of significance for all sector pairs except for FNS-CHM and FNS-COM pairs. The magnitude of  1 is generally low, 

ranging from zero (insignificant  1) and 0.163. Thus, short-run co-movements do not affect co-movement between 

Financial Services-excluding banks sector and Chemical and Construction and Material sectors. Moreover, 𝜃2 is 

significant at conventional levels of significance except for TEL-BAN pair. Some sector pairs exhibit slow decay in 

correlations (or lack of it) as reflected in the high and significant  2 (persistence) parameter.  2  is found greater than 

0.8 in six sector pairs [BAN-COM, CHM-COM, COM-FNS, BAN-ING, COM-ING, and CHM-TEL] out of fifteen. In 

such cases, a shock to sector returns is likely to influence expected dynamic correlation over many periods in future. 

Hence, these findings suggest that all DCCs show significant variations over time. This suggests that the DCC model is 

adequate at measuring time-varying conditional correlations, and that it displays mean reversion along a constant level.  

It is worth noting that the mean of DCC estimates, shown in Table 2 along with its standard deviation, differs 

significantly from the unconditional (static) correlations for some sector pairs. For example, the mean DCC estimates of 

CHM-COM, BAN-CHM and CHM-ING pairs are 0.558, 0.562, and 0.778 whereas their unconditional counterparts are 
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0.624 and 0.601, and 0.71, respectively. This again highlights the impreciseness of assuming static inter-sectoral 

correlations between domestic equities. 

Appendix A depicts the evolution of the estimated DCCs between conditional volatility amongst each pair of employed 

sectors. In all cases, the DCC is positive. The heterogeneity in the dynamics of DCCs between the sector pairs is clear. 

In addition, sector pairs do not exhibit stable correlation pattern for a prolong period of time, implying that DCC 

estimates change in response to price increment shocks to each sector in the pair. Hence, using time-invariant estimates 

of co-movement can be misleading and is likely to yield incorrect inference and decisions regarding risk management 

and portfolio rebalancing.  

Table 3. Testing for structural breaks in the estimated DCCs  

DCC pairs ADF test  Mean Equation Model Diagnostics 

ρi , = 𝜌0 + ρi , −1 + 𝛾𝑘 𝐶𝑟𝑖𝑠𝑖𝑠𝑘,𝑡 + 𝑒𝑖𝑗,𝑡        

𝜌0 ρi , −1 𝛾1 𝛾2 R
2 LB Q(10)   

 
LB2 Q(10)  

 
BAN-CHM -6.655(0) 

[0.000] 
0.101* 
[0.00] 

0.813* 
[0.00] 

0.005 
[0.51] 

0.106 
[0.12] 

0.68 6.46 
[0.77] 

10 
[0.44] 

BAN-COM -3.08(0) 
[0.02] 

0.024* 
[0.00] 

0.95* 
[0.00] 

0.002 
[0.46] 

0.086 
[0.13] 

0.92 7.09 
[0.71] 

5.3 
[0.87] 

BAN-FNS -9.37(0) 
[0.000] 

0.233* 
[0.00] 

0.67* 
[0.00] 

0.002 
[0.78] 

0.082 
[0.12] 

0.47 7.07 
[0.71] 

4.18 
[0.93] 

BAN-ING -4.57(0) 
[0.000] 

0.06* 
[0.00] 

0.91* 
[0.00] 

0.002 
[0.51] 

0.108 
[0.12] 

0.82 8.92 
[0.53] 

12.09 
[0.27] 

BAN-TEL -15.02(0) 
[0.000] 

0.411* 
[0.00] 

0.325* 
[0.00] 

-0.011 
[0.47] 

0.141 
[0.11] 

0.35 7.07 
[0.71] 

3.38 
[0.97] 

CHM -COM -3.52(0) 
[0.007] 

0.031* 
[0.00] 

0.943* 
[0.00] 

0.0001 
[0.98] 

0.100* 
[0.01] 

0.90 9.62 
[0.47] 

4.06 
[0.94] 

CHM-FNS -6.29(0) 
[0.000] 

0.119* 
[0.00] 

0.824* 
[0.00] 

0.007*** 
[0.10] 

0.068** 
[0.05] 

0.71 7.38 
[0.68] 

2.29 
[0.99] 

CHM-ING -8.3(0) 
[0.000] 

0.214* 
[0.00] 

0.723* 
[0.00] 

0.007*** 
[0.06] 

0.066*** 
[0.06] 

0.55 15.39 
[0.11] 

5.97 
[0.81] 

CHM -TEL -4.87(0) 
[0.000] 

0.063* 
[0.00] 

0.896* 
[0.00] 

0.001 
[0.75] 

0.085** 
[0.04] 

0.81 5.87 
[0.82] 

2.2 
[0.99] 

COM-FNS -3.9(0) 
[0.000] 

0.023* 
[0.00] 

0.967* 
[0.00] 

0.0006 
[0.74] 

0.038*** 
[0.09] 

0.94 5.17 
[0.80] 

6.07 
[0.81] 

COM-ING -3.19(0) 
[0.021] 

0.032* 
[0.00] 

0.951* 
[0.00] 

0.001 
[0.58] 

0.063*** 
[0.08] 

0.92 11.51 
[0.31] 

5.34 
[0.86] 

COM-TEL -8.78(0) 
[0.000] 

0.175* 
[0.00] 

0.697* 
[0.00] 

0.017 
[0.13] 

0.114* 
[0.01] 

0.51 10.83 
[0.37] 

3.49 
[0.96] 

FNS-ING -8.3(0) 
[0.000] 

0.214* 
[0.00] 

0.723* 
[0.00] 

0.007*** 
[0.07] 

0.066*** 
[0.07] 

0.55 15.39 
[0.11] 

5.97 
[0.81] 

FNS-TEL 
 

-8.31(0) 
[0.000] 

0.219* 
[0.00] 

0.718* 
[0.00] 

-0.001 
[0.96] 

0.079* 
[0.01] 

- 4.51 
[0.92] 

7.68 
[0.66] 

ING-TEL -10.5(0) 
[0.000] 

0.298* 
[0.00] 

0.575* 
[0.00] 

0.018** 
[0.04] 

0.098** 
[0.04] 

0.38 4.51 
[0.92] 

7.68 
[0.66] 

Notes: *, **, *** indicate significance at 1% (or less), 5% (or less), or 10% (or less), respectively. 

Source: Authors’ calculations 

From Table 3 displays the results of testing for structural breaks in the estimated DCCs during the global financial 

crash and political turmoil in Egypt in 2011. ADF tests, including a constant, indicate that the null hypothesis should be 

rejected at 1% for all estimated DCCs. The number of lags used in the ADF procedure, shown next to the calculated test 

statistics in parentheses, is automatically selected by AIC and p-values are in square brackets beneath calculated test 

statistics. The AR(1) model is found sufficient to capture all the dynamics in the DCCs, with exception of the FNS-TEL 

pair, since the Box-Pierce portmanteau statistic for the first ten autocorrelations of standardised residuals and their 

squared counterparts (i.e.  LB Q(10)  and LB2 Q(10), respectively) are found to be free from serial correlation. 

Regarding the DCC for FNS-TEL pair, an AR(1)-ARCH(1) is found sufficient to capture the dynamics of its first two 

moments with the constant and ARCH term, equal 0.002 and 0.151 respectively being significant beyond 1% level of 

significance whereas none of the dummy variables in the variance equation is found significant at any conventional 

levels of significance. The political turbulence in 2011 significantly increased the level of the DCC for the FNS-TEL 

pair but not its variability since the coefficients of the two crisis events are found insignificant at any conventional level 

of significance. The coefficient of the global financial crash, 𝛾1, is found positively significant in four cases, namely; 

CHM-FNS, CHM-ING, FNS-ING, and ING-TEL pairs. The political instability has significantly increased the level of 
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the DCCs in ten cases out of fifteen. It is worth mentioning that the coefficient of political turmoil, 𝛾2, was found 

insignificant in all the pairs of banking sector. The R2 is found high in many cases and it ranges between a minimum of 

0.35 for the BAN-TEL pair and a maximum of 0.94 for the COM-FNS pair.  

4.5 Causality between Equity Sector Index Volatilities and EX Volatility 

We test the stationarity of conditional variance series using ADF test and we find that all series are stationary2. In Table 

4, we present the results obtained from the bootstrap LR causality test applied to the full-sample to test for static 

causality between the levels of both EXVOL and SVOL. The optimal lag length is chosen based on AIC and the number 

of bootstrap replication is set to 2000. The null hypothesis that SVOL does not Granger-cause EXVOL is rejected for all 

sectors whereas the null that the EXVOL does not Granger-cause SVOL could not be rejected for Construction and 

Materials sector and Telecommunications sector. 

Table 4. Full sample bootstrap Granger non-causality tests between EX volatility and sector volatility 

Sector Lag length H0: SVOL does not cause 

EXVOL 

H0: EXVOL does not cause SVOL 

LR statistic Bootstrap p-value LR statistic Bootstrap p-value 

BAN 5 62.666* 0.000 12.598** 0.043 

CHM 5 43.757* 0.001 14.323** 0.034 

COM 8 24.264* 0.002 12.494 0.136 

FNS 5 53.864* 0.000 14.204** 0.022 

ING 5 58.274* 0.000 24.188** 0.015 

TEL 5 34.138* 0.002 6.995 0.205 

*, **reject the null hypothesis at 1% and 5%, respectively.     

Source: Authors’ calculations 

Table 5 shows the results of the parameter constancy tests that investigate the stability of the coefficients of the VAR 

model. The critical values of Sup-LR, Mean-LR, and Exp-LR statistics and their corresponding p-values are obtained 

using a bootstrap approximation to the null distribution, constructed by employing Monte Carlo simulation with 2000 

samples generated from a VAR model with constant parameters. These stability tests require trimming at the ends of the 

sample. As recommended by Andrews (1993), 15% from both ends are trimmed and tests are calculated for the fraction 

of the sample in [0.15. 0.85]. The Sup-LR, Mean-LR and Exp- LR tests do not exhibit standard asymptotic properties. 

Critical values and p-values of these tests obtained by means of the parametric bootstrap method are reported by 

Andrews (1993) and Andrews and Ploberger (1994). The Sup-LR test is the appropriate in testing whether there was a 

swift regime shift whereas Mean-LR and Exp-LR tests are both optimal for testing the gradual stability of the model 

over time and assume that parameters follow a Martingale process (Andrews & Ploberger, 1994). In the EXVOL 

equations, the three tests soundly reject the null hypothesis of parameter stability, implying that the relation between 

SVOL and EXVOL has experienced structural breaks during the study period. For the SVOL equations, the three tests 

agree in rejecting the null hypothesis of parameter constancy except for the Telecommunications sector equation. 

Accordingly, there is clear evidence of parameter instability. Thus, we re-estimate each VAR model in Equation.11 

using rolling window procedure for a time span of 150 and 200 weekly observations (corresponding to roughly 3 and 4 

years, respectively) as mentioned earlier. The RB causality tests are conducted for each VAR model using the first 150 

(200) observations and, then the sample is rolled one observation forward, eliminating the first observation, performing 

the RB causality testing for the new window and this procedure is repeated until the last observation. For each 

sub-sample, we compute the RB p-values of the modified LR-statistics that test the absence of Granger-causality from 

EXVOL to SVOL or vice-versa. We found that results are insensitive to the window size, so we report results based 

upon the window size of 200 observations in Appendix B. 

Appendix B displays the rolling bootstrap p-values of the LR statistics estimated using the subsamples data of EXVOL 

and SVOL in panels A through F for Banks, Chemicals, Construction and Materials, Financial Services excluding 

Banks, Industrial Goods, Services and Automobiles, and Telecommunications, respectively. In each graph, the 

horizontal axis shows the final observation in each of the 200-week rolling windows. If the estimated p-value is found 

greater than 10% (the horizontal line of each graph), then the null hypothesis of the absence of causality could not be 

rejected. Appendix B shows bi-directional Granger-causality between EXVOL and SVOL for all sectors, with 

exception of Telecommunications sector where a unidirectional causality runs from SVOL to EXVOL, until the 

beginning of year 2011. Thus, bidirectional causality existed between the two financial markets in Egypt before the 

political instability emerged in 2011. Regarding the period extending from the year 2011 to the second half of 2014, the 

bootstrap p-values indicate that the null hypothesis that EXVOL does not Granger-cause SVOL has to be rejected for all 

sectors. On the other hand, the null that SVOL does not Granger-cause EXVOL could not be rejected for the same 

period. Then, no causality could be detected between these two financial markets in either direction for the rest of the 
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study period.   

Table 5. Parameter Stability test 

Tests EXVOL equation SVOL equation 

Statistics Bootstrap p-value Statistics Bootstrap 

p-value 

Banks sector 

Sup LR 7.183* 0.003 6.002* 0.006 

Exp LR 2.163* 0.001 1.177** 0.013 

Mean LR 3.410* 0.000 1.866** 0.026 

Chemicals 

Sup LR 5.642** 0.014 14.405* 0.000 

Exp LR 1.410* 0.009 2.931* 0.001 

Mean LR 2.272** 0.011 3.143* 0.003 

Construction and Materials 

Sup LR 6.172* 0.008 17.271* 0.000 

Exp LR 1.864* 0.001 3.333* 0.000 

Mean LR 2.843* 0.002 2.441* 0.009 

Financial services- excluding banks 

Sup LR 5.862* 0.009 6.953* 0.002 

Exp LR 1.727* 0.003 1.051** 0.019 

Mean LR 2.828* 0.003 1.680** 0.041 

Industrial goods, services, and automobiles 

Sup LR 7.067** 0.011 17.208* 0.001 

Exp LR 2.286* 0.004 4.791* 0.001 

Mean LR 3.089* 0.005 4.790* 0.002 

Telecommunications 

Sup LR 5.734** 0.011 2.076 0.301 

Exp LR 1.534* 0.007 0.492 0.403 

Mean LR 2.612* 0.008 0.953 0.402 

Notes:
  *, ** indicate that the null hypothesis of parameter stability has to be rejected at 1% or less and 5% or less, 

respectively.   

Source: Authors’ calculation 

5. Conclusion  

Employing weekly observations for Egypt, the current paper examined the information flows across equity sectors 

using DCC-MGARCH model and investigated the presence of time-varying causality between EXVOL and SVOL 

using the bootstrap Granger non-causality tests in a GARCH-VAR framework. Results obtained from GARCH(1,1) 

applied in the first step of the DCC framework indicated that volatility persistence varies across sectors implying that 

the time required for shocks to decrease to one half of its original size is approximately 11, 3, 15, 3, 8 and 2 weeks for 

BAN, CHM, COM, FNS, ING, and TEL sectors, implying that different sectors synthesize the impact of a shock at 

different speeds. Findings of the second step of the DCC framework revealed that all DCCs show significant variations 

over time and that the impact of short term co-movement on the DCCs is generally low compared to the coefficients 

that measure the impact of the lagged DCCs on the current DCCs. The sum of these two coefficients is found less than 

unity, suggesting that the DCC model is adequate at measuring time-varying conditional correlations, and that it 

displays mean reversion along a constant level. All estimated DCCs are found positive. Heterogeneous patterns of 

information flows among the sector pairs are detected. These conclusions highlight the invalidity of assuming static 

inter-sectoral correlations between domestic equities when constructing and periodically re-balancing portfolios. We 

found significant increase in DCCs for four and ten out of fifteen DCC pairs during the global financial crash and 

political instability in Egypt accompanying the 25th of January revolution. These findings indicate that the global 

financial crash has not widely affect diversification opportunities in the EGX whereas the recent political turmoil in 

Egypt has. The RB based modified-LR statistics was applied onto the conditional variance series extracted from 

GARCH(1,1) model to test for volatility transmission between EXVOL and SVOL in a bivariate VAR framework. 

Full-sample results show that EXVOL Granger-cause SVOL for all employed indexes whereas the volatility of 

Construction and Materials and Telecommunications sectors is found not Granger cause EXVOL. However, the 

parameter stability tests indicate the existence of structural changes in the relationship, and therefore, we use the RB 

based modified-LR test with fixed-length rolling sub-samples to analyse the time-varying causal relation between 

EXVOL and SVOL. Results confirm that the casual relationship between SVOL and EXVOL varies across time. 
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Bidirectional volatility transmission was detected before the political instability emerged in 2011. Unidirectional 

causality running from EXVOL to SVOL was detected during 2011 to the second half of 2014. For the rest of the period, 

no volatility spillover existed in either direction. Thus, Policymakers should be aware that volatility transmission 

between the foreign currency and equity markets are time varying. International investors must take into consideration 

equity and currency volatility risks when rebalancing their portfolios. EXVOL is likely to encourage international 

investors to invest more in their domestic exchanges since it puts additional risk on holding foreign assets from a 

domestic (currency) investors’ perspective. Additionally, firms which depend on foreign exchange, even domestic firms 

with minimal international activities, should consider these interlinks when they manage exposures to foreign contracts 

and exchange rate risk to stabilize their earnings.  
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Appendix A  

Dynamic Conditional Correlation between Equity Returns of Employed Sector Indexes 
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The red line represents the mean of DCC estimates         Source: authors’ calculation 
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Appendix A: Continued 
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Appendix B  

Dynamic Causality between Employed Equity Sectors and EX Volatility 
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