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Abstract 

There is a vast amount of empirical evidence concerning the cointegrating relationship between money demand, some 
kind of interest rate and income. In contrast to this, short-run dynamics are still opaque. In the existing literature, the 
return to steady state is modeled quite differently. The range goes from simple error correction models to non-linear 
approaches.  

We herewith propose a method for considering not only disequilibria between money demand and its steady state for the 
last period only, but also for such of the recent past in a parsimonious and economically meaningful way. As different 
from multicointegration, weights for cumulating steady-state deviations are geometrically decreasing, the more they are 
located in the past. This model possesses an ARMA (1,1) representation and leads to an ARMAX-model, if combined 
with a conventional error correction model. This approach is shown to track money demand short-run dynamics better 
and more parsimoniously than partial-adjustment models. 

Keywords: short-run money demand, cumulative error-correction model 

1. Introduction 

Nowadays, modeling long-term money demand is largely straightforward. There is a vast amount of empirical evidence 
concerning the existence of a cointegrating relationship between real money demand, some kind of interest rate and 
income. Examples for the US are Hoffman and Rasche (1991) or Stock and Watson (1993), for the UK Ericsson, 
Hendry and Prestwich (1998) and Teräsvirta and Eliasson (2001), or for the euro area Calza and Zaghini (2006) or 
Dreger and Wolters (2010). 

In contrast to this, the short-run dynamics is still opaque. Theoretically, the existence of portfolio adjustment costs is 
frequently used to explain the sluggish return to steady state. In this case, the money amount held by the economic agent 
acts as a “buffer stock” (Laidler, 1984) for smoothing the differences between income and expenditure streams. In the 
empirical literature, there are many different approaches to modeling the inertia of the adjustment process back towards the 
long-run relation. Goldfeld (1973) applied a so-called partial adjustment model by including a lagged dependent variable to 
model the inertia of return. With the upcoming popularity of error correction models, Baba, Hendry and Starr (1992) and 
Duca (2000) are prominent examples for attempts to model short-run dynamics in money demand. Since simple error 
correction models in some casesdid not produce satisfying statistical results, several authors applied non-linear versions. 
Hendry and Ericsson (1991) and Escribano (2004) tested a cubic polynomial error correction model. Examples for 
regime-dependent adjustment dynamics are Lütkepohl, Täresvirta and Wolters (1999) or Teräsvirta and Eliasson (2001). 

1.1 The Problem 

The reason for the large amount of different approaches towards modeling the return to steady-state may be that the 
disequilibrium - which has to be balanced by economic agents - is not defined correctly. All these models consider the 
disequilibrium to be balanced by short-run dynamics as the gap between money demand and its steady state for the last 
period only, disregarding disequilibria in earlier periods. But there seems to be no convincing argument why agents 
should balance only the disequilibrium of the most recent period. This goes especially for cases of higher-frequency 
(daily, weekly, monthly or quarterly) data. Ignoring deviations from steady state that occurred further back in the past 
fail to account for money stockpiling by economic agents. Positive deviations from steady state of past periods may be 
cumulated [?] and used for transaction or saving purposes in the current period without making it necessary to balance 
the deviation of the most recent past. These cumulated deviations from steady state of the past form a further variable 
which, if not considered, could lead to mis-specification of the model. 
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1.2 Objective of the Study 

We herewith present a model that accounts not only for the most recent deviation from the long-run relation in the 
short-run adjustment process, but also for disequilibria that occurred further back in the past. With this type of model we 
need no assumptions concerning sluggish adjustment due to adjustment costs. Only the fact that deviations from steady 
state located earlier than in the most recent period may be relevant. The outline of the paper is as follows. Section 2 
presents the so-called cumulative error correction model. In Section 3 this model is applied to the dataset used by Ball 
(2012) where the same long-run relationship is used and just short-run dynamics compared. Section 4 concludes. 

2. Method 

The idea of accounting also for disequilibria further in the past than in the most recent period within the framework of 
error correction models (ECM) is not new. Granger and Lee (1989) presented a model where all past deviations from 
steady state are summed up with equal weights until the starting period of the time series. In their example, the 
mismatch between production and sales for any lag leads to the accumulation of inventories. In such a situation, the 
application of a standard ECM would result in a specification error1. Apart from the cointegrating relationship between 
the flows (first-level cointegration), there may be another one from stock levels which the authors called second-level 
cointegration. This new series emerging from the accumulation of past disequilibria form a further cointegrating 
relationship called multicointegration. Whereas usually the number of cointegrating relationships among n variables is 
at most n–1, it can be n as well within this framework. A drawback of this approach is that the second-level 
cointegrating relationship contains I(2) variables, constructed by the summation of I(1) flow variables, which 
complicates the estimation process. 

Suppose that yt and xt are both I(1) and are cointegrated CI(1,1) so that 

ttt xyz 
                  (1) 

is I(0). (1) defines the so-called first-level cointegration relationship. Granger and Lee (1989) propose to sum up all past 

deviations from steady state with the same weight 1 to a new stock variable st = Σzt. If now st cointegrates with either 

Σxt or Σyt we get another cointegration relationship (second-level cointegration) so that st – κyt again forms a stationary 

relationship 

t

t

j

t

j
tttt yxyys    

 1 1                 (2) 

with st being I(1) and Σyt and Σxt being I(2) as both are summed I(1) variables.2 Granger and Lee (1989) solved the 
estimation problem by a two-step method as typically used for CI(1,1) variables. In a first step, they estimated the 
first-level cointegration relation. The residuals representing deviations from steady state were summed up and, in a 
second stage, regressed on the cumulated variables (summed yt) for estimating the second-order cointegrating 
relationship. 

Engsted et al. (1997) have shown that in case of a two-step method, the first cointegrating relationship (of flows) must 
not be estimated, but derived by another method. Otherwise the test statistics of the second one will have a different 
limiting distribution compared with normal settings. Furthermore, for I(2)-based models usual asymptotic ² inference 
is invalid and Johansen (2006) pointed out that it can be used only if a multicointegration relation is assumed with 
properties hardly met in reality. 

2.1 The Cumulative Error Correction Model 

The model presented here instead, uses weights for cumulation which are geometrically decreasing the more the 
disequilibria are located in the past. According to Koyck (1954), such models possess an ARMA (1,1) representation. 
The combination of the Koyck-model with the error correction approach leads to an ARMAX model which is shown to 
be in some cases capable to track money demand short-run dynamics better and more parsimoniously than 
partial–adjustment models. Probably, even adjustment structures modeled by non-linear ECM can be explained better 
                                                        
1 See for this Engsted and Johansen (1997) or Lee (1992) 
2 In the case of multicointegration, the corresponding ECM considers adjustment mechanisms for the stock as well as 

the flow variables with ttttttt uyxlaggedyscx   ),()( 12111   
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by this model type. 

This model has recently been put forward by Scheiblecker (2013) for the empirical application of modeling private 

consumption in the US. 

The typical ECM 

tttt ucxy    1                       (3) 

with yt and xt being observed flow variables, c a scaling factor, ut an iid error term and ξt-1 = yt-1 – y*
t-1 which measures 

the distance between the steady state y* and the time series y one period ago. As usual, the EC parameter (0>>-1) 

partly settles deviations occurred at time t–1 in t. 

Based on considerations that deviations located further in the past than t-1 could influence current balancing activities, a 

transformation of (3) in 






 
0

1

i

ttit

i

t ucxy                     (4) 

with the weight  <1, is proposed. 

Koyck (1954) was the first one to put forward the transformation of an ADL model of the type 






 
0j

tjt

j

t ScF                         (5) 

into an ARMAX(1,1) model 

110

0)1(   ttttt FScF 
        

        (6) 

where Ft-1 represents the autoregressive [AR] part, -t-1 the moving average [MA] part and St the exogenous regressor, 

which is therefore called the Koyck model. The summing weights  (called the retention rate) are defined over 0    1 

such that their size is decreasing geometrically giving less weight to more distant observations. 

If we replace St-i in equation (5) and (6) for t-i-1 (so that St = t-1), Ft corresponds to the right hand side of equation (4)3. 

So (4) can be transformed into 

tttttt xycy    111)1(               (7) 

which is the ARMAX representation of our cumulative ECM given in (5). It is straightforward that as long as  <1 all 

terms on either side of the equation are I(0) and hence the usual test statistics can be applied in order to determine the 

cointegrating relationship.  

This approach is very parsimonious as only one parameter more (the retention parameter  ) than in the conventional 

ECM has to be estimated. It is also noteworthy that if the parameter  in (6) is zero (i. e. no cointegration exists between 

the two series) the retention parameter  can not be retrieved from the model. On the other side, if  is zero we obtain 

the conventional ECM, and if it is 1 we arrive at the multicointegration method with equal weights as proposed by 

Granger and Lee (1989).4 

2.2 Economic Interpretation of the Cumulative Error Correction Model 

This time series representation of an ECM attenuates somewhat the reproach against ARIMA models for their lack of 

theoretical content. This form seems to be based on economic theory no less than the conventional ECMs and the 

multicointegration method, as the retention rate  is located between both approaches. Equation (7) is an ARMAX 

model type that implicitly includes I(1) variables in levels – as represented by their I(0) deviations from steady state – 

as well as an AR and a MA term. The only difference to a typical ARMAX model is that (7) requires the AR parameter 

to equal the MA one with different signs and that both terms are restricted to be of order one. 

                                                        
3 Disregarding for a moment the regressor xt. 
4 In this case the specification of the model is not exactly correct because the second-level cointegrating relationship is 

not considered explicitly here. 
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Scheiblecker (2013) has shown that this type of model has interesting features concerning its stability, defined as the 

situation where a time series is only driven by its exogenous short-term variables (xt) and the error term (εt). For the 

conventional ECM this is the case if the error of the past period was zero. For the cumulated ECM it is the case if the 

weighted sum of disequilibria of the past is zero. Such a situation can even occur outside steady state, at least for a short 

time.   

3. Modeling US Short-run Money Demand 

3.1 The Theory of Short-run Money Demand 

Ericsson, Hendry and Prestwich (1998) developed the notion that one of the reasons for the demand for money is to act 

as an inventory in order to smooth differences between income and expenditure streams. If this is true, it makes sense to 

account not just for the inventory of money resulting from the disequilibrium of the most recent past but also from 

earlier periods. For this reason, a cumulated ECM (cumECM) makes sense and serves to model the short run money 

demand for the US. 

As referred to in the introduction, modeling short-run movements around the long-run path of money demand is not 

straightforward. Many economists have tried to model this relation by very different models. As the intention of this 

paper is not to challenge the existence or structure of possible long-run relationships, but just to concentrate on the 

short-run dynamics, I use the same data set as well as the same steady-state parameters as published by Ball (2012). 

3.2 Alternative Models  

According to Ball (2012), the assumption of opportunity costs is necessary to explain the sluggish, arbitrarily chosen 

AR(2) adjustment in a partial-adjustment model. While we use the same interest rate here, the inertia does not stem 

from opportunity costs of adjustment, but from stockpiling of past periods. From a theoretical point of view, this 

difference is important as sluggish behavior due to adjustment costs is a different motivation than rapid reaction 

triggered by some disregarded stock variable. 

Based on this, following Stock and Watson (1993), Ball (2012) estimated for the US a semi-logarithmic long-run money 

demand function of the form 

  Rypm Ry                     (8) 

where price homogeneity is assumed to be valid in the long-run. m represents the logarithm of M1, p the logarithm of 

the GDP deflator, y  the log of real US-GDP, R is the interest rate of “near money” and ε the error term showing 

deviations from steady state. Ball (2012) estimated the cointegrating relationship by Dynamic OLS as introduced by 

Stock and Watson (1993), obtaining a long-run income elasticity θy of 0.47 and an interest rate semi-elasticity θR of 

-0.082. 

In order to model the short-run dynamics around the steady state, the author used a partial adjustment model where 

desired money holdings deviate from the steady state value (m*) and are represented by m*+η with η being a shock that 

is assumed to follow an AR(2) process. The reasoning behind this is that the adjustment of money stock is costly and 

therefore takes place only gradually towards the desired equilibrium, following an AR(2) process. 

Ball (2012) has furthermore shown that his approach possesses an ECM representation of the form 
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                 (9) 

with restrictions to the parameters used as compared with a conventional ECM. In this formula, k is a scaling parameter, 

μ the speed of adjustment of money holdings, ρ1 and ρ2 the two parameters of the AR(2) process determining the 

development of η over time and υ an iid error term. (m*
-1 - m-1) is the traditional EC-term which only considers the 

deviation from steady state in the most recent past (period t-1). This ECM is supplemented with an AR(2) process in 

order to capture residual auto-correlation stemming from sluggish adjustment. 

Contrary to the partial adjustment model which is an AR(2) model, the proposed cumulative ECM is an ARMA (1,1) 

model with the restriction that the AR and the MA term are of the same size, but with different signs. As a MA(1) 

possesses an AR(∞) representation, the cumulative ECM is capable of capturing higher autoregressive dynamics than 

AR(2). In order to quantify (9), six parameters have to be estimated to model short-run dynamics of this kind. 
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3.3 The Data 

For the sake of comparison, we use the same data as in Ball (2012). The Appendix presents these data on a quarterly 

frequency between IIQ1959 and IVQ1993. Income is represented by real GDP (chain linked in US-Dollars) 

downloaded from the Federal Reserve Data Base (FRED) in May 6, 2013. M1and the GDP deflator (representing prices) 

also originate from this data base. Instead of using the Treasury Bill rate or a commercial paper rate as a proxy for the 

short-term market interest rate like in many other studies, Ball (2012) constructed an average return rate of “near 

monies” which is used in our model as well, as shown in the table. This interest rate for “near money” should better 

reflect the opportunity cost of holding money than other short-term interest rates. It includes interest rates for all 

non-M1 components of M2, except time deposits. This synthetic interest rate represents a weighted average of interest 

rates for saving accounts with zero maturity, retail money market mutual funds and money market deposit accounts. 

Figure 1 gives the logs of M1 as well as its steady state as represented by (8). Differences between both lines represent 

the deviations from the steady state which are used to set up ECMs. 
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Figure 1. Headline and steady state demand for M1 

Source: FRED retr. May 6, 2013, Ball (2012) 

3.4 Application of the Cumulative Error Correction Model 

The cumulative ECM used here for estimating short-term movements of US money demand between 1960 and 1993 on 

a quarterly basis is 

ttRtytMAtARtt RYmcm    111)1(           (10) 

or explicitly respecting the restriction of λAR  =  ̶ λMA 

ttRtytttt RYmcm    )()1( 111          (11) 

with mt being the log of real M1, (1-λ)c a constant scaling parameter, ξt-1 the deviation of real M1 from its steady state 

as estimated by Ball (2012), Y the log of real GDP and R the interest of near money. 

According to this approach, five parameters have to be estimated: the constant (if necessary at all), the EC parameter β, 

the retention rate λ, the income elasticity γy and the interest semi-elasticity γR. As shown in (7) the retention rate appears 

twice in (10).: once as an AR-parameter (λAR), and the second time with the same value, but with a different sign as the 

MA-parameter (-λMA). 

3.5 Results 

For estimation in practice, there are two possibilities: either to restrict the parameters to be equal with different signs 

(λAR = -λMA ) as given in (11), or to estimate them independently, like proposed in (10). The first approach has the 

advantage of one parameter being saved, but at the cost of a more complicated estimation procedure. Fransens and van 

Oest (2007) have shown that such a restriction requires maximum likelihood estimation and errors are non-normally 
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distributed because of the so-called Davies (1987) problem. They propose several alternative test statistics, of which we 

use here the average absolute t-statistics in order to test the significance of the estimated parameters.  

On the other hand, estimating both parameters independently allows verification of whether they have the same absolute 

value (irrespective of the sign) and hence the appropriateness of assuming geometrically decreasing weights. We follow 

both approaches here, and the results are given in Table 1. 

Table 1. Parameters of the short-run Money Demand 

 Unrestricted Restricted
5
 

β -0.024 *** -0.016 *** 

λAR  0.701 ***  0.701 *** 

λMA -0.431 *** -0.701 *** 

γy  0.167 ***  0.165 *** 

γR -0.018 *** -0.019 *** 

*** = significant at a 1% confidence level 

All estimated parameters have been found to be highly significant. Furthermore, in none of the approaches an outlier in 

1980q3 considered by a dummy variable - as found by Ball (2012) - turned out to be significant. The EC parameter ß is 

somewhat higher with -0.024 in the unrestricted case than in the restricted (-0.016). From (9) one can derive Ball’s 

EC-parameter of t-1 with a value of 0.05 that is higher than in the cumECM case. The short-term income elasticity and 

the interest semi-elasticity are practically the same in both approaches. According to these, a one- percent rise in income 

in the US leads to a higher demand for real M1 of around 0.167 percent. A one-percentage- point higher interest rate for 

near monies leads to a reduction of real M1 of 0.018 percent. 

In the unrestricted approach, the AR parameter λAR and the MA parameter λMA are quite different, apart from their sign. 

Unfortunately, the 5% confidence intervals did not overlap, hence the Wald-test for the equality of parameters failed. 

This inconsistency hints at a retention rate that does not decrease according to a geometric pattern, but in some other, e. 

g. triangular form. Interestingly, the restricted model supports a retention rate of the same magnitude as the unrestricted 

AR parameter. Usually, in this case the restricted form shows a parameter located somewhere in the middle between the 

unrestricted AR and MA parameter (see e. g. Scheiblecker, 2013). Nevertheless, the restricted retention rate turned out 

to be highly significant. Figure 1 shows the decrease over time of the weights given to past deviations from steady state 

with a retention rate of 0.70. 

 

Figure 2. Retention rate over periods 

In the first period t-1, the retention rate λ is one (λ0) so that the attraction toward steady state is fully determined by the 

EC parameter β like in conventional ECMs. In the period before (t-2), the retention rate reduces the weight of the EC 

parameter by the factor 0.7 and so on. In the current period, deviations from steady state that occurred 8 quarters in the 

past still have a weight of around 0.10. After 14 quarters, the effect has completely faded out and disequilibria before 

that time do not influence short-term movements of money demand in the current period. 

The Jarque-Bera statistics concerning the residuals of the restricted and the unrestricted model yielded a value of 1.281 

                                                        
5 Critical values for testing β=0 are taken from Fransens and van Oest (2007) Table 2 page 294. For a sample size of 

1000, the critical value of a 95% confidence level is 1.80. 

λ = 0.70 
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(probability: 0.527%) or 0.730 (probability: 0.694%), respectively. So their normality in distribution could not be 

rejected by far. Furthermore, no auto-correlation in the residuals was found. 

3.6 Comparison with Other Model Results and Discussion 

It is difficult to compare the results with those of Ball (2012), as different parameters had been estimated there. 

Furthermore, the author did not report many test statistics apart from those concerning the single parameters. In order to 

compare the quality of the models, I use several information criteria as suggested in the literature for discrimination 

between alternative models. As no values for such criteria are given in Ball (2012), his model had to be re-estimated for 

calculating three information criteria: the Akaike information criteria, the Schwarz criterion and the Hannan-Quinn 

criterion. Table 2 shows the respective results. 

Table 2. Information criteria 

 partial adjustment 

model 

cumECM 

unrestricted 

CumECM restricted 

Akaike -7.089652 
 

-7.100734 
 

-6.260050 
 

Schwarz -6.939736 
 

-6.972852 
 

-6.153482 
 

Hannan-Quinn -7.028730 
 

-7.048766 
 

-6.216744 
 

Since all three criteria show lower values for the unrestricted cumulative ECM than for the partial adjustment model, 

the unrestricted version should be the preferred one. However, the restricted version could not outperform the partial 

adjustment model as all its values are higher. 

Above, it has been shown that the cumulative ECM nests the multi-cointegration model and the conventional ECM. As 

the partial adjustment model of Ball (2012) includes an AR(2) process and the cumulative ECM with its ARMA(1,1) 

process auto-regressive elements of any lag order, it is not astonishing that both models show roughly similar residuals 

in the underlying case. The partial adjustment model of Ball (2012) cuts-off influences from deviations from steady 

state located more than three periods in the past. This is not the case with the cumulative ECM, but the weights for those 

lags are decreasing rapidly, especially for low retention rates. Figure 2 shows the similarity of residuals of the partial 

adjustment model in the upper part, the restricted ECM in the middle and the unrestricted in the lower part of the 

graph.6 Nevertheless, the theoretical reasoning behind both approaches is quite different, and in other cases, the missing 

variable in the partial adjustment model could make for a larger difference between he two methods. 
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Figure 3. Residuals 

4. Conclusions 

It could be shown, that the proposed cumulative error correction model has several interesting properties like a 

meaningful economic interpretation and a robust and parsimonious model specification. 

4.1 Model Properties 

As different from the conventional ECM, the cumulative ECM accounts not only for the most recent deviation from the 

steady state, but also for those located further in the past, thereby allowing for some kind of stockpiling. For most 

economic problems, the inclusion of such activities is more adequate for modeling the behavior of economic agents. 

Unlike the multi-cointegration model as proposed by Granger and Lee (1989), where all past deviations are assigned 

equal weights back to the start of the time series, we assume (and test) geometrically decreasing weights and estimate 

the related retention rate – which captures the size of the weights as well as their fading over time –from the data. This 

                                                        
6 The residuals have been shifted with a constant term, for better comparison in the graph. 
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leads to a more parsimonious and easier-to-estimate specification over a broad range of applications. 

A strong property of the cumulative version is that the common ECM is completely nested as the retention rate can even 

be zero. On the other hand, if the retention rate is one, the multi-cointegration model emerges, but in this case the 

cumulative ECM will not be correctly specified as it does not explicitly allow for the second-level cointegrating 

relationship. Likewise, the partial adjustment model is nested as the cumECM covers auto-regressive movements of any 

lag order, due to its ARMA(1,1) representation. 

Estimated conventional ECMs sometimes suffer from autocorrelation in the residuals. For practical purposes, this is 

often dealth with by including AR-terms. Sometimes this is done without any theoretical justification; in other instances 

- like in the case of the partial adjustment model – the reasoning is based on opportunity costs leading to sluggish 

adjustment. In the case of the cumECM, such assumptions are not necessary since the inclusion of an ARMA process is 

based only on theoretical grounds whereby disequilibria of past periods may also matter. 

4.2 Economic Findings 

The results of the applied cumECM show that stockpiling activities in past quarters contribute to considerable extent to 

the explanation of demand for M1 money. For the US a retention rate of 0.7 indicates that deviations from steady state 

demand of the past 2 years (8 quarters) play a significant role for short-term demand. On the other side, the classical EC 

parameter - reflecting the reaction to the steady state deviation in the most recent period -shows a lower value than in 

other studies, i.e. only half the size as in a comparable study by Ball (2012). 

In order to interpret the most recent money demand changes correctly, economic policy should give greater 

consideration to stockpiling behavior in the past. The zero lower bound environment following the Great Recession of 

the years 2007/2008 has changed substantially the dynamics of money demand.. In this regard, there is strong need for 

further research.  
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Appendix 

Date r_star Yr Py M1 

1959 Apr 2.36 2776.4 18.314 140.533 

1959 Jul 2.41 2773.1 18.366 141.533 

1959 Oct 2.46 2782.8 18.443 140.300 

1960 Jan 2.51 2845.3 18.521 139.900 

1960 Apr 2.57 2832.0 18.579 139.600 

1960 Jul 2.62 2836.6 18.648 140.900 

1960 Oct 2.66 2800.2 18.700 140.833 

1961 Jan 2.69 2816.9 18.743 141.533 

1961 Apr 2.72 2869.6 18.785 142.567 

1961 Jul 2.84 2915.9 18.843 143.400 

1961 Oct 2.99 2975.3 18.908 144.700 

1962 Jan 3.50 3028.7 19.020 145.633 

1962 Apr 3.65 3062.1 19.047 146.600 

1962 Jul 3.66 3090.4 19.092 146.467 

1962 Oct 3.66 3097.9 19.152 147.267 

1963 Jan 3.66 3138.4 19.196 148.800 

1963 Apr 3.67 3177.7 19.233 150.167 

1963 Jul 3.75 3237.6 19.272 151.700 

1963 Oct 3.76 3262.2 19.418 153.167 

1964 Jan 3.76 3335.4 19.477 154.167 

1964 Apr 3.76 3373.7 19.529 155.233 
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1964 Jul 3.76 3419.5 19.607 157.767 

1964 Oct 3.77 3429.0 19.703 159.833 

1965 Jan 3.86 3513.3 19.801 161.033 

1965 Apr 3.87 3560.9 19.887 161.967 

1965 Jul 3.88 3633.2 19.960 163.867 

1965 Oct 3.96 3720.8 20.088 166.833 

1966 Jan 3.97 3812.2 20.218 169.733 

1966 Apr 3.97 3824.9 20.391 171.567 

1966 Jul 3.97 3850.0 20.601 171.033 

1966 Oct 3.97 3881.2 20.791 171.533 

1967 Jan 3.97 3915.4 20.886 173.233 

1967 Apr 3.97 3916.2 20.997 175.633 

1967 Jul 3.97 3947.5 21.203 179.500 

1967 Oct 3.97 3977.6 21.438 182.433 

1968 Jan 3.97 4059.5 21.672 184.833 

1968 Apr 3.98 4128.5 21.899 188.000 

1968 Jul 3.99 4156.7 22.115 191.667 

1968 Oct 4.00 4174.7 22.426 195.800 

1969 Jan 4.00 4240.5 22.660 199.333 

1969 Apr 4.01 4252.8 22.952 200.933 

1969 Jul 4.01 4279.7 23.280 201.833 

1969 Oct 4.02 4259.6 23.581 203.467 

1970 Jan 4.24 4252.9 23.915 205.633 

1970 Apr 4.50 4260.7 24.247 207.167 

1970 Jul 4.52 4298.6 24.438 209.900 

1970 Oct 4.52 4253.0 24.752 213.667 

1971 Jan 4.50 4370.3 25.126 217.233 

1971 Apr 4.41 4395.1 25.455 221.833 

1971 Jul 4.42 4430.2 25.711 225.667 

1971 Oct 4.47 4442.5 25.918 227.767 

1972 Jan 4.45 4521.9 26.319 232.233 

1972 Apr 4.39 4629.1 26.475 236.033 

1972 Jul 4.40 4673.5 26.731 240.967 

1972 Oct 4.41 4750.5 27.083 246.867 

1973 Jan 4.44 4872.0 27.403 251.800 

1973 Apr 4.52 4928.4 27.828 254.767 

1973 Jul 4.77 4902.1 28.370 257.700 

1973 Oct 4.88 4948.8 28.932 260.967 

1974 Jan 4.89 4905.4 29.488 265.267 

1974 Apr 4.91 4918.0 30.192 267.767 

1974 Jul 4.93 4869.4 31.085 270.133 

1974 Oct 4.95 4850.2 32.015 273.400 

1975 Jan 4.95 4791.2 32.757 275.100 
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1975 Apr 4.97 4827.8 33.245 279.267 

1975 Jul 5.00 4909.1 33.864 284.500 

1975 Oct 5.01 4973.3 34.463 286.433 

1976 Jan 5.01 5086.3 34.837 290.633 

1976 Apr 5.00 5124.6 35.208 295.600 

1976 Jul 4.99 5149.7 35.686 298.600 

1976 Oct 4.98 5187.1 36.331 303.933 

1977 Jan 4.96 5247.3 36.943 311.233 

1977 Apr 4.96 5351.6 37.470 317.333 

1977 Jul 4.96 5447.3 37.927 322.333 

1977 Oct 4.96 5446.1 38.758 328.633 

1978 Jan 4.97 5464.7 39.326 335.567 

1978 Apr 4.98 5679.7 40.050 343.900 

1978 Jul 4.99 5735.4 40.716 349.800 

1978 Oct 4.99 5811.3 41.575 355.333 

1979 Jan 4.99 5821.0 42.318 360.333 

1979 Apr 5.01 5826.4 43.362 370.333 

1979 Jul 5.26 5868.3 44.301 378.433 

1979 Oct 5.59 5884.5 45.194 381.133 

1980 Jan 5.92 5903.4 46.144 388.100 

1980 Apr 6.04 5782.4 47.178 385.900 

1980 Jul 5.49 5771.7 48.256 399.333 

1980 Oct 6.08 5878.4 49.593 409.400 

1981 Jan 6.60 6000.6 50.851 415.033 

1981 Apr 6.87 5952.7 51.813 425.767 

1981 Jul 7.72 6025.0 52.730 426.933 

1981 Oct 7.18 5950.0 53.692 432.133 

1982 Jan 6.91 5852.3 54.421 442.433 

1982 Apr 7.17 5884.0 55.080 447.100 

1982 Jul 6.45 5861.4 55.864 452.100 

1982 Oct 5.42 5866.0 56.470 470.267 

1983 Jan 4.79 5938.9 56.929 484.033 

1983 Apr 5.65 6072.4 57.345 499.067 

1983 Jul 6.07 6192.2 57.929 510.367 

1983 Oct 6.02 6320.2 58.355 519.200 

1984 Jan 6.14 6442.8 59.096 528.000 

1984 Apr 6.48 6554.0 59.602 537.300 

1984 Jul 6.90 6617.7 60.081 541.667 

1984 Oct 6.38 6671.6 60.465 547.600 

1985 Jan 5.65 6734.5 61.136 562.400 

1985 Apr 5.38 6791.5 61.483 575.933 

1985 Jul 5.02 6897.6 61.736 596.200 

1985 Oct 5.01 6950.0 62.140 613.267 
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1986 Jan 4.88 7016.8 62.456 626.700 

1986 Apr 4.44 7045.0 62.786 651.200 

1986 Jul 3.99 7112.9 63.143 678.800 

1986 Oct 3.72 7147.3 63.567 708.333 

1987 Jan 3.62 7186.9 64.160 731.567 

1987 Apr 3.69 7263.3 64.526 744.300 

1987 Jul 3.80 7326.3 65.033 745.167 

1987 Oct 3.99 7451.7 65.530 753.200 

1988 Jan 3.89 7490.2 66.068 758.567 

1988 Apr 3.88 7586.4 66.689 772.700 

1988 Jul 4.15 7625.6 67.442 782.800 

1988 Oct 4.40 7727.4 67.953 784.967 

1989 Jan 4.79 7799.9 68.723 784.167 

1989 Apr 5.14 7858.3 69.399 775.900 

1989 Jul 5.02 7920.6 69.855 779.400 

1989 Oct 4.91 7937.9 70.317 789.133 

1990 Jan 4.73 8020.8 71.166 798.333 

1990 Apr 4.72 8052.7 71.993 806.367 

1990 Jul 4.69 8052.6 72.655 815.333 

1990 Oct 4.62 7982.0 73.239 822.233 

1991 Jan 4.15 7943.4 74.026 832.833 

1991 Apr 3.76 7997.0 74.553 849.533 

1991 Jul 3.57 8030.7 75.133 866.000 

1991 Oct 3.21 8062.2 75.569 887.533 

1992 Jan 2.66 8150.7 75.954 924.100 

1992 Apr 2.47 8237.3 76.423 949.567 

1992 Jul 2.19 8322.3 76.778 975.000 

1992 Oct 2.04 8409.8 77.214 1014.767 

1993 Jan 1.96 8425.3 77.677 1034.167 

1993 Apr 1.89 8479.2 78.106 1062.900 

1993 Jul 1.86 8523.8 78.466 1094.267 

1993 Oct 1.85 8636.4 78.897 1122.300 

Source: FRED ret. May 6, 2013, Ball (2012) 

Notes: r_star in %, Y in billons of chained (2009) dollars , Py is the GDP deflator, M1 in billions of dollars 
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