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Abstract 

We investigate the dynamic dependence structure between the daily stock returns of the A and B shares of the Shanghai 

and Shenzhen stock markets in China, using time-varying conditional copula and asymmetric dynamic conditional 

correlation models. We find that the Shanghai market’s A and B shares are more integrated than those of the Shenzhen 

market. Further, the dynamic dependences between the shares for both markets are asymmetric and lower-tailed, and an 

increasing correlation with the opening up of the B shares market to Chinese citizens around 2001 is evident. 

Keywords: asymmetric dynamic conditional correlation, time-varying copula, dynamic dependence, Chinese stock 

markets 

1. Introduction 

Chinese stock markets have developed rapidly in the past two decades, leading to increased scholarly attention (Xu 

2000; Jin 2015; Luo et al. 2015; Sun and Tong 2000). According to data released by the Shanghai and Shenzhen Stock 

Exchanges (SEs), the total equity market capitalization of the A and B shares of their respective markets was CNY 19.6 

trillion (about USD 3.09 trillion) in April 2013. A (B) shares listed on the Shanghai and Shenzhen SEs are named 

Shanghai A (B) shares and Shenzhen A (B) shares. China is unique in that trading in its equity markets is completely 

segmented between A shares and B shares for Chinese and foreign investors, respectively. A shares (including Shanghai 

A shares and Shenzhen A shares) are traded by domestic citizens in Renminbi (RMB), while B shares (including 

Shanghai B shares and Shenzhen B shares) are denominated in US dollars on the Shanghai SE and in HK dollars on the 

Shenzhen SE. The main reason behind this segmentation is that the Chinese government wants to attract foreign capital 

without worrying about the loss of ownership rights. 

Although the Chinese government has permitted the same company to issue both A and B shares, compared with the 

rather large A shares market, which was worth CNY 18.71 trillion in April 2013, the B shares market is much smaller 

(only CNY 0.17 trillion in 2013) and thus less active as an investment avenue. Bailey (1994) first documented that the 

selling prices of B shares are discounted relative to their A shares counterparts and suggested that the lower cost of 

capital for Chinese citizens may explain the low number of investment alternatives for local investors. Indeed, in 2001, 

the Chinese Securities Regulatory Commission announced a new policy that allowed Chinese citizens to trade in B 

shares. This triggers two questions: (1) Are the prices of A and B shares correlated? (2) Should B shares be merged into 

the A shares market? While recent research has highlighted China’s increasing integration into international markets 

(Wang et al. 2011; Li 2013; Chien et al. 2015; Zhu et al. 2015), few studies investigate market segmentation and 

integration in China. Hence, it is necessary to examine the dependence structure between and integration of the A and B 

shares markets in China to guide both investment and policymaking. 

In this study, we aim to capture the joint behavior of A and B shares by using two approaches. The first method 

considered here is the asymmetric dynamic conditional correlation (ADCC) model proposed by Cappiello et al. (2006), 

which can capture conditional asymmetric effects in correlation dynamics. This approach has been applied to 

commodities (Toyoshima et al. 2013), stocks (Toyoshima and Hamori 2013), bonds (Toyoshima et al. 2012), and bank 

credit default swap markets (Tamakoshi and Hamori 2013). 
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The second method we consider is the copula approach. Copula theory, developed by Sklar (1959), explains that a joint 

distribution can be decomposed into its marginal distributions and a copula, which can characterize the dependence 

between variables. The concept of the conditional copula was introduced by Patton (2006b), who adapted the copula 

framework to a time-series case by allowing for time variation in the parameters of marginal distributions. The 

advantage of the copula approach is that it allows for different types of dependences (e.g., symmetric, asymmetric, 

lower/upper tail dependence). 

Our contributions to the literature can be summarized as follows. We first compensate for the dearth of studies of the 

segmentation and integration of Chinese stock markets. We find that both the level and the variability of the joint 

dependence of the A and B shares of the Shanghai SE are larger than those of the Shenzhen SE, indicating that A shares 

are more integrated with B shares in the former. We also show that the dynamic rotated–Gumbel copula functions fit 

situations of dependence better than the time-varying Student’s t-copula functions for both markets according to the 

Cramer–von Mises (CvM) goodness-of-fit test (see the Appendix for more details), which suggests that the dynamic 

conditional dependences for both markets are asymmetric and more likely to be lower tail-dependent. 

The remainder of the article is organized as follows. Section 2 introduces the model for the marginal distribution, 

ADCC model, and time-varying conditional copula models. Section 3 describes our data. In Section 4, we discuss the 

results of our estimation. Section 5 concludes. 

2. Model Specifications 

2.1 Model for the Marginal Distributions 

The estimation procedure in copula modelling begins with the identification of the marginal distributions and estimation 

of their parameters. We fit univariate GARCH models to each return series. Different GARCH-type models and varying 

lag lengths are possible for different return series, and the best model is typically selected by using the Akaike 

information criterion (AIC) and Bayesian information criterion (BIC). 

If we consider 𝑦𝑡  for the t = 1,…,T asset returns series, all the AR (1)-GARCH specifications can be given by the 

following characteristics: 

𝑦
𝑖,𝑡

=  𝜙
0,𝑖

+ 𝜙
1,𝑖

𝑦
𝑖,𝑡−1

+ 𝜀𝑖,𝑡, 𝑖 = 1, … , 𝑛                                  (1) 

𝜎𝑖,𝑡
𝛿 = 𝜔𝑖 + ∑ 𝛽

𝑖,𝑞
𝜎𝑖,𝑡−𝑞

𝛿𝑄
𝑞=1 + ∑ 𝛼𝑖,𝑝|𝜀𝑖,𝑡−𝑝|𝛿𝑃

𝑝=1 + ∑ 𝛾
𝑖,𝜄

|𝜀𝑖,𝑡−𝜄|
𝛿𝑠𝑖,𝑡−𝜄

𝐽
𝜄=1            (2) 

where 𝑠𝑖,𝑡 is an indicator function that takes the value of one if 𝜀𝑖,𝑡 is negative and zero otherwise. As Table 1 shows, 

the GARCH and Glosten–Jagannathan–Runkle (GJR)–GARCH models parameterize the conditional variance, whereas 

the absolute value (AV) GARCH and threshold GARCH (TGARCH) models directly parameterize the conditional 

standard deviation. In addition, the GJR–GARCH and TGARCH specifications introduce asymmetries in the variance 

and standard deviation equations, respectively. 

Table 1. GARCH Specifications 

GARCH Bollerslev (1986) 𝛿 = 2 𝜄 = 0 

GJR-GARCH Glosten et al. (1993) 𝛿 = 2 𝜄 ≠ 0 

AVGARCH Taylor (1986) 𝛿 = 1 𝜄 = 0 

TGARCH Zakoian (1994) 𝛿 = 1 𝜄 ≠ 0 

We assume the error term 𝜀𝑖,𝑡 follows Hansen’s (1994) skewed Student’s t-distribution as follows: 

𝑑(𝑧|𝜂, 𝜆) = {
𝑏𝑐(1 +

1

𝜂−2
(

𝑏𝑧+𝑎

1−𝜆
)2)−

𝜂+1

2 𝑖𝑓 𝑧 < −
𝑎

𝑏

𝑏𝑐(1 +
1

𝜂−2
(

𝑏𝑧+𝑎

1+𝜆
)2)−

𝜂+1

2 𝑖𝑓 𝑧 ≥ −
𝑎

𝑏

                          (3) 

where 𝑎 ≡ 4𝜆𝑐
𝜂−2

𝜂−1
, 𝑏2 ≡ 1 + 3𝜆 − 𝑎2, and 𝑐 ≡

𝛤(
𝜂+1

2
)

√𝜋(𝜂−2)𝛤(
𝜂

2
)
. 𝜆 and 𝜂 are the asymmetry skewness parameter and 

degree of freedom parameter, respectively. 

If the random variable z has the density 𝑑(𝑧|𝜂, 𝜆), we write 𝑧~𝑆𝑇(𝑧|𝜂, 𝜆). An inspection of the various formulas 

reveals that this density is defined for 2 < 𝜂 < ∞  and −1 < 𝜆 < 1 . If 𝜆 = 0 , Hansen’s skewed Student’s 

t-distribution is then reduced to the traditional Student’s t-distribution, which is not skewed. If, in addition, 𝜂 → ∞, the 

Student’s t-distribution collapses to the normal density. 
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2.2 ADCC Model 

Here, we briefly review the ADCC model. Specifically, based on the conditional volatilities from equation (2), we 

calculate the conditional correlations from the conditional covariance matrix as 

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡                                        (4) 

where 𝐻𝑡  is an N  ×  N positive definite matrix such that 𝐻𝑡  is the conditional variance matrix of 𝑦𝑡 . 𝐷𝑡  is an N × N 

diagonal matrix of the standard deviations of residual returns: 

𝑅𝑡 = 𝑑𝑖𝑎𝑔(𝑄
𝑡
)−1/2𝑄

𝑡
𝑑𝑖𝑎𝑔(𝑄

𝑡
)−1/2

                             (5) 

where 𝑅𝑡 is the correlation matrix constituted by the correlation 𝜌𝑖𝑗,𝑡. To parameterize the correlation coefficient 𝜌𝑡, 

we assume that 𝑄𝑡 is autoregressive: 

𝑄
𝑡

= (�̅� − 𝐴′�̅�𝐴 − 𝐵′�̅�𝐵 − 𝐺′�̅�𝐺) + 𝐴′𝑧𝑡−1𝑧′
𝑡−1A + 𝐵′𝑄

𝑡−1
𝐵 + 𝐺′𝑛𝑡−1𝑛′

𝑡−1G       (6) 

where �̅� is the N × N unconditional correlation coefficient matrix, 𝑁 is the unconditional covariance matrix of 𝑛𝑡, 

𝑧𝑡−1𝑧′
𝑡−1 is the lagged function of the standardized residuals derived from the univariate GARCH estimation, and 𝑛𝑡 

is a function indicator that takes the value of one if the residuals are negative and zero otherwise. A, B, and G are 

diagonal matrices.  

The scalar ADCC can be specified as 

𝑄
𝑡

= (�̅� − 𝑎�̅� − 𝑏�̅� − 𝑔�̅�) + 𝑎𝑧𝑡−1𝑧′
𝑡−1 + 𝑏𝑄

𝑡−1
+ 𝑔𝑛𝑡−1𝑛′

𝑡−1                (7) 

where the restriction conditions are  𝑎, 𝑏 ≥ 0  and 𝑎 + 𝑏 +  𝜏𝑔 < 1 , and 𝜏  is the maximum eigenvalue of 

 𝑄𝑡
−1/2𝑁𝑄𝑡

−1/2
. For this model, the parameter 𝑏  represents the degree of inertia in time-varying conditional 

correlations, whereas the parameter 𝑎 represents the degree of perturbation to 𝜌𝑖𝑗,𝑡 and the parameter 𝑔 introduces 

asymmetric effects into the model. 

2.3 Copula Distribution Functions 

In accordance with Patton (2006b), we consider the information set ℱ𝑡−1. If we assume that X = (𝑥1, 𝑥2)’ is a random 

vector with a two-dimensional conditional distribution function (· |ℱ𝑡−1), and that its conditional marginal distributions 

are 𝐹1(· |ℱ𝑡−1), 𝐹2(· |ℱ𝑡−1), then there exists a conditional copula C such that for all X ∈  ℝ2, 

𝐹 (𝑥1, 𝑥2|ℱ𝑡−1) =  𝐶 (𝐹1(𝑥1|ℱ𝑡−1), 𝐹2(𝑥2|ℱ𝑡−1)|ℱ𝑡−1)           (8)                           

The conditional copula C is uniquely determined in (8) if the conditional marginal distributions 𝐹1(· |ℱ𝑡−1) and 

𝐹2(· |ℱ𝑡−1) are continuous. Then, for any 𝑢𝑖 in ,0,1-2: 

𝐶(𝑢1, 𝑢2|ℱ𝑡−1) = 𝐹(𝐹1
−1(𝑢1), 𝐹2

−1(𝑢2)|ℱ𝑡−1)                       (9) 

where 𝐹𝑖
−1(· |ℱ𝑡−1) is the generalized inverse of 𝐹𝑖(· |ℱ𝑡−1). 

Conditional upper tail dependence 𝜆𝑈 and conditional lower tail dependence 𝜆𝐿  are defined as follows: 

𝜆𝑈 = 𝑙𝑖𝑚𝑢→1 𝑃𝑟 ,𝑥2 > 𝐹2
−1(𝑢)|𝑥1  >  𝐹1

−1(𝑢), ℱ𝑡−1- = 𝑙𝑖𝑚𝑢→1
,1−2𝑢+𝐶(𝑢,𝑢|ℱ𝑡−1)-

1−𝑢
    (10) 

𝜆𝐿 = 𝑙𝑖𝑚𝑢→0 𝑃𝑟 ,𝑥2 ≤ 𝐹2
−1(𝑢)|𝑥1  ≤  𝐹1

−1(𝑢), ℱ𝑡−1- = 𝑙𝑖𝑚𝑢→0
𝐶(𝑢,𝑢|ℱ𝑡−1)

𝑢
          (11) 

If 𝜆𝑈 ∈ (0, 1-, the random variables 𝑥1 and 𝑥2 are asymptotically dependent in the conditional upper tail. On the 

contrary, if 𝜆𝑢 =  0 , they are asymptotically independent in the conditional upper tail. Conditional lower tail 

dependence can be described in a similar way. If 𝜆𝐿 ∈ (0, 1-, then C has conditional lower tail dependence. If 𝜆𝐿 =  0, 

C has conditional lower tail independence. 

The details provided here concern the copula functions for two widely used copula families: the elliptical copula family 

and Archimedean copula family. In this article, we select the time-varying Student’s t-copula to calculate the symmetric 

dynamic conditional dependence for the elliptical copula. For the Archimedean copula, we employ the rotated–Gumbel 

copula to investigate the asymmetric dynamic conditional dependence, particularly as the rotated–Gumbel copula can 

measure extreme co-movements in the conditional lower tail. 

[1] The Student’s t-copula: 𝜃 = (𝑣, 𝜌).  

The cumulative distribution function (CDF) of the Student’s t-copula introduced by Dias and Embrechts (2004) and 

Patton (2006a) is as follows: 
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𝐶𝑣,𝜌
𝑡 (𝑢1, 𝑢2) = 𝑇2,𝑣,𝜌(𝑡𝑣

−1(𝑢1), 𝑡𝑣
−1(𝑢2))                                   (12) 

and the density function of the Student’s t-copula is 

𝑐𝑣,𝜌
𝑡 (𝑢1, 𝑢2) =

1

√1−𝜌2

𝛤.
𝑣+2

2
/𝛤.

𝑣

2
/(1+

1

𝑣
𝜓′𝛺−1𝜓)

−
𝑣+2

2

(𝛤(
𝑣+1

2
))

2
∏ (1+

1

𝑣
𝜓𝑖

2)
−

𝑣+1
22

𝑖=1

                              (13) 

where 𝜓 = (𝑡𝑣
−1(𝑢1), 𝑡𝑣

−1(𝑢2))′ and 𝛺 is the 2×2 correlation matrix with 𝜌 as the correlation between 𝑢1 and 𝑢2. 

𝑇2,𝑣,𝜌 is the Student’s t–CDF, with v degrees of freedom and correlation 𝜌. The time-varying copula methodology we 

adopt is that of Patton (2006b), who allows for time variation in the conditional copula by assuming that the dependence 

parameter (𝜌𝑡) evolves over time according to an equation that follows an autoregressive moving average or ARMA (1, 

10) process, with an autoregressive component for capturing persistence in the dependence parameter and a forcing 

variable for capturing variation in dependence. For instance, the time-varying Student’s t-copula evolution equations are 

given by 

𝜌
𝑡

= 𝛬*𝜔 + 𝛽𝜌
𝑡−1

+ 𝛼
1

10
∑ 𝑇𝑣

−1(𝑢1,𝑡−𝑗)𝑇𝑣
−1(𝑢2,𝑡−𝑗)

10
𝑗=1 +                      (14) 

where 𝛬 is a logistic transformation used to keep the parameter 𝜌 in its (–1, 1) interval of the copula function at all 

times, and 𝛬(𝑥) ≡ (1 − 𝑒−𝑥)(1 + 𝑒−𝑥)−1 = tanh (
𝑥

2
). The parameter 𝛼 denotes the adjustment in the dependence 

process, while 𝛽 represents the degree of persistence. 

The Student’s t-copula has symmetrical tail dependence, and the upper tail dependency is 

𝜆𝑈 = 2 − 2𝑡𝑣+1(√𝑣 + 1√1 − 𝜌/√1 + 𝜌). Because of the symmetry property, the lower tail dependency 𝜆𝐿  can be 

easily obtained. 

[2] The rotated–Gumbel copula: (𝜃 = 𝛿, 𝛿 ≥ 1). We first introduce the Gumbel copula first discussed by Gumbel (1960) 

and expanded upon by Nelsen (1999). It takes the form: 

𝐶𝛿
𝐺(𝑢1, 𝑢2) = exp (−[(−𝑙𝑛𝑢1)𝛿 + (−𝑙𝑛𝑢2)𝛿]

1

𝛿)                     (15) 

𝑐𝛿
𝐺(𝑢1, 𝑢2) =

𝐶𝛿
𝐺(𝑢1,𝑢2;𝛿)(𝑙𝑛𝑢1𝑙𝑛𝑢2)𝛿−1*[(−𝑙𝑛𝑢1)𝛿+(−𝑙𝑛𝑢2)𝛿]

1
𝛿+𝛿−1+

𝑢1𝑢2,(−𝑙𝑛𝑢1)𝛿+(−𝑙𝑛𝑢2)𝛿-
2−

1
𝛿

             (16) 

where 𝐶𝛿
𝐺 and 𝑐𝛿

𝐺  are the CDF and density functions of the Gumbel copula, respectively.  

The dependency structures of the Gumbel copulas are asymmetric: 𝜆𝑈 = 2 − 21/𝑎 and 𝜆𝐿 = 0. 

The rotated–Gumbel copula (𝜃 = 𝛿, 𝛿 ≥ 1) has the following form: 

𝐶𝛿
𝑅𝐺(𝑢1, 𝑢2|𝛿) =  𝑢1 + 𝑢2 − 1 + 𝐶𝛿

𝐺(1 − 𝑢1, 1 − 𝑢2|𝛿)                    (17)    

where 𝐶𝛿
𝐺 corresponds to the Gumbel copula. The dependence parameter 𝛿 follows the process: 

𝛿𝑡 = 𝛬*𝜔 + 𝛽𝛿𝑡−1 + 𝛼
1

10
∑ |𝑢1,𝑡−𝑗 − 𝑢2,𝑡−𝑗|

10
𝑗=1 }                         (18) 

where 𝛬(𝑥) = 1 + 𝑥2  is a polynomial transformation to ensure that 𝛿𝑡 ∈ ,1, ∞). The parameter 𝛼  denotes the 

variability of the dependence and the parameter 𝛽 denotes the persistence effect. The rotated–Gumbel copula has only 

lower tail dependence (𝜆𝑈 = 0), given by 𝜆𝐿 = 2 − 21/𝛿 . 

2.4 Estimation 

The ADCC model is estimated by using the quasi-maximum likelihood method. Following Engle (2002), the likelihood 

can be split into two parts: the term of volatility (𝑙𝛾(𝜃)) and the term of correlation (𝑙𝑐(𝜃, ∅)). Then, the two terms can 

be maximized as follows: 

θ̂ = argmax*𝑙𝛾(𝜃)+                                   (19)                                                   

The parameters of the copulas are estimated in two steps. The log-likelihood function for *𝑥𝑡+𝑡=1
𝑇  is  

ℒ(𝜽) = ∑ 𝑙𝑛 𝑓(𝑥1𝑡 , 𝑥2𝑡; 𝜽)

𝑇

𝑡=1

 

= ∑ 𝑙𝑛 𝑓1(𝑥1𝑡; 𝜃1) + ∑ 𝑙𝑛 𝑓2(𝑥2𝑡; 𝜃2) + ∑ 𝑙𝑛 𝑐(𝐹1(𝑥1𝑡; 𝜃1), 𝐹2(𝑥2𝑡; 𝜃2); 𝜃3)𝑇
𝑡=1

𝑇
𝑡=1

𝑇
𝑡=1                 (20) 

where T is the number of observations and 𝜽 = (𝜃1
′ , 𝜃2

′ , 𝜃3′)′ are the parameters in the conditional marginal densities 

𝑓1(. |ℱ𝑡−1) and 𝑓2(. |ℱ𝑡−1), as well as the copula shape parameters. The log-likelihood is decomposed into two parts, 
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with the first two terms related to the marginal estimation and the last term related to the copula. 

3. Data 

The data set comprises the daily closing price indices of the A and B shares markets of the Shanghai and Shenzhen SEs 

from December 31, 1999 to April 22, 2013, amounting to 3472 observations. All data were obtained from DataStream. 

Table 2 presents the descriptive statistics and several basic statistical tests performed on the index returns. The sample 

period runs from January 3, 2000 to April 22, 2013. As shown in Table 2, all markets display excess kurtosis. In 

addition, the returns show negative skewness, except for the Shenzhen SE’s B shares. The Jarque–Bera test shows that 

the null hypothesis of normality is rejected in all cases. Therefore, it is appropriate to use the skewed Student’s 

t-distribution to deal with these properties. 

Table 2. Descriptive Statistics on Daily Stock Returns 

 Shanghai A Shanghai B Shenzhen A Shenzhen B 

Mean  0.0601E-03 0.2427E-03 0.1038E-03 0.2856E-03 

SD 0.0068 0.0090 0.0074 0.0084 

Skewness -0.0817 -0.0113 -0.3579 0.0729 

Kurtosis 7.6952 8.0229 6.5782 7.6520 

Jarque–Bera 3192.174*** 3648.851*** 1925.784*** 3132.911*** 

Notes: SD stands for standard deviation; *** represents significance at the 1% level; Jarque–Bera corresponds to the 

Jarque–Bera test statistics. 

Table 3 presents the Pearson, Spearman, and Kendall correlations. The Pearson correlations show linear associations, 

while the Spearman and Kendall correlations are nonparametric rank correlations. As illustrated in Table 3, the 

Shanghai SE’s A and B shares have a higher correlation than those of the Shenzhen SE. 

Table 3. Correlation Estimates between the A and B Shares 

 Pearson Spearman Kendall 

Shanghai A–B 0.734 0.768 0.597 

Shenzhen A–B 0.729 0.749 0.570 

Notes: All values are significant at the 1% level. 

4. Estimation Results 

First, we employ a univariate AR–GARCH process to estimate the marginal distributions of the A and B shares in both 

SEs. Table 4 presents our marginal distribution results. According to the AIC and BIC, we select a GJR–GARCH(1,1,1) 

model for the Shanghai SE A shares, Shanghai SE B shares, and Shenzhen SE B shares, and a GARCH(1,1) model for 

the Shenzhen SE A shares. The conditional variance term coefficients (𝛽) of the four stock indices are all statistically 

significant at the 1% level and close to 1, implying a high level of persistence. The estimates of the asymmetric 

parameters γ are statistically significant at the 1% level and positive. Both markets exhibit the leverage effect, whereby 

negative shocks have a greater impact on future volatility levels than positive shocks of the same magnitude. 

Furthermore, the entire skew term coefficient 𝜆 is statistically and positively significant at the 1% level, which 

indicates that the skewed Student’s t-distribution fits the models well. The degree of freedom parameters (𝜂) are 

statistically significant at the 1% level for values exceeding 2, suggesting that the tails of the error terms are heavier 

compared with the normal distribution. Moreover, the statistics and p-values of both 𝑄2(10) at lag 10 and 𝑄2(20) at lag 

20 indicate that the null hypothesis of no autocorrelation up to orders 10 and 20 for standardized squared residuals 

cannot be rejected, which supports the adoption of our marginal specification. 
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Table 4. Estimation Results of the Marginal Distribution 

 Shanghai A Shanghai B Shenzhen A Shenzhen B 

Mean model     
𝜙0 8.430E-06 

(9.119E-05) 
1.238E-04 
(0.0001) 

3.552E-05 
 (9.754E-05) 

2.010E-04* 
(1.270E-04) 

𝜙1 0.002 
(0.016) 

0.080*** 
(0.019) 

0.112*** 
(0.017) 

0.082*** 
(0.017) 

Variance model     
𝜔 5.201E-07*** 

(2.232E-07) 
4.60E-06*** 
(4.519E-07) 

7.093E-07*** 
(2.629E-07) 

6.222E-06*** 
(6.694E-07) 

𝛼 0.041*** 
(0.004) 

0.116*** 
(0.008) 

0.059*** 
(0.003) 

0.106*** 
(0.009) 

𝛽 0.931*** 
(0.003) 

0.802*** 
(0.008) 

0.926*** 
(0.003) 

0.784*** 
(0.012) 

γ 0.032*** 
(0.006) 

0.056*** 
(0.011) 

- 0.033*** 
(0.012) 

𝜆 0.955*** 
(0.017) 

0.97*** 
(0.022) 

0.893*** 
(0.019) 

0.962*** 
(0.019) 

𝜂 3.054*** 
(0.285) 

2.412*** 
(0.142) 

4.536*** 
(0.378) 

3.008*** 
(0.157) 

Q2(10)  
 

2.853 
[0.985] 

9.036 
[0.529] 

3.141 
[0.978] 

4.849 
[0.901] 

Q2(20)  8.364 
[0.989] 

16.714 
[0.671] 

7.691 
[0.994] 

9.32 
[0.979] 

Notes: Standard errors are in parentheses. The numbers in square brackets are p-values. *, **, and *** represent 

significance at the 10%, 5%, and 1% levels, respectively. The Q2(s) statistics are the standardized squared residual 

statistics of the Ljung–Box test for the null hypothesis that there is no autocorrelation up to order s. 

We then estimate the asymmetric dynamic conditional correlations by employing our ADCC models and calculate the 

dynamic conditional dependences by using the time-varying copula functions. For comparison with the time-varying 

rotated–Gumbel copula function, we also estimate the parameters of the time-varying Student’s t-copula models. The 

results are reported in Table 5. 

Table 5. Estimation Results for the ADCC Model and Copula Functions 

 Shanghai A–B Shenzhen A–B 

ADCC   
a 0.027*** 

(0.010) 
0.019** 
(0.006) 

b 0.952*** 
(0.006) 

0.959*** 
(0.010) 

g 0.035** 
(0.01) 

0.021** 
(0.009) 

Time-varying Student’s t-copula   
𝜔 0.246*** 

(0.056) 
0.155*** 
(0.0001) 

𝛼 0.193*** 
(0.020) 

0.157*** 
(0.016) 

𝛽 0.934*** 
(0.0001) 

0.883*** 
(0.026) 

𝑣 0.198*** 
(0.023) 

0.182*** 
(0.022) 

CvM statistics 
 

91.33*** 
[0.00] 

92.783*** 
[0.00] 

Time-varying rotated–Gumbel copula   
𝜔 0.039***  

(0.004) 
0.028 
(0.026) 

𝛼 0.201*** 
(0.027) 

0.181*** 
(0.050) 

𝛽 0.908*** 
(0.063) 

0.8*** 
(0.025) 

CvM statistics 
 

1.134 
[0.11] 

0.587 
[0.58] 

Notes: Standard errors are in parentheses. The numbers in square brackets are the p-values. *, **, and *** represent 

significance at the 10%, 5%, and 1% levels, respectively. The CvM statistics and CvM p-values are the statistics and 

p-values of the CvM goodness-of-fit test. 
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For the ADCC model, the innovation parameters a for the Shanghai and Shenzhen SEs are 0.019 and 0.027, respectively, 

and the corresponding smoothness parameters b are 0.952 and 0.959. They are all statistically significant at the 1% level, 

indicating a high level of persistence for both markets. The asymmetric terms g are statistically significant at the 5% 

level for both SEs, which indicates that negative shocks have a greater impact on dynamic correlation levels than 

positive shocks in both cases. For both the copula functions, the parameters 𝛽 represent the degree of persistence, and 

𝛼 captures the adjustment in the dependence process. The parameters 𝛽 of both time-varying copula functions are 

statistically significant at the 1% level, denoting a high degree of dependence persistence for both markets. 

Significant variations over time in the dependences between the A and B shares for both markets are also present, as 

indicated by the values of 𝛼. The A and B shares for the Shanghai SE have greater dependence than those of the 

Shenzhen SE, as indicated by their dependence levels described by 𝜔, which concur with the results in Table 3. Thus, 

the results demonstrate that the Shanghai SE has not only higher levels of conditional variability but also greater 

dependence than the Shenzhen SE. This outcome provides useful insights into how to practice active risk portfolio 

management in Chinese stock markets. 

We also present the statistics and p-values from the CvM goodness-of-fit test under the null hypothesis that the 

empirical distributions fit the theoretical cumulative distribution correctly (see the Appendix). According to the CvM 

goodness-of-fit test, the null hypothesis for the time-varying Student’s t-copula is rejected at the 1% level for both SEs, 

indicating the time-varying Student’s t-copulas do not fit the dynamic dependence between the A and B shares well. On 

the contrary, the time-varying rotated–Gumbel copulas fit the model well for both SEs. Thus, we select the time-varying 

rotated–Gumbel copula functions to model the conditional dynamic dependence for the two markets, demonstrating 

evidence of asymmetric and tail dependence for both markets. Tail dependences are useful for examining the joint 

extreme events affecting financial returns during periods of high volatility or a market crash (Hu 2010). 

Figure 1 illustrates the time paths of the conditional lower tail dependences for the rotated–Gumbel copula. We find the 

lower tail dependence between the A and B shares for both markets increases with great volatility around 2001, which 

suggests that the A and B shares for both markets are more likely to react to the same negative extreme shocks after the 

opening up of the B shares market to Chinese citizens in 2001. Moreover, we find that the Shanghai SE has a higher 

degree of lower tail dependence than the Shenzhen SE, which is consistent with the results reported in Table 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Time-Varying Conditional Lower Tail Dependence for the Shanghai SE (a) and Shenzhen SE (b) 

Figure 2 shows the dynamics of the conditional correlations and time-varying parameters of the rotated–Gumbel copula. 

Since the opening up of the B shares market to Chinese citizens, the A–B shares return correlations have risen for both 



Applied Economics and Finance                                          Vol. 4, No. 2; 2017 

8 

 

SEs. Moreover, there have been signs of increasing correlations between the A and B shares for both markets since the 

2007–2008 global financial crisis. This finding demonstrates that when the market is down, risk diversification is less 

effective because of the greater dependence. Further, the A shares are more integrated with the B shares in the Shanghai 

SE than in the Shenzhen SE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Dynamic Conditional Correlation Time-Varying Rotated–Gumbel Copula Parameter for the Shanghai SE (a) 

and Shenzhen SE (b) 

5. Concluding Remarks 

In this study, we employ the ADCC and time-varying conditional copula–GARCH models to investigate the 

segmentation of Chinese stock markets. In particular, we empirically examine the dynamic dependence structure 

between the daily stock returns of A and B shares of the Shanghai and Shenzhen SEs and make the following three 

findings. First, we find significant variability in the dependences between the A and B shares for both SEs. Regardless 

of which copula function we use, we consistently find that the A and B shares of the Shanghai market have not only 

higher levels of dependence but also greater variability of dependence than those of the Shenzhen SE, which implies 

that the A shares are more integrated with the B shares for the former compared with the latter. This outcome provides 

useful insights for domestic and international investors into how to practice active portfolio risk management in Chinese 

stock markets. 

Second, based on the results of the CvM goodness-of-fit test, we suggest that time-varying rotated–Gumbel copula 

functions fit the dependence structure more appropriately than time-varying Student’s t-copula functions for Chinese 

stock markets, demonstrating that the dynamic conditional dependence structures of both markets are asymmetric and 

lower conditionally tail-dependent. 

Finally, we find that the conditional correlations between the A and B shares for the two markets increased 

tremendously around 2001, indicating that the commonality between the A and B shares was primarily based on the 

information advantage of the former. Since the opening up of the B shares market to Chinese citizens in 2001, common 

influences have become the main source of the rising dependences and correlations. In addition, we observe increasing 

dependence and correlations between the A and B shares of both markets since the 2007–2008 global financial crisis. 

These findings have important implications for investors’ asset allocation and portfolio management. Greater 

dependences during bear markets imply that opportunities for portfolio diversification reduce at such times. 
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Understanding the distinction in the integration of the A and B shares of the Shanghai and Shenzhen SEs is thus useful 

for policymakers formulating strategies. 

Our study also has some limitations. The first is that using only goodness-of-fit tests to compare the two time-varying 

copula models is insufficient. Hence, further tests should be carried out when making the model selection. Second, the 

time-varying copula functions provide a large degree of flexibility when modelling the dynamic interdependence 

between two assets. However, copula models are restricted to one timescale. Indeed, international investors differ 

depending on the investment horizon. Thus, further research should aim to use wavelet analysis to decompose the time 

series over different timescales. 
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