
Applied Economics and Finance 

Vol. 6, No. 3; May 2019 

ISSN 2332-7294   E-ISSN 2332-7308 

Published by Redfame Publishing 

URL: http://aef.redfame.com 

7 

 

Interest Rate Term Structure Decomposition at the Instrument Level 

Brian Barnard 

Correspondence: Brian Barnard, Wits Business School, University of the Witwatersrand (WITS), South Africa. 

 

Received: November 14, 2016      Accepted: March 11, 2019      Available online: April 4, 2019 

doi:10.11114/aef.v6i3.1975         URL: https://doi.org/10.11114/aef.v6i3.1975 

 

Abstract 

The paper examines term structure decomposition at the instrument level – decomposing term structures for issues as 

well as the portfolio. Three different implementations are stipulated: axiomatic structural approaches, a sequential 

approach, and a base structure approach. The three different implementations are evaluated against a portfolio of 

risk-free government bonds. The goodness-of-fit and smoothness properties of instrument-level term structure 

decomposition are also considered. The conclusion points to remaining gaps in theory regarding instrument-level term 

structure decomposition, and considers areas of application – typically bond valuation. 

Keywords: term structure decomposition, instrument valuation, bond valuation 

1. Introduction 

Barnard (2019) introduces and reviews term structure decomposition, its purpose and objective, the applicable models 

used to decompose term structures, and offers a brief comparison of these – their performance, strengths and 

weaknesses. Barnard (2019) also introduces an axiomatic structural approach as term structure decomposition method. 

In addition, the premises of term structure decomposition at the instrument level are also introduced. Term structure 

decomposition at the istrument level is then also the focus of this study. Next, the theoretical model thereof is stated. 

1.1 The Theoretical Model of Term Structure Decomposition at the Instrument Level 

Barnard (2019) notes that instrument-level term structure decomposition implies that a term structure is decomposed for 

each issue or instrument. Furthermore, hypothetically, the portfolio term structure is not directly decomposed, but 

derived from the issue term structures instead. Its aim is to offer a more direct way to simultaneously capture both the 

more predominantly unsystematic risk structures of issues, and the more predominantly systematic risk structure of the 

portfolio, through the mathematical relationship that links the two sets. It allows individual issue term structures to 

naturally deviate from the portfolio term structure, as it accommodates the unsystematic risk components of issues. This 

should advance the understanding of factors of pricing, in that it permits an analysis and comparison between individual 

issue term structures and the portfolio term structure, in line with the inquiry by Elton et al (2001), just in a more 

detailed and elaborate manner. 

Issue term structures and the corresponding portfolio term structure are naturally and logically linked.  Decomposing 

issue term structures implies that, for each issue, an issue-unique term structure of discount factors is devised, and 

discounting the issue's coupons at the issue-unique discount factors should equal the issue price. In addition, 

discounting the portfolio coupons at the portfolio term structure discount factors should equal the portfolio price. 

Overall, two relationships are preserved: First, the portfolio price obtained by discounting the portfolio coupons against 

the portfolio term structure, must equal the sum of the prices of the N issues associated with the portfolio, obtained by 

discounting each issue's coupons against each issue's term structure (equation 2.b). Secondly, and perhaps more 

importantly, discounting any portfolio coupon at the portfolio discount factor for a specific portfolio coupon date, must 

equal the sum of the corresponding issue coupons discounted at their specific issue discount factors for that coupon date 

(equation 1.a). Thus, the portfolio coupon (𝐶𝑝)for portfolio coupon date k, discounted at the portfolio discount factor 

(𝐷𝐹𝑘
𝑝
) of date k, should equal the sum of the issue coupons (𝐶𝑘

𝑖) of date k, discounted at the corresponding issue 

discount factor (𝐷𝐹𝑘
𝑖) of date k. For illustration, the portfolio coupon date, k, an issue coupon and coupon date 𝐼𝑚

𝑖  

maps to, is notated as 𝑃𝑎[𝑖][𝑚]. 

https://doi.org/10.11114/aef.v6i3.
https://doi.org/10.11114/aef.v6i3.
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𝐷𝐹𝑘
𝑝
𝐶𝑘
𝑝
=∑(𝐷𝐹𝑘

𝑖𝐶𝑘
𝑖)

𝑁

𝑖

; 𝑘 ∈ [1, . . . , 𝐾] (1.a) 

𝐼𝑚
𝑖 → 𝑃𝑎[𝑖][𝑚] (1.b) 

The above is captured by the optimization problem equation set 2. Given N issues, each with 𝑀𝑖 coupon dates, the 

difference between modelled issue prices 𝑃𝑛
𝑖, and market issue prices 𝑃𝑛

𝑖𝑚 is minimized (equation 2.a). An equality 

constraint may be added to constrain the portfolio price to its actual value (equation 2.b), although it is not always 

mandatory. Inequality constraints are added to prevent negative issue (equation 2.c), and portfolio (equation 2.d) 

forward rates. The initial solution of equation 8 of Barnard (2019) would also function in this case. Here, issue value is 

predominantly derived from discounting issue coupons against issue discount factors (𝐷𝐹𝑘
𝑖), not portfolio discount 

factors (𝐷𝐹𝑘
𝑝
), and the optimization primarily optimizes issue discount factors, not portfolio discount factors per se. 

Barnard (2019) discusses term structure decomposition as as optimization problem, and it is also further covered 

subsequently. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒∑(𝑃𝑛
𝑖𝑚 − 𝑃𝑛

𝑖)2
𝑁

𝑛=1

 (2.a) 

Subject to:  

𝑃𝑝 =∑𝐷𝐹𝑘
𝑝

𝐾

𝑘=1

𝐶𝑘
𝑝
=∑∑ 𝐷𝐹𝑚

𝑖

𝑀𝑖

𝑚=1

𝑁

𝑖=1

𝐶𝑚
𝑖  (2.b) 

𝐷𝐹1
𝑝
≤ 1; 𝐷𝐹𝑘

𝑝
≥ 𝐷𝐹(𝑘+1)

𝑝
; 𝐷𝐹𝐾

𝑝
≥ 0; 𝑘 ∈ [2, . . . , 𝐾 − 1] (2.c) 

𝐷𝐹1
𝑖 ≤ 1; 𝐷𝐹𝑚

𝑖 ≥ 𝐷𝐹(𝑚+1)
𝑖 ; 𝐷𝐹

𝑀𝑖
𝑖 ≥ 0; 𝑖 ∈ [1, . . . , 𝑁]; 𝑚 ∈ [2, . . . , 𝑀𝑖 − 1] (2.d) 

The problem with the optimization problem of equation set 2 is that, although it defines the relationship between issue 

and portfolio term structures, and although it permits issue and portfolio term structures to be decomposed, the resultant 

structures would generally have poor smoothness, as little is stipulated in this regard. 

According to Marciniak (2006), term structure models are characterized by: 1) goodness of fit (flexibility), 2) 

smoothness, 3) stability of results (robustness to changes in the data), and 4) numerical stability and time of 

computation. Stability in turn relates to four different properties: 1) robustness to outliers, 2) robustness to minor 

changes in the data set, 3) (non)uniqueness of estimates, and 4)  numerical stability. Both Marciniak (2006) and Bolder 

and Gusba (2002) point to the trade-off between  flexibility (goodness of fit), smoothness and stability. Excess 

flexibility leads to loss of smoothness (humps) and to a drastic fall in its stability. It is expected that the criteria of term 

structure decomposition should naturally extend to the case of decomposing term structures at the instrument level. Also, 

it is an open question whether the trade-off between flexibility and smoothness would be dominant in the case of 

instrument level term structure decomposition as well. 

1.2 Axiomatic Structural Approaches 

In order to introduce structure smoothness to equation set 2, the axiomatic structural approaches of Barnard (2019) may 

be considered. Barnard (2019) notes that the premise that the resultant portfolio term structure optimizes goodness of fit 

against structure smoothness, may already stipulate sufficient information to decompose a term structure, without 

necessarily stipulating a set of basis functions or splines, as conventional models do. Rather, it may simply be stated as 

a general optimization problem, by including constraints to guide the structure or smoothness thereof (Boyd and 

Vandenberghe, 2004). He outlines the optimization problem, and shows how the model is applied to a portfolio of bond 

instruments. The model agrees with conventional models in terms of its primary objective to minimize issue price 

modelling error. However, instead of basing constraints on the acceptable output structure, on mathematical functions, it 

is rather based on the attributes of the structure. Two attributes were considered: the structure has minimum variance, 
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and the growth rate between any two points likely do not exceed a given value. 

With regards to inducing optimal structure, Bolder and Gusba (2002) state that zero-coupon curve smoothness is a 

relevant criterion for a term-structure estimation model, because overly non-smooth zero-coupon curves are highly 

oscillatory functions in a model. This implies the occurrence of dramatic swings in rates from one period to the next. 

Typically, the term structure of interest rates is expected to move gradually across the term-to-maturity spectrum. 

Dramatic moves, conversely, are not considered reasonable. There is not really a possible economic reason to explain a 

large difference between the price of a five-year pure discount bond and a five-year-and-one-week pure discount bond. 

Marciniak (2006) notes that parsimonious models infer several basic shapes: monotonous increasing or decreasing, 

humped, or S-shaped. The value of one of the coefficients should correspond to zero-coupon rates for ultra long 

maturities. At the short end of the curve, the sum of some of the parameter values should be equal to the level of the 

shortest interest rates. Bolder et al (2004) in turn note the Merrill Lynch exponential spline (MLES) model is strictly 

based on curve-fitting techniques. That is, it is a strictly mathematical process defined as fitting a continuous function to 

a set of discretely observed data points. The process of generating the yield curve makes no underlying economic 

assumptions, nor does it impose any functional form to the yield curve. It models the discount function as a linear 

combination of exponential basis functions. 

In light of this, Barnard (2019) took the primary constraint on the output structure as the requirement that individual 

rates must grow gradually, with neighbouring or periods of rates not demonstrating dramatic moves. In addition, the 

short end of the curve may be constrained to conform with immediate term expectations. This may be accomplished by 

assigning weights to issues and their price residuals, according to their maturities (Bolder and Gusba, 2002; Marciniak, 

2006). 

Therefore, for purposes of conventional term structure decomposition, to constrain variance in the output structure, 

Barnard (2019) added another constraint to the optimization problem: the output variance (𝑉𝑝) may not exceed a 

certain ceiling (𝑉𝑝𝐶), defined in advance (equation 3.a). Output variance is based on the portfolio forward rates (𝐹𝑝), 
and is measured as the forward rate growth rates. It can also be argued that another property of the term structure is that 

the growth rate between any two points would never exceed a certain rate (𝑉𝑝𝑝𝐶) (equation 3.b). 

𝑉𝑝 = ∑(
𝐹
𝑡𝑘
𝑘+1
𝑝

− 𝐹
𝑡𝑘−1
𝑘
𝑝

𝑡𝑘
𝑘+1 )

2
𝐾−1

𝑘=1

≤ 𝑉𝑝𝐶 (3.a) 

=∑ (−1 𝑡𝑘
𝑘+1⁄ . 1 𝑡𝑘

𝑘+1⁄ 𝑙𝑛(𝐷𝐹𝑘+1
𝑝

𝐷𝐹𝑘
𝑝

⁄ ) + 1 𝑡𝑘
𝑘+1⁄ . 1 𝑡𝑘−1

𝑘⁄ 𝑙𝑛(𝐷𝐹𝑘
𝑝
𝐷𝐹𝑘−1

𝑝
⁄ ))

2
𝐾−1
𝑘=1   

=∑ (−𝑎𝑘. 𝑙𝑛(𝐷𝐹𝑘+1
𝑝
) + (𝑎𝑘 + 𝑏𝑘). 𝑙𝑛(𝐷𝐹𝑘

𝑝
) − 𝑏𝑘. 𝑙𝑛(𝐷𝐹𝑘−1

𝑝
))

2
𝐾−1
𝑘=1   

(
𝐹
𝑡𝑘
𝑘+1
𝑝

− 𝐹
𝑡𝑘−1
𝑘
𝑝

𝑡𝑘
𝑘+1 )

2

≤ 𝑉𝑝𝑝𝐶; 𝑘 ∈ [1, . . . , 𝐾 − 1] (3.b) 

Thus, in the case of instrument level term structure decomposition, in order to constrain the smoothness of the issue and 

portfolio term structures, a number of potential structure axioms are noted. A basic degree of smoothness is expected 

over individual issues' term structures, and this should naturally extend to the portfolio term structure. In addition, it is 

expected that issues should have discount factors and forward rates comparable to that of the portfolio for comparable 

dates. Given that they relate to similar periods in time, and even though their risk profiles differ, the absolute distance 

between issue and portfolio discount factors, is expected to be minimum. As an extension, because the interval lengths 

of issues and the portfolio differ, issues' discount factors may be expected to be comparable to all portfolio discount 

factors falling within issues' coupon intervals. Similarly, issues are expected to have comparable discount factors and 

forward rates over their overlapping coupon intervals, even though their risk profiles also differ. Though different issue 

intervals do not perfectly overlap, a number of issue intervals do overlap. Also, because forward rates ought to be more 

sensitive, absolute distance constraints can be referenced in terms of forward rates, rather than discount factors. 

Below, equation set 4 to 7 build on the axioms stated above. All the equation sets are extensions of the basic 

optimization problem of equation set 2. In these equations, 𝐶𝑖𝑣, 𝐶𝑖𝑝𝑑, 𝐶𝑖𝑝𝑓𝑑, 𝐶𝑖𝑖𝑓𝑑and 𝐶𝑝𝑣 are all different ceiling or 

maximum values. 

Equation set 4 shows an optimization problem that seeks to define structure through minimum issue structure variance 
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(equation 4.e), and minimum issue to portfolio discount factor absolute distance (equation 4.f), for each and every issue 

coupon date. In the equation, 𝑁 refers to the number of issues, and 𝑀𝑖 refers to the coupon dates of each issue 𝑖. 
𝐹𝑡𝑚𝑚+1
𝑖  is the forward rate of an issue 𝑖 over its coupon interval 𝑡𝑚

𝑚+1. 𝐷𝐹𝑚
𝑖  is the discount factor of issue 𝑖for the 

coupon date 𝑚. 𝐷𝐹𝑎[𝑖][𝑚]
𝑝

 is the portfolio discount factor corresponding to the coupon date 𝑚 of issue 𝑖. Three 

variants of the problem are possible: minimizing issue structure variance only, minimizing issue-portfolio discount 

factor absolute distance, and minimizing both. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒∑(𝑃𝑛
𝑖𝑚 − 𝑃𝑛

𝑖)2
𝑁

𝑛=1

 (4.a) 

subject to:  

𝑃𝑝 =∑𝐷𝐹𝑘
𝑝

𝐾

𝑘=1

𝐶𝑘
𝑝
=∑∑ 𝐷𝐹𝑚

𝑖

𝑀𝑖

𝑚=1

𝑁

𝑖=1

𝐶𝑚
𝑖  (4.b) 

𝐷𝐹1
𝑝
≤ 1; 𝐷𝐹𝑘

𝑝
≥ 𝐷𝐹(𝑘+1)

𝑝
; 𝐷𝐹𝐾

𝑝
≥ 0; 𝑘 ∈ [2, . . . , 𝐾 − 1] (4.c) 

𝐷𝐹1
𝑖 ≤ 1; 𝐷𝐹𝑚

𝑖 ≥ 𝐷𝐹(𝑚+1)
𝑖 ; 𝐷𝐹

𝑀𝑖
𝑖 ≥ 0; 𝑖 ∈ [1, . . . , 𝑁]; 𝑚 ∈ [2, . . . , 𝑀𝑖 − 1] (4.d) 

∑ ∑ (
𝐹𝑡𝑚𝑚+1
𝑖 − 𝐹𝑡𝑚−1

𝑚
𝑖

𝑡𝑚
𝑚+1

)

2𝑀𝑖−1

𝑚=1

𝑁

𝑖=1

≤ 𝐶𝑖𝑣 (4.e) 

∑ ∑ (−1 𝑡𝑚
𝑚+1⁄ . 1 𝑡𝑚

𝑚+1⁄ 𝑙𝑛(𝐷𝐹𝑚+1
𝑖 𝐷𝐹𝑚

𝑖⁄ ) + 1 𝑡𝑚
𝑚+1⁄ . 1 𝑡𝑚−1

𝑚⁄ 𝑙𝑛(𝐷𝐹𝑚
𝑖 𝐷𝐹𝑚−1

𝑖⁄ ))
2

𝑀𝑖−1

𝑚=1

𝑁

𝑖=1

≤ 𝐶𝑖𝑣  

∑ ∑ (−𝑎𝑚. 𝑙𝑛(𝐷𝐹𝑚+1
𝑖 ) + (𝑎𝑚 + 𝑏𝑚). 𝑙𝑛(𝐷𝐹𝑚

𝑖 ) − 𝑏𝑚. 𝑙𝑛(𝐷𝐹𝑚−1
𝑖 ))

2
𝑀𝑖−1

𝑚=1

𝑁

𝑖=1

≤ 𝐶𝑖𝑣  

∑∑(𝐷𝐹𝑚
𝑖 − 𝐷𝐹𝑎[𝑖][𝑚]

𝑝
)
2

𝑀𝑖

𝑚=1

𝑁

𝑖=1

≤ 𝐶𝑖𝑝𝑑 (4.f) 

Equation set 5 shows an optimization problem that seeks to define structure through minimum issue structure variance 

(equation 5.e), and minimum issue to portfolio forward rate absolute distances (equation 5.f). The distances are 

measured per issue interval, and against all portfolio intervals that overlap with a particular issue interval. 𝐹𝑚
𝑖  is the 

forward rate of an issue 𝑖 over its coupon interval demarcated by the coupon dates 𝑚 and 𝑚 − 1. 𝐷𝐹𝑎[𝑖][𝑚][𝑗]
𝑝

 and 

𝐹𝑎[𝑖][𝑚][𝑗]
𝑝

 are respectively the portfolio discount factor and forward rate of a portfolio interval falling within the issue 

interval demarcated by the coupon date 𝑚 and 𝑚 − 1 of issue 𝑖. 𝑡𝑗
𝑗+1

 refers to the portfolio interval, and 𝐽𝑖𝑚is the 

number of portfolio intervals falling within a particular issue interval demarcated by the coupon date 𝑚 and 𝑚 − 1 of 

issue 𝑖. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒∑(𝑃𝑛
𝑖𝑚 − 𝑃𝑛

𝑖)2
𝑁

𝑛=1

 (5.a) 

subject to:  

𝑃𝑝 =∑𝐷𝐹𝑘
𝑝

𝐾

𝑘=1

𝐶𝑘
𝑝
=∑∑ 𝐷𝐹𝑚

𝑖

𝑀𝑖

𝑚=1

𝑁

𝑖=1

𝐶𝑚
𝑖  (5.b) 
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𝐷𝐹1
𝑝
≤ 1; 𝐷𝐹𝑘

𝑝
≥ 𝐷𝐹(𝑘+1)

𝑝
; 𝐷𝐹𝐾

𝑝
≥ 0; 𝑘 ∈ [2, . . . , 𝐾 − 1] (5.c) 

𝐷𝐹1
𝑖 ≤ 1; 𝐷𝐹𝑚

𝑖 ≥ 𝐷𝐹(𝑚+1)
𝑖 ; 𝐷𝐹

𝑀𝑖
𝑖 ≥ 0; 𝑖 ∈ [1, . . . , 𝑁]; 𝑚 ∈ [2, . . . , 𝑀𝑖 − 1] (5.d) 

∑ ∑ (
𝐹𝑡𝑚𝑚+1
𝑖 − 𝐹𝑡𝑚−1

𝑚
𝑖

𝑡𝑚
𝑚+1

)

2𝑀𝑖−1

𝑚=1

𝑁

𝑖=1

≤ 𝐶𝑖𝑣 (5.e) 

∑ ∑ (−1 𝑡𝑚
𝑚+1⁄ . 1 𝑡𝑚

𝑚+1⁄ 𝑙𝑛(𝐷𝐹𝑚+1
𝑖 𝐷𝐹𝑚

𝑖⁄ ) + 1 𝑡𝑚
𝑚+1⁄ . 1 𝑡𝑚−1

𝑚⁄ 𝑙𝑛(𝐷𝐹𝑚
𝑖 𝐷𝐹𝑚−1

𝑖⁄ ))
2

𝑀𝑖−1

𝑚=1

𝑁

𝑖=1

≤ 𝐶𝑖𝑣  

∑ ∑ (−𝑎𝑚. 𝑙𝑛(𝐷𝐹𝑚+1
𝑖 ) + (𝑎𝑚 + 𝑏𝑚). 𝑙𝑛(𝐷𝐹𝑚

𝑖 ) − 𝑏𝑚. 𝑙𝑛(𝐷𝐹𝑚−1
𝑖 ))

2
𝑀𝑖−1

𝑚=1

𝑁

𝑖=1

≤ 𝐶𝑖𝑣  

∑∑∑(𝐹𝑚
𝑖 − 𝐹𝑎[𝑖][𝑚][𝑗]

𝑝
)
2

𝐽𝑖𝑚

𝑗=1

𝑀𝑖

𝑚=1

𝑁

𝑖=1

≤ 𝐶𝑖𝑝𝑓𝑑 (5.f) 

∑∑∑(−𝑡𝑚−1
𝑚 (𝑙𝑛(𝐷𝐹𝑚

𝑖 ) − 𝑙𝑛(𝐷𝐹𝑚−1
𝑖 )) + 𝑡𝑗−1

𝑗
(𝑙𝑛(𝐷𝐹𝑎[𝑖][𝑚][𝑗]

𝑝
) − 𝑙𝑛(𝐷𝐹𝑎[𝑖][𝑚][𝑗−1]

𝑝
)))

2𝐽𝑖𝑚

𝑗=1

𝑀𝑖

𝑚=1

𝑁

𝑖=1

≤ 𝐶𝑖𝑝𝑓𝑑  

Equation set 6 shows an optimization problem that seeks to define structure through minimum issue structure variance 

(equation 6.e), and minimum issue to issue forward rate absolute distances (equation 6.f). The distances are measured 

per issue interval, and the issues against which the distances are measured may be either ordinary issues or reference 

issues with issue intervals that overlap with a particular issue interval. Reference intervals of reference issues are further 

discussed in a subsequent section. 𝐹𝑚
𝑖  is the forward rate of an issue 𝑖 over its coupon interval demarcated by coupon 

date 𝑚 and 𝑚− 1. 𝐹𝑎[𝑖][𝑚][𝑗]
𝑖  is the forward rate of an ordinary or reference issue overlapping with the issue interval 

of issue 𝑖 demarcated by its coupon date 𝑚 and 𝑚− 1. 𝑡𝑙
𝑙+1 refers to the overlapping ordinary or reference issue 

interval, and 𝐿𝑖𝑚 is the number of overlapping issue intervals falling within a particular issue interval demarcated by 

the coupon date 𝑚 and 𝑚 − 1 of issue 𝑖. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒∑(𝑃𝑛
𝑖𝑚 − 𝑃𝑛

𝑖)2
𝑁

𝑛=1

 (6.a) 

subject to:  

𝑃𝑝 =∑𝐷𝐹𝑘
𝑝

𝐾

𝑘=1

𝐶𝑘
𝑝
=∑∑ 𝐷𝐹𝑚

𝑖

𝑀𝑖

𝑚=1

𝑁

𝑖=1

𝐶𝑚
𝑖  (6.b) 

𝐷𝐹1
𝑝
≤ 1; 𝐷𝐹𝑘

𝑝
≥ 𝐷𝐹(𝑘+1)

𝑝
; 𝐷𝐹𝐾

𝑝
≥ 0; 𝑘 ∈ [2, . . . , 𝐾 − 1] (6.c) 

𝐷𝐹1
𝑖 ≤ 1; 𝐷𝐹𝑚

𝑖 ≥ 𝐷𝐹(𝑚+1)
𝑖 ; 𝐷𝐹

𝑀𝑖
𝑖 ≥ 0; 𝑖 ∈ [1, . . . , 𝑁]; 𝑚 ∈ [2, . . . , 𝑀𝑖 − 1]  (6.d) 

∑ ∑ (
𝐹𝑡𝑚𝑚+1
𝑖 − 𝐹𝑡𝑚−1

𝑚
𝑖

𝑡𝑚
𝑚+1

)

2𝑀𝑖−1

𝑚=1

𝑁

𝑖=1

≤ 𝐶𝑖𝑣 (6.e) 
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∑ ∑ (−1 𝑡𝑚
𝑚+1⁄ . 1 𝑡𝑚

𝑚+1⁄ 𝑙𝑛(𝐷𝐹𝑚+1
𝑖 𝐷𝐹𝑚

𝑖⁄ ) + 1 𝑡𝑚
𝑚+1⁄ . 1 𝑡𝑚−1

𝑚⁄ 𝑙𝑛(𝐷𝐹𝑚
𝑖 𝐷𝐹𝑚−1

𝑖⁄ ))
2

𝑀𝑖−1

𝑚=1

𝑁

𝑖=1

≤ 𝐶𝑖𝑣  

∑ ∑ (−𝑎𝑚. 𝑙𝑛(𝐷𝐹𝑚+1
𝑖 ) + (𝑎𝑚 + 𝑏𝑚). 𝑙𝑛(𝐷𝐹𝑚

𝑖 ) − 𝑏𝑚. 𝑙𝑛(𝐷𝐹𝑚−1
𝑖 ))

2
𝑀𝑖−1

𝑚=1

𝑁

𝑖=1

≤ 𝐶𝑖𝑣  

∑∑∑(𝐹𝑚
𝑖 − 𝐹𝑎[𝑖][𝑚][𝑙]

𝑖 )
2

𝐿𝑖𝑚

𝑙=1

𝑀𝑖

𝑚=1

𝑁

𝑖=1

≤ 𝐶𝑖𝑖𝑓𝑑 (6.f) 

∑∑∑(−𝑡𝑚−1
𝑚 (𝑙𝑛(𝐷𝐹𝑚

𝑖 ) − 𝑙𝑛(𝐷𝐹𝑚−1
𝑖 )) + 𝑡𝑙−1

𝑙 (𝑙𝑛(𝐷𝐹𝑎[𝑖][𝑚][𝑙]
𝑖 ) − 𝑙𝑛(𝐷𝐹𝑎[𝑖][𝑚][𝑙−1]

𝑖 )))
2

𝐿𝑖𝑚

𝑙=1

𝑀𝑖

𝑚=1

𝑁

𝑖=1

≤ 𝐶𝑖𝑝𝑓𝑑  

Equation set 7 shows an optimization problem that seeks to define structure through minimum issue structure variance 

(equation 7.e), and minimum portfolio structure variance (equation 7.f). 𝐹
𝑡𝑘
𝑘+1
𝑝

 refers to the portfolio forward rate of 

portfolio interval 𝑡𝑘
𝑘+1. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒∑(𝑃𝑛
𝑖𝑚 − 𝑃𝑛

𝑖)2
𝑁

𝑛=1

 (7.a) 

subject to:  

𝑃𝑝 =∑𝐷𝐹𝑘
𝑝

𝐾

𝑘=1

𝐶𝑘
𝑝
=∑∑ 𝐷𝐹𝑚

𝑖

𝑀𝑖

𝑚=1

𝑁

𝑖=1

𝐶𝑚
𝑖  (7.b) 

𝐷𝐹1
𝑝
≤ 1; 𝐷𝐹𝑘

𝑝
≥ 𝐷𝐹(𝑘+1)

𝑝
; 𝐷𝐹𝐾

𝑝
≥ 0; 𝑘 ∈ [2, . . . , 𝐾 − 1] (7.c) 

𝐷𝐹1
𝑖 ≤ 1; 𝐷𝐹𝑚

𝑖 ≥ 𝐷𝐹(𝑚+1)
𝑖 ; 𝐷𝐹

𝑀𝑖
𝑖 ≥ 0; 𝑖 ∈ [1, . . . , 𝑁]; 𝑚 ∈ [2, . . . , 𝑀𝑖 − 1] (7.d) 

∑ ∑ (
𝐹𝑡𝑚𝑚+1
𝑖 − 𝐹𝑡𝑚−1

𝑚
𝑖

𝑡𝑚
𝑚+1

)

2𝑀𝑖−1

𝑚=1

𝑁

𝑖=1

≤ 𝐶𝑖𝑣 (7.e) 

∑ ∑ (−1 𝑡𝑚
𝑚+1⁄ . 1 𝑡𝑚

𝑚+1⁄ 𝑙𝑛(𝐷𝐹𝑚+1
𝑖 𝐷𝐹𝑚

𝑖⁄ ) + 1 𝑡𝑚
𝑚+1⁄ . 1 𝑡𝑚−1

𝑚⁄ 𝑙𝑛(𝐷𝐹𝑚
𝑖 𝐷𝐹𝑚−1

𝑖⁄ ))
2

𝑀𝑖−1

𝑚=1

𝑁

𝑖=1

≤ 𝐶𝑖𝑣  

∑ ∑ (−𝑎𝑚. 𝑙𝑛(𝐷𝐹𝑚+1
𝑖 ) + (𝑎𝑚 + 𝑏𝑚). 𝑙𝑛(𝐷𝐹𝑚

𝑖 ) − 𝑏𝑚. 𝑙𝑛(𝐷𝐹𝑚−1
𝑖 ))

2
𝑀𝑖−1

𝑚=1

𝑁

𝑖=1

≤ 𝐶𝑖𝑣  

∑(
𝐹
𝑡𝑘
𝑘+1
𝑝

− 𝐹
𝑡𝑘−1
𝑘
𝑝

𝑡𝑘
𝑘+1 )

2
𝐾−1

𝑘=1

≤ 𝐶𝑝𝑣 (7.f) 



Applied Economics and Finance                                          Vol. 6, No. 3; 2019 

13 

 

∑(−1 𝑡𝑘
𝑘+1⁄ . 1 𝑡𝑘

𝑘+1⁄ 𝑙𝑛(𝐷𝐹𝑘+1
𝑝

𝐷𝐹𝑘
𝑝

⁄ ) + 1 𝑡𝑘
𝑘+1⁄ . 1 𝑡𝑘−1

𝑘⁄ 𝑙𝑛(𝐷𝐹𝑘
𝑝
𝐷𝐹𝑘−1

𝑝
⁄ ))

2
𝐾−1

𝑘=1

≤ 𝐶𝑝𝑣  

∑(−𝑎𝑘. 𝑙𝑛(𝐷𝐹𝑘+1
𝑝
) + (𝑎𝑘 + 𝑏𝑘). 𝑙𝑛(𝐷𝐹𝑘

𝑝
) − 𝑏𝑘. 𝑙𝑛(𝐷𝐹𝑘−1

𝑝
))

2
𝐾−1

𝑘=1

≤ 𝐶𝑝𝑣  

1.3 Sequential Approach 

A sequential approach builds on the premise that certain issues predominate as reflection of accurate value and thus risk, 

over certain periods of their lifetime. One instance may be liquid issues generally seen as reference bonds. Another 

interpretation may be that, over a given interval, the issue to mature next generally has the greatest impact on portfolio 

structure formation (as part of conventional term structure decomposition) over that interval, and is likely the most 

accurate reflection of risk for that particular interval. Under this view, an issue does not necessarily form a reference 

over its entire lifetime, but only over a limited interval. From this it is not difficult to see how different issues can serve 

as reference issues over different issue and portfolio intervals. 

A term structure is then sequentially constructed by requiring issues to reference the structure of  applicable reference 

issues over applicable reference intervals, and letting issues attain their individual value with an unique structure over 

their remaining, tail intervals. Each issue has a number of intervals that overlap with reference intervals, and can thus 

reference these, or even adopt the structure of these. Also, each issue has a number of tail intervals that are not 

referenced against reference intervals, predominantly because the issue predominates over its tail interval. Should the 

resultant structure that attain issue value over the tail interval contain too much variance, the issue structure over the 

preceding intervals – the intervals referenced to reference intervals – can be adjusted accordingly. 

An advantage of the sequential approach is its simplicity, compared to the optimization problems of the axiomatic 

structural approach. Even though they do not always yield practical results, their offer simple solutions. 

1.4 Base-Structure Approach 

A drawback of the sequential approach is that, the structure devised over the tail interval of an issue may impact 

subsequent issues' structures, and overall structure smoothness, when the particular issue serves as reference issue over 

some of its tail intervals. This is predominantly due to its sequential nature. Instead, when devising the structure over 

the tail intervals of issues, subsequent issues and overall structure smoothness should equally be considered – 

essentially a concurrent, non-sequential approach. In light of this, the base structure approach devises issue structures 

from a reference structure that is concurrently calculated, and that considers overall structure smoothness. For this 

purpose, a standard portfolio term structure decomposed via conventional means serves as the perfect candidate. 

The base structure approach essentially allows two variants, that either favour issue structure smoothness, or portfolio 

structure smoothness. 

As the first variant, issue term structures are devised by having each issue adopt the base structure, and subsequently 

shifting issue structures away from the base structure, to attain their individual value. Issue risk relative to the portfolio 

should both be interval-generic, and interval-specific. Issue risk over its entire term should be generic in the sense that, 

relative to the portfolio, the issue maintains a certain risk profile. At the same time, interval specific risk deviations can 

also occur – even though issue risk over its intervals is general, specific deviations may also occur over particular 

intervals. 

Shifting issue term structures impact the derived portfolio term structure. As part of this approach, the derived portfolio 

term structure may differ from the base structure, and may contain excess variance. In its pure form, this approach 

essentially disregards negative portfolio forward rates, and the corresponding portfolio term structure. It thus disregards 

the second premise of the relationship between issue and portfolio term structures, and only regards the first premise – 

portfolio value indeed matches the sum of issue value, but the relationship between issue and portfolio discount factors 

are not strictly adhered to. The optimization of equation set 8 may be run to constrain negative portfolio forward rates 

and portfolio structure variance (equation 8.a), whilst maintaining issue value (equation 8.b). The portfolio forward 

rates of equation 8.a are rewritten in terms of portfolio discount factors, which in turn are rewritten in terms of issue 

discount factors. 

To implement this variant, the forward rates of issues are shifted, and the rates are uniformly shifted. This aligns with a 

generic view of issue risk, relative to the portfolio. Equally, this should represent the fact that issue risk generally 

accumulate over intervals. 
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As the second variant, the base case is sustained such that it essentially forms the derived portfolio term structure as 

well. This approach adheres to both premises of the relationship between issue and portfolio term structures. Equation 

set 9 captures an optimization that seeks to minimize issue value, when preserving the base case. 𝐷𝐹𝑘
𝑏 refers to the 

portfolio discount factor of the base structure for the portfolio coupon date k. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒∑(
𝐹
𝑡𝑘
𝑘+1
𝑝

− 𝐹
𝑡𝑘−1
𝑘
𝑝

𝑡𝑘
𝑘+1 )

2
𝐾−1

𝑘=1

 

= ∑ (−𝑎𝑘. 𝑙𝑛(𝐷𝐹𝑘+1
𝑝
) + (𝑎𝑘 + 𝑏𝑘). 𝑙𝑛(𝐷𝐹𝑘

𝑝
) − 𝑏𝑘. 𝑙𝑛(𝐷𝐹𝑘−1

𝑝
))

2
𝐾−1
𝑘=1  

= ∑ (−𝑎𝑘. 𝑙𝑛(∑ 𝐷𝐹𝑛
𝑖𝑁𝑘+1

𝑛 𝐶𝑛
𝑖 𝐶𝑘+1

𝑝
⁄ ) + (𝑎𝑘 + 𝑏𝑘)𝑙𝑛(∑ 𝐷𝐹𝑛

𝑖𝑁𝑘
𝑛 𝐶𝑛

𝑖 𝐶𝑘
𝑝

⁄ ) − 𝑏𝑘. 𝑙𝑛(∑ 𝐷𝐹𝑛
𝑖𝑁𝑘−1

𝑛 𝐶𝑛
𝑖 𝐶𝑘−1

𝑝
⁄ ))

2
𝐾−1
𝑘=1  

(8.a) 

subject to:  

𝑃𝑖 = ∑ 𝐷𝐹𝑚
𝑖𝑀𝑖

𝑚=1 𝐶𝑚
𝑖 ; 𝑖 ∈ [1, . . . , 𝑁] (8.b) 

𝐷𝐹1
𝑖 ≤ 1; 𝐷𝐹𝑚

𝑖 ≥ 𝐷𝐹(𝑚+1)
𝑖 ; 𝐷𝐹

𝑀𝑖
𝑖 ≥ 0; 𝑖 ∈ [1, . . . , 𝑁];𝑚 ∈ [2, . . . , 𝑀𝑖 − 1] (8.c) 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒∑(𝑃𝑛
𝑖𝑚 − 𝑃𝑛

𝑖)2
𝑁

𝑛=1

 (9.a) 

Subject to:  

𝐷𝐹𝑘
𝑏 = 𝐷𝐹𝑘

𝑝
= ∑ 𝐷𝐹𝑛

𝑖𝑁𝑘
𝑛 𝐶𝑛

𝑖 ; 𝑘 ∈ [1, . . . , 𝐾 − 1] (9.b) 

𝐷𝐹1
𝑝
≤ 1; 𝐷𝐹𝑘

𝑝
≥ 𝐷𝐹(𝑘+1)

𝑝
; 𝐷𝐹𝐾

𝑝
≥ 0; 𝑘 ∈ [2, . . . , 𝐾 − 1] (9.c) 

𝐷𝐹1
𝑖 ≤ 1; 𝐷𝐹𝑚

𝑖 ≥ 𝐷𝐹(𝑚+1)
𝑖 ; 𝐷𝐹

𝑀𝑖
𝑖 ≥ 0; 𝑖 ∈ [1, . . . , 𝑁];𝑚 ∈ [2, . . . , 𝑀𝑖 − 1] (9.d) 

2. Methodology 

To test the implementations, a market term structure was simulated by selecting a number of intervals, randomly 

selecting the forward rates of the interval points between a set minimum (0) and maximum (0.3), and interpolating the 

forward rates of the remaining points by means of straight lines across the intervals. Such a structure may perhaps not 

be practical. Nevertheless, it poses a difficult term structure to decompose, and may help to illustrate model accuracy. 

All government zero coupon and vanilla bonds from the South African market for a given date (2014-07-09) were taken. 

Issue term structures were sourced for these bonds by equating the issue term structures to the simulated portfolio term 

structure, to preserve the relationship between the issue and portfolio term structure. The government bonds were 

discounted against the simulated issue term structures, to obtain simulated values for these issues, using their original 

coupon data. 

The issues' simulated prices and original coupon data were used to decompose term structures, and the results were 

compared to the simulated structures. The given sample constitutes 27 issues, with 211 portfolio coupon dates. Some of 

the implementations were also run on the original price data of the said government bond sample. 

To implement the sequential approach, a custom algorithm was written. To source a base structure for the base structure 

approach, the decomposition model of Barnard (2019) was used. 

3. Analysis 

Overall, the optimization problems of the axiomatic, structural approach yield poor results, from a structural 

smoothness perspective. Although they attain low or zero issue value residuals, they struggle to define proper structure. 

Yet, they highlight key points. The sequential approach yields an average result, and, on face-value, even surpasses the 

output of the optimization problems, from a structural perspective, regardless of its drawbacks. The base structure 

approach yields satisfactory results, that attain both goodness of fit and structure. 

Figure 1 and 2 show the simulated issue and portfolio term structures. Figure 1 depicts only the issue term structures, 

and figure 2 depicts the issue and portfolio term structures. 
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Figure 3 to 17 pertain to the optimization problems of the axiomatic structural approach. Figure 3 to 8 correspond to 

variants of equation set 4. In the first case (figure 3 and 4), only issue structure variance is constrained. In the second 

case (figure 5 and 6), only issue to portfolio discount factor absolute distance is constrained. In the third case, issue 

structure variance, and issue to portfolio discount factor absolute distance, are jointly constrained. In all cases, the 

ceilings are set at values that permit zero issue value residuals. Also, in also cases, the issue term structures carry the 

broad or general structure of the simulated structures, to some extent. 

With regards to the first case, issue structure variance is primarily an issue structure constraint, and can only indirectly 

influence the portfolio structure, through the relationship that holds between the issue and portfolio structures. What is 

noteworthy is that constrained issue variance does not naturally extend to the portfolio structure. Therefore, constraining 

issue structure variance may not necessarily imply that portfolio structure variance is constrained, such that it is no 

longer necessary to constrain it as well. 

Moving to the second case, even though the issue to portfolio discount factor absolute distances are significantly 

constrained (lower than 1e-03), it does not adequately shape or define structure – some similitude is expected between 

the issue and portfolio structures, and too little of that is seen. The conclusion is simply that similar or identical issue 

and portfolio discount factors do not guarantee similar or identical issue and portfolio forward rates. Also, similar or 

identical issue and portfolio discount factors do not guarantee forward rate consistency – particularly that of the 

portfolio – as is required for basic structure. In most cases, the portfolio has additional, intermediary intervals, due to 

other issue intervals (imperfectly) overlapping with an issue interval. There must be general consistency across the 

portfolio discount factors (or forward rates) falling within an issue interval, for the issue and portfolio forward rates to 

compare. 

As figure 7 shows, the two different constraints do complement each other, but not nearly as sufficient to devise proper 

structure. 

In all the cases, the portfolio non-negative forward rate constraint prevents negative portfolio forward rates. In all the 

above-mentioned cases, the need to perhaps additionally constrain portfolio forward rate consistency or variance, is 

pointed out. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Simulated issue term structures 
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Figure 2. Simulated issue and portfolio term structures 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Modelled issue term structures – issue structure variance constrained 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Modelled issue and portfolio term structures – issue structure variance constrained 
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Figure 5. Modelled issue term structures – issue to portfolio discount factor distance constrained 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Modelled issue and portfolio term structures – issue to portfolio discount factor distance constrained 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Modelled issue term structures – issue structure variance, and issue to portfolio discount factor distance 

constrained 
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Figure 8. Modelled issue and portfolio term structures – issue structure variance, and issue to portfolio discount factor 

distance constrained 

Figure 9 to 12 pertain to equation set 5. In the first case, issue to portfolio forward rate absolute distance is constrained 

for all portfolio intervals overlapping with a particular issue interval. Again, the ceiling is set at the level that permits 

zero issue value residuals. Even though the premise of the constraint is a likely characteristic of a well-defined structure, 

it seems insufficient to define structure on its own. Significant differences still exist between issue and portfolio forward 

rates, that can only be further reduced by jeopardizing achieved issue value residuals. This may point to having fallen 

behind a local optimum, which reiterate the need for an additional or stronger constraint to prevent or overcome this. 

Portfolio forward rate consistency is still lacking and it seems that the constraint adds little in this regard. This 

negatively reflects on the hypothesis that portfolio forward rate consistency naturally follows when issue to portfolio 

forward rate distances are optimal. In fact, it may suggest the converse: issue to portfolio forward rate distances are 

optimal when portfolio forward rate consistency is secured. 

In this case, constraining issue structure variance as well (figure 11 and 12) significantly benefits the structure, perhaps 

even more than what can be ascribed to the issue structure variance constraint alone (figure 3 and 4). This seconds the 

proposition made previously: to adequately define structure, an additional or stronger constraint may be required, over 

and above constraining issue to portfolio forward rate absolute distance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Modelled issue term structures – issue to portfolio forward rate absolute distance constrained 
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Figure 10. Modelled issue and portfolio term structures – issue to portfolio forward rate absolute distance constrained 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Modelled issue term structures – issue to portfolio forward rate absolute distance, and issue structure 

variance constrained 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Modelled issue and portfolio term structures – issue to portfolio forward rate absolute distance, and issue 

structure variance constrained 
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Figure 13 to 15 pertain to equation set 6. Here, issue to reference issue forward rate absolute distances are constrained. 

Reference issues are selected in much the same way as that of the sequential approach. As the outcome of the sequential 

approach subsequently demonstrates, structure can be derived from reference issue sub-structures to a great extent. 

Portfolio negative forward rates are not constrained as part of the first variant, but indeed as part of the second variant. 

Ceiling values reflect the point at which issue value residuals are zero. Evidently, the forward rates of a number of 

issues follow each other – issues indeed follow reference issues. Further lowering the ceiling jeopardizes issue value 

residuals, but supports the point that issues do indeed align with reference issues. However, the outcome questions 

whether reference issues can be utilized in a non-sequential capacity. In a pure sequential setup, reference issues 

essentially carry precedence over their intervals. On the other hand, the optimization problem does not readily 

differentiate between reference issues and ordinary issues, when calculating distances or steps, nor does it assign 

preference. 

The drastic change in structure when returning the portfolio negative forward rate constraint (figure 14), may reflect on 

the power contained within the portfolio forward rate to define structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Modelled issue term structures – issue to reference issue forward rate absolute distance constrained, with 

portfolio negative forward rates unconstrained 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Modelled issue term structures – issue to reference issue forward rate absolute distance constrained 
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Figure 15. Modelled issue and portfolio term structures – issue to reference issue forward rate absolute distance 

constrained 

Figure 16 and 17 pertain to equation set 7. Here, the portfolio structure variance is constrained. Although the portfolio 

structure is by far smoother than previous variants, this variant struggles to attain zero issue value residuals, with 

significant residuals remaining (5%). Related to this, the variant still struggles to devise a proper structure that 

resembles the simulated structure. The conclusion is that portfolio structure smoothness too is not sufficient to 

guarantee proper structure. Issue value through issue term structures are too distant and indirect to induce structure in 

the portfolio structure. In light of this, it is suggested that issue value – discounted against the derived portfolio term 

structure – is added as additional objective function, to help shape the portfolio structure. This would be in addition to 

issue value discounted against issue term structures as primary objective function (equation 2.a). This would be very 

similar to the base structure approach then. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Modelled issue term structures – portfolio structure variance constrained 
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Figure 17. Modelled issue and portfolio term structures – portfolio structure variance constrained 

Figure 18 depicts the sequential approach. It will not receive a lot of attention here, as it is surpassed by the base 

structure approach. However, its result shows there are grounds to its premise: predominant issues as reference issues 

do carry precedence over their applicable, reference intervals; structure can be significantly derived from predominant 

issues over their applicable reference intervals. It weakness is also affirmed – subsequent – and thus overall – 

sub-structure smoothness is affected by preceding sub-structure smoothness. 

Figure 19 to 28 pertain to the base structure approach. Figure 19 and 20 depict the results when the base structure 

approach is fed the simulated case. Because the simulated issue term structures were derived from the simulated 

portfolio term structure, there are no issue value residuals, and thus little challenge after sourcing the portfolio term 

structure as base structure, which the model is well able to do. Hence, figure 21 to 28 all pertain to the market case. 

Figure 21 and 22 utilize a base structure decomposed at a variance ceiling of 0.15. Figure 23 to 28 utilize a base 

structure decomposed at a variance ceiling of 0.35. 

Figure 23 and 24 reflect on the first variant of the base structure approach. Issue term structures are devised by having 

each issue adopt the base structure, and subsequently shifting issue structures away from the base structure, to attain 

their individual value. The result is very smooth issue term structures that guarantee zero issue value residuals in all 

cases. This is generally at the cost of portfolio structure variance and consistency. Figure 25 and 26 show the outcome 

of the optimization that seeks to minimize portfolio forward rate variance, whilst maintaining issue value (equation set 

8). Although portfolio forward rate variance is reduced, it is not altogether removed, and negative forward rates still 

occur. The result of this is a severe degradation in issue structure smoothness that is difficult to justify. 

Figure 27 and 28 pertain to the second variant of the base structure approach – the base structure is maintained to form 

the eventual portfolio term structure as well. Figure 27 and 28 show the result of the optimization that seeks to minimize 

issue value, whilst preserving the base structure (equation set 9). In this case, even though the base structure is 

preserved, and the resultant portfolio term structure is sensible and smooth, issue value residuals remain (less than 

0.1%), and issue structure smoothness is sacrificed as a consequence. Issue structures now contain variance that 

seemingly primarily serves to attain portfolio forward rates, discount factors, and structure, and that seems hard to 

justify as unique or informative price information. On the one hand, this may be a consequence of, and response to, 

market efficiency – the model responding to inefficient pricing. Or, it may simply be that both premises of the 

relationship between issue and portfolio term structures are not practically simultaneously attainable, requiring a 

trade-off similar to the goodness-of-fit versus smoothness trade-off of conventional term structure decomposition. 
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Figure 18. Modelled issue term structures – sequential approach 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Modelled issue term structures – base structure approach; simulated case 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Modelled issue and portfolio term structures – base structure approach; simulated case 
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Figure 21. Modelled issue term structures – market case; variance ceiling (0.15) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Modelled issue and portfolio term structures – market case; variance ceiling (0.15) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Modelled issue term structures – market case; variance ceiling (0.35) 
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Figure 24. Modelled issue and portfolio term structures – market case; variance ceiling (0.35) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. Modelled issue term structures – portfolio variance minimized 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. Modelled issue and portfolio term structures – portfolio variance minimized 
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Figure 27. Modelled issue term structures – base structure preserved 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Modelled issue and portfolio term structures – base structure preserved 

4. Conclusion 

Even the worst outcomes make clear the reality of issue term structures, as structures distinct from the portfolio term 

structure, containing information, just as the portfolio term structure is acknowledged and well known to contain. 

The general view why the optimization problems of the axiomatic structural approaches fail to yield proper structure, is 

that the constraints are not adequate or sufficient to steer the problem across what can only be described as otherwise 

local optima, due to a too non-linear or poorly defined problem then. As stated under the analysis, minimizing issue 

value against the derived portfolio term structure as well, may be the missing constraint to secure structure. However, it 

is questioned whether this can be simultaneously done whilst minimizing issue value against issue term structures – the 

predominant objective of the axiomatic structural approach optimizations – necessitating two separate steps. It will then 

also essentially approximate the base structure approach. Both Gauthier and Simonato (2012) and Gimeno and Pineda 

(2006) note method to overcome highly non-linear decomposition problems, which includes seeding. The base structure 

approach could then be seen as a seeding method to seed the optimization problems with a base or initial structure.  

The base structure approach offers a workable method to decompose at the instrument level, particularly when 

disregarding the derived portfolio term structure. Two variants of the base structure approach were examined. The 

method of shifting the base structure to obtain issue term structures offer very smooth issue term structures, even though 

it does not necessarily yield an appropriate portfolio term structure. The particular approach followed here was to 

uniformly shift issue forward rates. Attention can perhaps be given to more elaborate means. The second variant of the 
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base structure approach preserves portfolio term structure integrity, but sacrifices issue term structure smoothness in 

favour of portfolio term structure smoothness. 

The basic criteria of conventional term structure decomposition – goodness-of-fit, smoothness, and stability – naturally 

extend to instrument-level term structure decomposition. Also, the trade-off between goodness-of-fit and smoothness 

may prevail, albeit in different form. It is not altogether certain whether it would be possible to attain both smooth issue 

term structures, and a smooth portfolio term structure at all times, or even at all. In the end, a trade-off between issue 

term structure smoothness and portfolio term structure smoothness may practically persist. More complex term structure 

simulations that consider an unique term structure per issue, or per issue sub-group (assigning issues to sub-groups and 

simulating term structures for these) should help to answer the question from a theoretical vantage point. Also, the effect 

of market efficiency should be considered. 

The study began to explore the goodness-of-fit properties and smoothness properties of instrument-level term structure 

decomposition. Subsequent attention can be given to its stability properties, which may be more complex than 

conventional term structure decomposition, because of the number of instruments or term structures involved. 

The pragmatic utility of issue term structures lays in the information they contain. One instance are issues' risk premia – 

explaining why an issue has the risk premium it has. Issue term structures offer more elaborate data to do so. Another, 

related instance are issues' default probabilities – quantifying issue default probability over the lifetime of the issue. 

Again, issue term structures offer more elaborate data to do so. 

The study examined a risk-free portfolio of bond instruments. Instrument level term structure decomposition should 

equally apply to risky instruments, and may even find greater application value in such a context, as its intend is to 

expand and reflect on inherent instrument risk. 
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